生物破乳剂产生菌发酵工艺条件优化及调控策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足“资源节约型、环境友好型”社会建设和绿色工业发展对绿色净水剂的需求,生物破乳剂作为一种高效、低毒、环保的绿色净水剂,成为破乳剂领域研究的新热点。在高含水原油乳状液以及其它工业乳状液副产品的处理和处置中,应用生物破乳剂替代大量使用的化学破乳剂,对提高乳状液脱水率,降低环境污染风险具有深远意义。但是,生物破乳剂的实际应用进程受到破乳剂产生菌代谢过程不稳定、破乳有效成分复杂及缺少大规模发酵生产经验等问题的制约。基于此,开展破乳菌筛选方法;菌种破乳效能强化;粗产品分离与鉴定;发酵工艺优化及产破乳剂相关蛋白质功能解析等方面的研究,将为生物破乳剂的大规模生产、推广和应用奠定良好基础。
     将可用于间接表征生物破乳剂破乳效能及破乳菌初筛的6种生物表面活性剂检测方法与破乳试验相结合,提出破乳菌筛选原则,构建高效筛选模式。确定了高效破乳菌(24h排油率≥90%)的判断依据:发酵液表面张力≤40mN/m或细胞表面疏水性(MATH)≥50%。筛选得到7株高效破乳菌,经16S rDNA鉴定分属于芽孢杆菌属(Bacilllus sp.)和戈登氏菌属(Gordonia sp.),实验室编号分别为LXH-1、LXH-2、LXH-3、LL1、LL-1、LL-2和LL-3。
     以生物破乳剂产生菌XH1为研究对象,改进破乳菌复壮方法,其核心是通过烃类物质-液体石蜡为底物排除负变细胞,调节菌株的破乳活性;改进的复壮方法可成功将菌株XH1的表面活性、破乳功能等特性恢复至原始水平,效果优于常规复壮。
     研究表明烃类物质-液体石蜡对菌株XH1合成破乳有效组分具有刺激和促进作用,利用液体石蜡预先刺激强化菌种,再经生产培养基扩大培养,获得的生物破乳剂可将破乳半衰期t1/2从16h缩短为2h。根据胞外蛋白破乳比活性、细胞表面疏水性等相关试验结果,初步分析液体石蜡强化促进菌株XH1破乳特性的作用机制。
     菌株XH1经液体石蜡强化后,破乳有效组分主要分布于上清液和附着在菌体表面。分离得到生物破乳剂粗产品,产量为2.01g/L,4mg的排油率(24hR.D.)>93%。利用可见-紫外光谱、红外光谱和薄层层析(TLC)确定粗产品主要功能组分为蛋白质和脂肽类物质;平均分子量为2.59×106Da。并从中粗提得到脂肽类物质的量为0.08±0.01g/g (24h R.D.:65.3%);破乳活性蛋白复合物可由饱和度25%,45%的(NH4)2SO4粗提得到,产量为0.36±0.02g/g (24h R.D.:67.4%)。利用SDS-PAGE电泳和质谱技术确定疏水蛋白质Oxalate Decarboxylase为一种破乳有效蛋白质。
     为了提高生物破乳剂的产率,采用响应面法(RSM)确定最优培养基组成为:8.5g/L葡萄糖、3%(v/v)液体石蜡、15g/L磷酸盐(K2HPO4&KH2PO4)、1.5g/L酵母膏和3.36g/L氯化铵;与优化前相比排油率(24h)提高了35.5%,破乳剂粗产品产量提高了1倍。进一步确定最佳发酵条件为:培养温度29℃、摇床转速200r/min、培养时间21h和种子液菌龄24h。
     为了确定破乳菌XH1的发酵方式,首先基于Logistic方程、Luedeking-Piret方程及Luedeking-Piret-Like方程建立描述菌株XH1分批发酵生产破乳剂的动力学模型,经检验该组模型能较好的拟合XH1发酵过程。进一步比较不同的发酵方式,结果表明分批补料半连续式发酵优于分批发酵,最佳补料参数:初始葡萄糖为2.0g/L;补料方式为间歇式,间隔时间为5h;补料量为:控制每次补料量比前一次增加0.02%~0.04%。破乳菌XH1在最佳补料方式下破乳剂粗产品产率提高55.9%,产品对糖得率提高44%,高效破乳剂(24h排油率>80%)连续生产周期延长了50h。
     为了确定参与生物破乳剂合成的相关蛋白质,采用SDS-PAGE电泳研究液体石蜡刺激强化培养和单一营养物质缺失对XH1破乳效能和菌体总蛋白变化的影响,获得差异表达蛋白复合物Ⅰ、Ⅱ和Ⅲ。通过nanoESI-Q-TOF MS/MS共鉴定出66个差异表达蛋白质,分属于碳水化合物的转运和代谢、能量产生与转换、翻译/核糖体结构和生物合成等14个蛋白质功能。确定以上差异表达蛋白质中与糖酵解途径(EMP)、三羧酸循环(TCA)以及蛋白质合成相关的酶与菌株XH1合成蛋白质和脂肽类生物破乳剂关系密切,进一步从蛋白质组层面分析不同发酵条件影响菌株XH1产生物破乳剂能力的作用机制。
     基于以上研究结果,建立发酵工艺条件、差异蛋白质功能以及生物破乳剂合成过程三者的关系,从代谢调节、菌种特性和发酵工艺三个层面综合分析强化破乳菌XH1产破乳剂能力的策略,并提出菌种高效筛选→菌种改进复壮→液体石蜡刺激强化→半连续发酵生产的破乳菌XH1发酵形式,对于今后生物破乳剂大规模生产具有重要的参考价值。
In order to meet the ‘resourceconserving’ and ‘environmentally friendly’ socialconstruction and green industrial development on demand for green purifying agent,biodemulsifier as a high efficient, low toxicity and environmental green purifyingagent, has been the key point of demulsifier research area. Biodemulsifier was usedin the treatment and disposal of high water-cut crude oil emulsions and many otherindustial emulsions by-products to substitute for chemical demulsifier. That wasprofound significance to increase dewatering rate of emulsions and decreaseenvironmental risk. However, some key problems restrict the practical application ofbiodemulsifier such as unstable metabolic process of demulsifying bacteria, difficultanalysis on complicated effective ingredients, major research at laboratory level andabsence of large scale fermentation experience. So, research on isolation methods tohigh efficiency strains, enhancement of demulsifying ability, separation andidentification of crude products, fermentation process optimization and analysis onprotein related to demulsifying activity will be great foundation of lagre scaleproduction, promotion and application.
     A complementary advantage of highly-efficient isolation mode was put forwardby demulsifying test combining with six detecting methods to biosurfactants whichcould be used in indirect characterization of demulsifying efficiency ofbio-demulsifier and primary isolation of demulsifying strains. Judgement standardof high efficiency demulsifying strains (24h demulsifying ratio R.D.≥90%) wasdetermined as surface tensions≤40mN/m or microbial adhesion to the hydrocarbon(MATH)≥50%. Seven strains with high demulsifying ability were identified asBacilllus sp. and Gordonia sp.by16S rDNA analysis,respectively, named as LXH-1,LXH-2, LXH-3, LL1, LL-1, LL-2and LL-3.
     High efficiency bio-demulsifier producing bacterium XH1selected as thisstudy object, was rejuvenated by modified rejuvenation method. The key of thismethod was exclusion negative variation cells by hydrocarbon-liquid paraffin assubstrate and adjusting strain demulsifying activity.Modified mothod could makethe surface activity and demulsifying function of XH1rejuvenate to original level,which was superior to the routine method.
     It shows that hydrocarbon-liquid paraffin possessed the stimulation andfacilitation to demulsifying effective components production by XH1. Based on this,using paraffin stimulated and enhanced the demulsifying characteristics of the strainfirst. It was found that the bio-demulsifierafter enlarge cultivation in productionmedium could decrease the half-life period (t1/2) of demulsification from16h to2h. According to the related measured results of demulsifying specific activity ofextracellular protein, microbial cell surface hydrophobic property, and so on, theeffect mechanism of paraffin stimulation and enhancement was preliminaryanalysed.
     The effective components from the whole culture of XH1distributed into thesupernatants and adhersion to cell surfaces, due to XH1stimulated and enhanced byliquid paraffin. The yield of bio-demulsifier crude product was2.01g/L and4mgdosage of24h R.D. was>93%. The major effective components were determined asprotein and lipopeptid substances by UV-vis and FT-IR spectrum, average molecularweight was2.59×106Da. Lipopeptid crude extract could be obtained0.08±0.01g/gfrom crude products of biodemulsifiers, possessing of65.3%R.D.(24h).Demulsifying active protein complexs could be precipitated by25%~45%(NH4)2SO4, and demulsifying ratio and yield were67.4%and0.36±0.02g/g,respectively. Using SDS-PAGE and mass spectrogram technology, one hydrophobicprotein was determined as effective ingredient, identified as Oxalate Decarboxylase.
     In order to improve the bio-demulsifier productivity, using Response SurfaceMethodology (RSM) to optimize bio-demulsifier producing medium, the optimalcompositions were as follows:8.5g/L glucose,3%(v/v) liquid paraffin,15g/Lphosphate(K2HPO4&KH2PO4),1.5g/L yeast extract, and3.3.6g/L ammoniumchloride. Compared with unoptimization, the demulsifying ratio (24h) and crudeproduct yield were increased by35.5%and100%, respectively. Further optimizingfermentation conditions, it obtained that the optimum incubation temperature,shacking table speed, incubation time, and inoculum age were29℃,200r/min,21h,and24h, respectively.
     In order to determine strain XH1fermentation mode, based on the equations of“Logistic”,“Luedeking-Piret”,“Luedeking-Piret-Like”, the kinetic models ofbio-demulsifier batch fermentation of XH1and their parameters were obtained byOrigin7.5software. This group of models had a good fit with fermentation processof XH1and indicated that feeding carbon souces in fermentation was help tobiosynthesis of biodemulsifier. Comparing diverse fermentation approaches, theresults show that semicontinuous fermentation with fed-batch was superior to batchfermentation. The optimal feeding parameters as follows:2.0g/L initial glucoseconcentration, fed-batch type:5h fed-time interval, fed glucose mass:0.02%~0.04%increase of per feeding glucose compared with last time. The yieldsof crude products and from glucose utilization under optimal fed types wereincreased by55.9%and44%, respectively. Moreover, continuous production periodof highly-efficient bio-demulsifier (24h R.D.>80%) were prolonged by50h.
     In order to determine the protein participating in bio-demulsifier biosynthesis,using SDS-PAGE investigated the effects of liquid paraffin stimulation and enhancement, and medium absence of sole nutrient substance on demulsifyingefficieny and total protein differential expression of XH1. And it was obtained thatthe differential expression protein complexes Ⅰ, Ⅱ, and Ⅲ related todemulsifying ability of XH1. The above complexes were identified and analyzedwith the help of nanoESI-Q-TOF MS/MS and bioinformatics tools, showing thatsixty-six unique proteins belong to fourteen function classifications includingcarbohydrate transfer and metabolism, energy generation and transformation, andtranslation/ribosome structure and biosynthesis. Above the differential expressionproteins, the enzyme related to glycolytic pathway (EMP), tricarboxylic acid cycle(TCA) or protein synthesis had close relations with the biosynthesis of protein andlipopeptid type bio-demulsifier from strain XH1. Furthermore, on the proteomicslevel, the fermentation conditions effect mechanism on ability of producingbio-demulsifier was analysed.
     Through above research results established the relationships of fermentationprocess, differential expression protein and bio-demulsifier synthesis process.Enhancement strategy of the bio-demulsifier production ability of strain XH1wasanalyzed by synthesis from metabolic regulation, strain characteristic andfermentation process levels. Sequentially, a new fermentation approach includingdemulsifying strain selection→modified rejuvenation→liquid paraffinbio-stimulation and enhancement→semicontinuous fermentation was proposed,which had a significant reference value of the large scale bio-demulsifierproduction.
引文
[1] Mason S L, May K, Hartland S. Drop Size and Concentration ProfileDetermination in Petroleum Emulsion Separation[J]. Colloids Surf,1995,96:85-92.
    [2]方云,夏咏梅.生物表面活性剂[M].北京:中国轻工业出版社,1992:210-265.
    [3]王世荣,李祥高,刘东志,等.表面活性剂化学[M].北京:化学工业出版社,2010:6-32.
    [4] Al-Sabagh A M, Kandile N G, El-Din M R N. Functions of Demuslifiers inthe Petroleum Industry[J]. Separation Science and Technology,2011,46:1144-1163.
    [5]纳米复合破乳剂的研究与应用[D].北京:北京交通大学,2008:1-27.
    [6] Banat I M, Makkar R S, Cameotra S S. Potential Commercial Applicationsof Microbial Surfactants[J]. Appl Microbiol Biotechnol,2000,53:495-508.
    [7] Van Hamme J D, Singh A, Ward O P. Recent Advances in PetroleumMicrobiology[J]. Microbiol Mol Biol Rev,2003,67:503-549.
    [8] Banat I M, Franzetti A, Gandolfi I, Besetti G, Martinotti M G, Fracchia L,Smyth T J, Marchant P. Microbial Biosurfactants Production, Applicationand Future Potential[J]. Appl Microbiol and Biotechnol,2010,87(2):427-444.
    [9] Park S H, Lee J H, Ko S H, Lee D, Lee H K. Demulsification ofOil-in-water Emulsions by Aerial Spores of a Streptomyces sp.[J].Biotechnol Lett,2000,22:1389-1395.
    [10]陆丽君.破乳菌破乳有效成分鉴定及对油田采出液水处理系统影响研究
    [D].上海:同济大学,2007:1-16.
    [11]康万利,孙春柳.油田乳状液破乳方法研究进展[J].管道技术与设备,2006,2:1-4.
    [12]杜玉梅.优秀原油破乳剂所具备的性能初探[J].高分子通报,2006,11:47-50.
    [13] Amézcua-Vega C, Poggi-Varaldo H M, Esparza-García F, Ríos-Leal E,Rodríguez-Vázquez R. Effect of Culture Conditions on Fatty AcidsComposition of a Biosurfactant Produced by Candida ingens and Changesof Surface Tension of Culture Media[J]. Bioresour Technol,2007,98:237-240.
    [14] Nadarajah N, Singh A, Ward O P. De-emulsification of Petroleum OilEmulsion by a Mixed Bacterial Culture[J]. Process Biochem,2002,37:1135-1141.
    [15]张天胜.生物表面活性剂及其应用[M].北京:化学工业出版社,2005:1-14,294-316.
    [16] Nadarajah N, Singh A, Ward O P. Evaluation of a Mixed Bacteria Culturefor Deemulsification of Water-in-oil Petroleum Oil Emulsions[J]. World JMicrobial Biotechnol,2002,18(5):435-440.
    [17] Liu J, Huang X F, Lu L J, Xu J C, Wen Y, Yang D H, Zhou Q. Optimizationof Biodemulsifier Production from Alcaligenes sp. S-XJ-1and itsApplication in Breaking Crude Oil Emulsion[J]. Journal of HazardousMaterials,2010,183:466-473.
    [18] Banat I M. Biosurgactants Production and possible Uses in MicrobialEnhanced Recovery and Oil Pollution Remediation: a Review[J]. BioresourTechnol,1995,51(1):1-12.
    [19] Ghojavand H, Vahabzadeh F, Azizmohseni F. A Halotolerant,Thermotolerant, and Facultative Biosurfactant Producer: Identification andMolecular Characterization of a Bacterium and Evolution of EmulsifierStability of a Lipopeptide Biosurfactant[J]. Biotechnology and BioprocessEngineering,2011,16(1):72-80.
    [20] Cairns W L, Cooper D G, Zajic J E, Wood J M, Kosaric N. Characteriationof Nocardia amarae as a Potent Biological Coalescing Agent of Water inOil Emulsions[J]. Appl Enviorn Microbiol,1982,43(2):362-366.
    [21]马挺,梁凤来,奚艳伟,等.红球菌PR-1菌株破乳性能研究[J].环境科学,2006,27(6):1192-1196.
    [22] Janiyani K L, Purohit H J, Shanker R, Khanna P. De-emulsification ofOil-inwater Emulsions by Bacillus subtilis[J]. World J Microbiol Biotechnol,1994,10:452-456.
    [23] Fukumi N, Nobuhiro T, Tomohiko T, Kazuya W, Sanae H. MicroorganismsDemulsifiers and Processes for Breaking an Emulsion.1999, US5989892.
    [24] Das M. Characterization of De-demulsification Capabilities of aMicrococcus sp.[J]. Bioresour Technol,2001,79:15-22.
    [25]冯志强,杨永军,朱成军,等.原油生物破乳剂的研究与应用[J].石油大学学报,2004,28(3):93-99.
    [26]肖稳发,刘锡建,张红,等.微生物技术在油气田开发中的研究与应用进展[J].化学与生物工程,2006,23(10):1-3.
    [27]缪永霞,易绍金.环保型生物破乳剂的研究及应用[J].油气田环境保护,2007,17(4):44-45.
    [28]贺梦琦.生物破乳剂的研究[M].大庆:大庆石油学院,2010:3.
    [29] Cooper D G, Zajic J E, Cairns W L, Kosaric N. De-emulsification andMicrobes, Biochemicals Engineering Research Reports. Canada: Universityof Weatern Ontario,1980, Vol.Ⅵ.
    [30] Gray N C C, Stewart A L, Cairns W L, Kosaric N. Bacteria-inducedDeemulsification of Oil-in-water Petroleum Emulsions[J]. Biotechnol Lett,1984,6:419-424.
    [31] Stewart A L, Gray N C C. Bacteria-induced De-emulsification ofWater-in-oil Petroleum Emulsions[J]. Biotechnol Lett,1983,5:725-730.
    [32] Duvnjak Z, Kosaric N. De-emulsification of Petroleum Water in OilEmulsions by Selected Bacterial and Yeast Cells[J]. Biotechnol Lett,1987,9:39-42.
    [33] Kosaric N, Duvnjak Z, Cairns W L. De-emulsification of ComplexPetroleum Emulsions by Use of Microbial Biomass[J]. Environ Prog,1987,6:33-38.
    [34] Kosaric N, Cairns W L, Gray N C C (ed.).Microbial Deemulsifiers inBiosurfactant and Biotechnology[M]. New York: Marcel Dekker,1987:247-320.
    [35] Lee J C, Lee K Y. Emulsification Using Enviromental CompatibleEmuldifiers and De-emulsification Using D.C. Field and ImmobilizedNocardia amarae[J]. Biotechnol Lett,2000,22:1157-1163.
    [36] Andrew J P, Ralf C R. Treatment of Strongflow Wool Scouring Effluent byBiological Emulsion Destabilization[J]. Water research,2004,38:1419-1426.
    [37]苗芳,李连志.生物破乳剂的性能研究[J].河北职工医学院,2001,18(3):5-8.
    [38]韦良霞,任丽,肖英玉,等. HRB-4型生物破乳剂在纯梁采油厂的应用[J].油田化学,2004:21(1):42-44.
    [39]周劲,赵晓祥,冯庆安.环境因子对破乳优势菌生长的影响[J].广州化工,2005,33:44-45.
    [40]黄翔峰,闻岳,杨葆华,等.破乳菌种TR-1的筛选与破乳性能的实验研究[J].油田化学,2006,23(2):136-139.
    [41] Satpute S K, Banpurkar A Q, Dhakephalkar P K, Banat I M Chopade B A.Methods for Investigating Biosurfactants and Bioemulsifiers: a Review[J].Crit Rev Biotechnol,2010,30(2):127-144.
    [42]周劲.破乳优势菌株的筛选及其活性研究[D].上海:东华大学,2006:1-13.
    [43]曾里.生物破乳剂的分离、筛选及破乳特性研究[D].四川:四川大学,2003:6-14.
    [44] Youssef N H, Duncan KE, Nagle D P, Savage K N, Knapp R M, MclnerneyM J. Comparison of Methods to Detect Biosurfactant Production by DiverseMicroorganisms[J]. J Microbiol Methods,2004,56:339-347.
    [45] Batista S B, Mounteer A H, Amorim F R, Totola M R. Isolation andCharacterization of Biosurfactant/Bioemulsifier-producing Bacteria fromPetroleum-contaminated Sites[J]. Bioresour Technol,2006,97:868-875.
    [46] Plaza G A, Zjawiony I, Banat I M. Use of Different Methods for Detectionof Thermophilic Biosurfactant Producing Bacteria from Hydrocarbon-contaminated and Bioremediated Soils[J]. J Petrol Sci Eng,2006,50:71-77.
    [47] Bodour A A, Miller-Maier R M. Application of a Modified Drop-collapseTechnique for Surfactant Quantitation and Screening of Biosurfactant-producing Microorganisms[J]. J Microbiol Methods,1998,32:273-280.
    [48] Rodrigues L, Banat I M, Teixeira J, Oliveira R. Biosurfactants: PotentialApplications in Medicine[J]. J Antimicrob Chemother,2006,57:609-618.
    [49] Onwosi C O, Odibo F J C. Effects of Carbon and Nitrogen Sources onRhamnolipid Biosurfactant Production by Pseudomonas NitroreducensIsolated from Soil[J]. World J Microb Biot,2012,28(3):937-942.
    [50] Hamme J D V, Singh A, Ward O P. Recent Advances in PetroleumMicrobiology[J]. Microbiol Mol Biol Res,2003,67(4):503-549.
    [51] Barad J M, Chakraborty M, Bart H J. Stability and Performance Study ofWater-in-oil-in-water Emulsion: Extraction of Aromatic Amines[J]. Ind EngChem Res,2010,49(12):5808-5815.
    [52]彭伟,陈永立. W/O型乳化液生物破乳菌的筛选及性能研究.新疆石油科技.2006,16(1):39-40.
    [53]杨志生,孙宇,梁宝臣.生物优势菌破乳剂的制备及性能研究.化学工业与工程.2004,21(1):8-11.
    [54] Huang X F, Liu J, Lu L J, Wen Y, Xu J C, Yang D H, Zhou Q. Evaluation ofScreening Methods for Demulsifying Bacteria and Characterization ofLipopeptide Bio-demulsifier Produced by Alcaligenes sp. Bioresour Technol,2009,100:1358-1365.
    [55]吴涓,李请彪,邓旭,等.重金属生物吸附的研究进展[J].离子交换与吸附,1998,14(2):180-187.
    [56] Rosen M J. Surfactants and Interfacial Phenomena (2ed)[M]. New York:Wiley,1989:234-246.
    [57] Cairns W L, Cooper D G, Zajic J E, Wood J M, Kosaric N. Characteriationof Nocardia amarae as a Potent Biological Coalescing Agent of Water inOil Emulsions[J]. Appl Evioron Microbiol,1982,43:362-366.
    [58] Ward O P. Microbial Biosurfactants and Biodegradation[M]. Biosurfactants,2010:65-74.
    [59] D·波塞尔特, W·施密特, M·古茨曼,等.蛋白质作为破乳剂的用途[P].2008, CN101151081.
    [60] Singh A, Van Hamme J D, Ward O P. Surfactants in Microbiology andBiotechnology: Part2. Application Aspects[J]. Biotechnol Adv,2007,25:99-121.
    [61] Marques A M, Pinazo A, Farfan M, Aranda F J, Teruel J A, Ortiz A,Manresa A, Espuny M J. The Physicochemical Properties and Compostionof Trehalose Lipids Produced by Rhodococcus erythropolis[J]. Chem PhysLipids,2009,158(2):110-117.
    [62] Parra J L, Guinea J, Manresa M A, Robert M, Mercade M E, Comelles F,Bosch M P. Chemical Characterization and Physicochemical Behaviour ofBiosurfactants[J]. J Am Oil Chem Soc,1989,37:141-145.
    [63] Peypoux F, Bonmatin J M, Wallach J. Recent trends in the biochemistry ofSurfactin[J]. Appl Microbiol Biotechnol,1999,51(5):553-563.
    [64] Mueller M M, Hoermann B, Kugel M, Syldatk C, Hausmann R. Evaluationof Rhamnolipid Production Capacity of Pseudomonas aeruginosa PAO1inComparison to the Rhamnolipid Over-producer Strains DSM7108and DSM2874[J]. Appl Microbiol Biotechnol,2011,89(3)585-592.
    [65] Liu J, Huang X F, Lu L J, Li M X, Xu J C, Deng H P. Turbiscan lab(R)Expert Analysis of the Biological Demulsification of a Water-in-oilEmulsion by Two Biodemulsifiers[J]. J Hazard Mater,2011,190(1-3):214-221.
    [66]田瑞华.生物分离工程[M].北京:科学出版社,2008:18-50.
    [67] Kuyukina M S, Ivshina I B, Philp J C, Christofi N, Dunbar S A, BitchkovaM I. Recovery of Rhodococcus biosurfactants Using Methyl Tertiary-butylEther Extraction[J]. J Microbiol Meth,2001,46:149-156.
    [68]刘伊强,王雅平,潘乃穟,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特征[J].植物学报,1994,36(3):197-203.
    [69]童有仁,马志超,陈卫良,等.枯草芽孢杆菌B034拮抗蛋白的分离纯化机特性分析[J].微生物学报,1999,39(4):339-343.
    [70] Chen H L, Juang R S. Recovery and Separation of Surfactin from PretreatedFermentation Broths by Physical and Chemical Extraction. Biochem Eng J,2008,38(1):39-46.
    [71] Witek-Krowiak A, Witek J, Kozlecki T. Separation of Biosurfactants byultrafiltration[J]. Przemysl Chemiczny,2011,90(9):1762-1766.
    [72] Lin S C, Chen Y C, Lin Y M. General approach forthe development of highperformance liquid chromatography methods for biosurfactant analysis andpurification[J]. J Chromatgr A,1998,825:149-159.
    [73]傅海燕,曾光明,袁兴中,等.生物表面活性剂的分离提纯及发展前景[J].生物学杂志,2003,20(6):1-4.
    [74] Morita T, Ishibashi Y, Hirose N. Production and Characterization of aGlycolipid Biosurfactant, Mannosylerythritol Lipid B, form Sugarcane Juiceby Ustilage scitaminea NBRC32730[J]. Biosci Biotechnol Biochem,2011,75(7):1371-1376.
    [75]吕应年,杨世忠,牟伯中.脂肽的分离纯化与结构研究[J].微生物学通报,2005,32(1):67-73.
    [76]丁立孝.脂肽类生物表面活性剂的发酵生产及其结构、性质研究[D].浙江:浙江大学,2004:20-29.
    [77]张翠竹,张心平,梁风来,等.一株地衣芽孢杆菌产生的生物表面活性剂[J].南开大学学报(自然科学),2000,33(4):41-52.
    [78]岑沛霖,蔡谨.工业微生物学(第二版)[M].北京:化学工业出版社,2008:118-129,189-205.
    [79] Sousa J R de, Correia J A D, Almeida J G L de, Rodrigues S, Pessoa O D L,Melo V M M, Goncalves L R B. Evaluation of a Co-production of BiodieselProduction as Carbon Source in the Production of Biosurfactant by P.aeruginosa MISC02[J]. Process Biochem,2011,46(9):1831-1839.
    [80]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社(第二版),2008:124-153.
    [81] Perry D. Experimental Design in Biotechnology[M]. New York: ASQCQuality Press,1989:78-96.
    [82]洛健美.纳他菌素高产菌株选育、发酵条件优化、发酵动力学及溶解度的研究[D].浙江:浙江大学,2005:24-26.
    [83] Wang Q F, Hou Y H, Xu Z, Miao J L, Li G Y. Optimization of Cold-activeProtease Production by the Psychrophilic Bacterium Colwellia sp. NJ341with Response Surface Methodology[J]. Bioresour Technol,2008,99:1926-31.
    [84] Hajji M, Rebai A, Gharsallah N, Frikha F, Nasri M, Kamoun A S.Optimization of Alkaline Protease Production by Aspergillus clavatus ES1in Mirabilis Jalapa Tuber Powder Using Statistical Experimental Design[J].Appl Microbiol Biotechnol,2008,76:915-23.
    [85] Beg Q K, Sahai V, Gupta R. Statistical Media Optimization and AlkalineProtease Production from Bacillus mojavensis in a Bioreactor[J]. ProcBiochem,2003,39:203-9.
    [86]余龙江.发酵工程原理与技术应用[M].北京:化学工业出版社,2006:42-46.
    [87]陈坚,堵国成,卫功元.微生物重要代谢产物-发酵生产与过程解析[M].北京:化学工业出版社,2005:128-175.
    [88]史仲平,潘丰.发酵过程解析、控制与检测技术[M].北京:化学工业出版社,2005:144-148.
    [89] Daverey A, Pakshirajan K. Kinetics of Growth and Enhanced SophorolipidsProduction by Candida bombicola Using a Low-Cost FermentationMedium[J]. Appl Biochem Biotech,2010,160(7):2090-2101.
    [90]侯宁.生物破乳剂产生菌的特性及破乳效能研究[D].哈尔滨:哈尔滨工业大学,2009:63-71.
    [91]罗大珍,林雅兰.现代微生物发酵及技术教程[M].北京:北京大学出版社,2006:100-104.
    [92]曾嵘,夏其昌.蛋白质组学研究进展与趋势[J].中国科学院院刊,2002,(3):166-169.
    [93]赵洪岩.采用非标记定量技术对变形链球菌耐氟菌株的差异蛋白质组学研究[D].吉林:吉林大学,2011:1-20.
    [94] Cardoza J D, Parikh J R, Ficarro S B, Marto J A. Mass Spectrometry-basedProteomics: Qualitative Identification to Activity-based ProteinProfiling[M]. Wiley Interdisciplinary Reviews. System Biology andMedicine,2012,4(2):141-162.
    [95]李丽莉,温博海,王恒樑.蛋白质组技术进展[J].生物技术通讯,2006,17(4):662-664.
    [96] Patel P S,Telang S D,Rawal R M,Shah M H. A review of Proteomics inCancer Research[J]. Asian Pac J Cancer Prev,2005,6(2):113-117.
    [97] Chichester C,Nikitin F,Ravarini J C, Lisacek F. Consistency Checks forCharactering Protein Forms[J].Comput Biol Chem,2003,27(l):29-35.
    [98] Farrell P H. High Resolution Two Dimensional Electorphoresis ofProtein[J]. J Biol Chem,1975,250:4007-4021.
    [99] Klose J. Protein Mapping by Combined Isoelectrophoresis of MouseTissues:A Novel Approach to Testing for Induced Point Mutations in Mammals[J].Humangenetik,1975,26:231-243.
    [100]威尔金斯,阿尔佩,威廉斯,等.蛋白质组学研究[M].北京:科学出版社,2010:15-50.
    [101]武霞.野大麦盐胁迫的差异蛋白质组学研究[D].长春,吉林大学,2007:24-27.
    [102] Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J. Validationand Different Gel of Fluorescence Electrophoresis ProteomicsTechnology[J]. Proteomics,2001,1:377-396.
    [103] Zhou G, Li H M, DeCamp D, et al.2D-Differential in-Gel Electrophoresisfor the Identification Esophageal Scans Cancer Specific Protein Markers[J].Mol Cell Proteomics,2002,1:117-124.
    [104] Lilley K S, Friedman D B. All about DIGE: Quantification Technology forDifferential Display2D-gel Proteomics [J]. Expert Rev Proteomic,2004,1(4):401-409.
    [105] Fenn J B,Mann M,Meng C K,Wong S F, Whitehouse C M. ElectrosprayIonization for Mass Spectrometry of Large Biomolecules [J]. Science,1989,246(4926):64-71.
    [106] LoPachin R M,Jones R C,Patterson T A,Slikker W Jr, Barber D S.Application of Proteomics to the Study of Molecular Mechanisms inNeurotoxicology[J]. R M N euro Toxicology,2003,24:761-765.
    [107] Wang X N, Xu L N,Peng J Y. Application of Recent Biological MassSpectrometry in Biomacromolecules Analysis and Research [J]. Chin JMAP,2008,25(2):105-109.
    [108] Mann M. Quantitative Proteomics [J]. Nat Bioltechnol,1999,17:954-955.
    [109] Rotilio D, Corte A D, D'lmperio M, Coletta W, Marcone S, Silvestri C,Giordano L, Michele M D, Donati M B. Proteomics: Bases for ProteinComplexity Understanding[J]. Thromb Reserarch,2012,129(3):257-262.
    [110]吴祖建,高芳銮,沈建国.生物信息学分析实践[M].北京:科学出版社,2010:105-140.
    [111] Perkins D N, Pappin D J, Creasy D M, Cottrell J S. Probability-BasedProtein Identification by Searching Sequence Databases Using MassSpectrometry Data[J]. Electrophoresis,1999,20:3551-3567.
    [112]李旭.生物破乳剂的开发及破乳效能研究[D].哈尔滨:哈尔滨工业大学,2008:18-30,45-96.
    [113] Bodour A A, Miller R M. Biosurfactants: Types, Screening Methods, andApplications[M]. NY: Encyclopedia of environmental Microbiology, Wiley,1999:750-770.
    [114] Zhao Z Y, Selvam A, Wong J W C. Effect of Rhamnolipids on Cell SurfaceHydrophobicity of PAH Degrading Bacteria and the Bbiodegradation ofPhenanthrene[J]. Bioresour Technol,2011,102(5):3999-4007.
    [115] Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM. Production andCharacterization of a Glycolipid Biosurfactant from Bacillus megateriumUsing Economically Cheaper Sources[J]. World J Microbiol Biotechnol,2008,24:917-925.
    [116] Banat I M. The Isolation of a Thermoohilic Biosurfactant-ProducingBacillus Species[J]. Biotechnol Lett,1993,15(6):591-594.
    [117]李衍达,孙之荣.生物信息学基因和蛋白质分析的实用指南[M].北京:清华大学出版社,2003:16-43,175-211.
    [118]于冰.产絮菌产絮过程差异表达蛋白质及其功能调控研究[D].哈尔滨:哈尔滨工业大学,2010:27-36.
    [119]马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002:53-57.
    [120]咸洪泉,郭立忠.微生物学实验教程[M].北京:高等教育出社,2010:21-25.
    [121] Ykimov M M, Timmis K N, Wray V, Fredrickson H L. Characterization of aNew Lipopeptide Surfactant Produced by Thermotolerant and HalotolerantSubsurface Bacillus licheniformis BSA50[J]. Appl Environ Mierobiol,1995,61(5):1706-1713.
    [122]陈涛,杨世忠,牟伯中.微生物发酵液中脂肽类生物表面活性剂的测定[J].油田化学,2002,21(4):385-390.
    [123]刘伊强,王雅平,潘乃穟,等.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特征[J].植物学报,1994,36(3):197-203.
    [124]童有仁,马志超,陈卫良,等.枯草芽孢杆菌B034拮抗蛋白的分离纯化机特性分析[J].微生物学报,1999,39(4):339-343.
    [125] Beg Q K, Saxena R K, Gupta R. Kinetic Constants Determination for anAlkaline Protease from Bacillus mojavensis Using Response SurfaceMethodology[J]. Biotechnol Bioeng,2001,78(3):289-295.
    [126] Pal M P, Vaidya B K, Desai K M, Joshi R M, Nene S N, Kulkarni B D.Media Optimization for Biosurfactant Production by Rhodococcuserythropolis MTCC2794: Artificial Intelligence Versus a StatisticalApproach[J]. J Ind Microbiol Biotechnol,2009,36:747-756.
    [127] Amezcua-Vega C, Poggi-Varaldo H M, Esparza-Garcia F, Rios-Leal E,Rodriguez-Vazquez R. Effect of Culture Conditions on Fatty AcidsComposition of a Biosurfactant Produced by Candida ingens and Changesof Surface Tension of Culture Media[J]. Bioresour Technol,2007,98:237-240.
    [128]哈希公司编译.水质分析实用手册[M].北京:化学工业出版社,2010:207-382.
    [129] Bernheimer A M, Avigad L S. Nature and Properties of a Cytolytic AgentProduced by Bacillus subtilis[J]. J Gen Microbiol,1970,61:361-369.
    [130] Carrillo P G, Mardaraze C, Pitta-Alvarez S J, Giulietti A M. Isolation andSelection of Biosurfactant-Producing Bacteria[J]. World J MicrobiolBiotechnol,1996,12:82-84.
    [131] Huang X F, Guanm W, Liu J, Lu L J, Xu J C, Zhou Q. Characterization andPhylogenetic Analysis of Biodemulsifier-Producing Bacteria[J]. BioresourTechnol,2010,101:317-323.
    [132]张凡,佘跃惠.排油圈法对生物表面活性剂的定量与定量[J].化学工程师,2005,112(1):1002-1124.
    [133] Lai C C, Huang Y C, Wei Y H, Chang J S. Biosurfactant-Enhanced Removalof Total Petroleum Hydrocarbons from Contaminated Soil[J]. J HazardMater,2009,167:609-614.
    [134] Gogotov I N, Khodakov R S. Surfactant Production by the Rhodococcuserythropolis sH-5Bacterium Grown on Various Carbon Sources[J]. ApplBiochem Microbiol,2008,44:186-191.
    [135] Ivanov I B, Kralchevsky P A. Stability of Emulsions under Equilibrium andDynamic Conditions[J]. Colloid Surface A: Physicochem Eng Asp,1997,128:155-175.
    [136] Franzetti A, Bestetti G., Caredda P, La Colla P, Tamburini E. Surface-ActiveCompounds and their Role in the Access to Hydrocarbons in GordoniaStrains[J]. FEMS Microbiol Ecol,2008,63:238-248.
    [137]徐暘.一株破乳菌破乳有效成分分析及其强化培养条件优化[D].哈尔滨:哈尔滨工业大学,2010:72-87.
    [138] Rainey F A, Burghardt J, Kroppenstedt R M, Klatte S, Stackebrandt E.Phylogenetic Analysis of the Genera Rhodococcus and Nocardia andEvidence for the Evolutionary Origin of the Ggenus Nocardia from withinthe Radiation of Rhodococcus Species[J]. Microbiol UK,1995,141:523-528.
    [139] Odds F C, Rinaldi MG, Cooper CR, Fothergill A, Pasarell L, McGinnis MR.Candida and Torulopsis: a Blinded Evaluation of Use of PseudohyphaFormation as Basis for Identification of Medically Important Yeasts[J]. JClin Microbiol,1997,35:313-316.
    [140] Goodfellow M, Davenport R, Stainsby F M, Curtis T P. ActinomyceteDiversity Associated with Foaming in Activated Sludge Plants[J]. J IndMicrobiol Biot,1996,17:268-280.
    [141] Beg Q K, Saxena R K, Gupta R. De-repression and Subsequent Induction ofProtease Synthesis by Bacillus mojavensis under Fed-Batch Operations[J].Proc Biochem,2002,37:1103-9.
    [142] Randhir S M, Swaranjit S C. Biosurfactant Production by Microorganismson Unconventional Carbon Sources[J]. J Surfactants Deterg,1999,2:237-41.
    [143] Prabhu Y, Phale P S. Biodegradation of Phenanthrene by Pseudomonas sp.Strain PP2: Novel Metabolic Pathway, Role of Biosurfactant and CellSsurface Hydrophobicity in Hydrocarbon Assimilation[J]. Appl MicrobiolBiotechnol,2003,61:342-351.
    [144] Al-Tahhan R A, Sandrin T R, Bodour A A, Maier R M.Rhamnolipid-Induced Removal of Lipopolysaccharide from Pseudomonasaeruginosa: Effect on Cell Surface Properties and Interaction withHydrophobic Substrates[J]. Appl Environ Microbiol,2000,66:3262-3268.
    [145] Husain D R, Goutx M, Bezac C, Gilewicz M, Bertrand J C. MorphologicalAdaptation of Pseudomonas nautical Strain617to Growth on Eicosane andModes of Eicosane Uptake[J]. Lett Appl Microbiol,1997,24:55-58.
    [146] Johnson A R, Karlson U. Evaluation of Bacterial Strategies to Promote theBioavailability of Polycyclic Aromatic Hydrocarbons[J]. Appl MicrobiolBiotechnol,2004,63:452-459.
    [147] Noordman W H, Janssen D B. Rhamnolipid Stimulates Uptake ofHydrophobic Compounds by Pseudomonas aeruginosa[J]. Appl EnvironMicrobiol,2002,68:4502-4508.
    [148]曹书霞,赵玉芬.分子吸收光谱在生物大分子研究中的应用[J].光谱学与光谱分析,2004,24(10):1197-1201.
    [149]胡皆汉,郑学仿.实用红外光谱学[M].北京:科学出版社,2010:322-327.
    [150]钟华.鼠李糖脂的菌体吸附及其对菌体表面的改性作用研究[D].长沙:湖南大学,2008:13-20.
    [151]钱晓勇.一株脂肽生物表面活性剂产生菌筛选及脂肽性质研究[D].合肥:合肥工业大学,2009:4.
    [152] Kumar C G, Joo H S, Choi J W, Koo Y M, Chang C S. Purification andCharacterisition of an Extracellular Polysaccharide from HaloalkaphilicBacillus sp.1-450[J]. Enzyme microb tech,2004,34(7):673-681.
    [153] Antelmann H, Towe S, Albrecht D, Hecker M. The Phosphorus SourcePhytat Changes the Composition of the Cell Wall Proteome in Bacillussubtilis[J]. J Proteome Res,2007,6:897-903.
    [154] Deepak V, Kalishwaralal K, Ramkumarpandian S, Venkatesh Babu S,Senthilkumar S R, Sangiliyandi G. Optimization of Media Composition forNattokinase Production by Bacillus subtilis Using Response SurfaceMethodology[J]. Bioresour Technol,2008,99:8170-8174.
    [155] Zhang C H, Ma Y J, Yang F X, Liu W, Zhang Y D. Optimization of MediumComposition for Butyricacid Production by Clostridium thermobutyricumUsing Response Surface Methodology[J]. Bioresour Technol,2009,100:4284-4288.
    [156] Znad H, Blazej M, Bales V, Markos J. A Kinetic Model for Gluconic AcidProduction by Aspergillusniger[J]. Chem Pap-Chem Zvesti,2004,58:23-28.
    [157] Mu W M, Liu F L, Jia J H, Chen C, Zhang T, Jiang B.3-Phenyllactic AcidProduction by Substrate Feeding and pH-control in Fed-Batch Fermentationof Lactobacillus sp.SK007[J]. Bioresour Technol,2009,100:5226-5229.
    [158] Stephanopoulos G N, Aristidou A A, Nielsen J. MetabolicEngineering-principles and Methodologies(1st ed)[M]. China: ChemicalIndustry Press,2003:112-56.
    [159] Bezawada J, Yan S, John R P, Tyagi R D, Surampalli R Y. Augmentation ofProtease Production by Supplementing Carbon and Nitrogen Sources intoWatewater Sludge Medium[J]. J Resid Sci Technol,2010,7(3):161-172.
    [160] Cooper D G, Paddock A D. Production of a Biosurfactant from Torulopsisbombicola[J]. Appl Environ Microbiol,1984,47:173-6.
    [161]钱欣平.生物表面活性剂的合成及其促进有机物降解的研究[D].浙江:浙江大学,2002:21-35.
    [162]田玉庭.辅酶Q10高产菌株选育及发酵过程优化研究[D].西北农林科技大学,2010:87-94.
    [163] Zhou H, Qu Y Y, Kong C L, Wu Y G, Zhu K, Yang J, Zhou J T. PromiscuousEsterase Activities of the C-C Hydrolases from Dyella ginsengisoli[J].Biotechnol Lett,2012,×××,×××.
    [164] Meng B, Qian Z, Wei F, Wang W, Zhou C, Wang Q, Tong W, Wang Q, MaY, Xu N, Liu S. Proteomic Analysis on the Temperature dependentComplexes in Thermoanaerobacter tengcongensis[J]. Proteomics,2009,9(11):3189-3200.
    [165] Tatusov, R L, Fedorova, N D, Jackson, J D, Jacobs A R, Kiryutin B, KooninE V, Krylov D M, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S,Smirnov S, Sverdlov A V, Vasudevan S, Wolf Y I, Yin J J, Natale D A. TheCOG Database: An Updated Version Includes Eukaryotes[J]. BMCBioinformatics,2003,4:41.
    [166]罗立新.微生物发酵生理学[M].北京:化学工业出版社,2009:168-195.