鞘氨醇对紫花苜蓿和黄瓜愈伤组织诱导及抗逆性影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以紫花苜蓿(金黄后品种)和黄瓜(神农5号和津育1号品种)为材料,研究了鞘氨醇(sphingosine)处理对紫花苜蓿和黄瓜愈伤组织诱导及分化的影响,以及在干旱及温度胁迫中对某些生理指标的影响。结果表明,在诱导初期,无论是低于0.1mg/L鞘氨醇对紫花苜蓿的处理,还是0.15mg/L、0.3mg/L和0.6mg/L浓度鞘氨醇对黄瓜愈伤组织的处理,对愈伤组织的诱导均没有明显作用。在黄瓜两个品种中,0.6mg/L鞘氨醇处理可以促进黄瓜愈伤组织的再分化。
     鞘氨醇对愈伤组织SOD、POD等4种酶活性的影响。0.06mg/L鞘氨醇处理使紫花苜蓿愈伤组织的SOD活性显著升高,0.02mg/L鞘氨醇处理可使POD活性明显增加。鞘氨醇处理黄瓜愈伤组织,虽然在愈伤组织诱导初期使SOD和POD酶活性出现高峰,但诱导后期均趋于下降。
     在聚乙二醇(PEG-6000)模拟的渗透胁迫下,鞘氨醇处理组中紫花苜蓿愈伤组织POD活性、黄瓜愈伤组织SOD活性以及游离脯氨酸含量均高于对照组。水分胁迫72h,鞘氨醇处理使得紫花苜蓿愈伤组织可溶性糖和蛋白质含量增加,其中0.06mg/L浓度的处理使糖和蛋白质含量分别增加10%和25%。
     黄瓜愈伤组织的丙二醛(MDA)含量在水分胁迫前期经鞘氨醇处理后变化缓慢,之后变化幅度较大;低温胁迫下,对照组MDA含量的增加较0.6mg/L鞘氨醇处理的快,说明鞘氨醇可以适当降低低温胁迫下MDA的累积,增强植物对低温的适应性。在水分胁迫中,黄瓜愈伤组织蛋白激酶活性呈先上升后下降的趋势,处理组酶活性高峰的出现时间较对照晚,说明鞘氨醇在一定程度上抑制了蛋白激酶。这些均可以说明在一定浓度鞘氨醇处理下,紫花苜蓿和黄瓜两种植物的愈伤组织均增加了其在逆境当中的适应性,提高了耐胁迫的能力。
Medicago sativa L.and Cucumis sativus L.were used in the experiment. After the treatment with sphingosine, the effects of the induction and the differentiation of callus and that of the drought and temperature stresses on some physiologic indexes were investigated. The experiment results showed that sphingosine have no influence on the can inhibit the the inductivity of callus in, and 0.6 mg/L sphingosine can increase the rate of differentiation. In the effect of sphingosine on the activity of superoxide dismutase (SOD) and peroxidase(POD) etc, the results indicated that during the induction the callus treated with sphingosine of 0.06 mg/L showed higher SOD activity and 0.02 mg/L showed h-igher POD activity. During the induction of Cucumis sativus L. with 0.15 mg/L, 0.3 m g/L or 0.6 mg/L sphingosine treated, the enzyme activities of SOD and POD appeare d a peak, but in the late stage the activities decreased.Under the osmotic stress induced by PEG, sphingosine enhanced the activity of POD, SOD of callus in Cucumis sativus Land the content of proline. Under water stress condition, sphingosine made the content of soluble sugar and protein of callus in Medicago sativa L. increased, and sphingosine of 0.6 mg/L made the content of soluble sugar and the protein increased 10 % and 25 %, respectively.Malondialdehyde (MDA) of callus in Cucumis sativus L.changed slowly in the earlier stage, but later it changed quikly and the range of variation enlarged; under the low temperature stress, MDA content of the control went up quickly than the callus treated. This illustrated that sphingosine can properly decreased the accumulation of MDA and enhanced the adaptability to low temperature. Following the prolong of water stress's time, protein kinase activity increased earlier and decreased later, and sphingosine delayed the appearance of the peak of activity. It showed that to a certain extent sphingosine inhibited protein kinase. In a word, with the treatment of some concentration, sphingosine can enhance the adaptability of Medicago sativa L. and cucumber under the adversity and improve the capability of anti-threatening.
引文
[1] Hannun Y A and Bell R M. Function of sphingolipids and sphingolipid breakdown products in cellular regulation[J]. Science, 1989,, 243:500-507.
    [2] Hubert V, Eva M S, Mariana N N, et al. Sphingolipids in food and the emerging importance of sphingolipids to nutrition[J]. J. Nutr, 1999, 129:1239-1250.
    [3] Futerman A H, Stieger B, Hubbard AL, et al. Sphingomyelin synthesis in rat liver oecures predominantly at the cis and medial cis-temae of the Golgi apparatus[J]. J. Biol. Chem, 1990, 265: 8650-8657.
    [4] Ohanian J, Ohanian V. Sphingolipids in mammalian cell signaling[J]. Cell Mol Life Sci, 2001, 58: 2053-2068.
    [5] Sanchez T, Hla T. Structural and functional characteristics of SIP receptors[J]. J Cell Biochem, 2004, 92(5):913-922.
    [6] Hanafusa N, Yatomi Y, Yamada K, et al. Sphingosine 1-phosphate stimulates rat mesangialcell proliferation from outside the cells[J]. Nephrol Dial Transplant, 2002, 17:580-586.
    [7] Stoffel W, Heimann G, Hellenbroich B. Sphingosine kinase in blood platelets[J]. Hoppe Seylers Z Physiol Cbem, 1973, 54:562-566.
    [8] Ghosh T K, Bian D L. Intracellular calcium release mediated by sohingosine derivatives generated in cells[J]. Science, 1990, 248:1653-1656.
    [9] Spiegel S, Olivera A, Zhang H, et al. Sphingosine 1-phosphate, a novel second messenger involved in cell growth regulation and signal transduction, affects growth and invasiveness of human breast cancer cells[J]. Breast Cancer Res Treat, 1994, 31:337-48.
    [10] Buehrer B M, Bell R M. Inhibition of Sphingosine Kinase in Vitro and in Platelets[J]. J. Biol. Chem, 1992, 267:3154-3159.
    [11] Hla T, Maciag T. An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein coupled receptors[J]. J. Biol. Chem. 1990, 265: 9308-9313.
    [12] Gentil B, Grimot F, Riva C. Commitment to apoptosis by ceramides depends on mitochond ial respiratory function, cytochromec release and caspase-3 activationin HepG2 cells[J]. Mol Cell Biochem,, 2003, 254(1-2):203-210.
    [13] Yang J, Duerksen-Hughes P J. Activation of ap53-independent, sphingolipid-mediated cytolytic pathway inp53-negative mouse fibroblast cell streated with N-methyl-N-nitro-N-nitrosoguanidine[J]. J Biol Chem, 2001, 276:27129-27135.
    [14] Kims S, Chae H S, Bach J H, et al. P53 mediate ceramide-induced apoptosis in SKN-SH cells[J]. Oncogene, 2002, 21 (13):2020-2028.
    [15] Hannun Y A, Lina M O. Ceramide:an intracellular signal for apoptosis[J]. TIBS, 1995, 20:737.
    [16] Hannun Y A and Luberto C. Ceramide in the eukaryotic stress response[J]. Trends Cell Biol, 2000, 10:73-80.
    [17] Levade T, Jaffrelzou J P. Signalling sohingomyelinases:which, where, how and why?[J] Biochem. Biophys. Acta, 1999, 1438:1-17.
    [18] Bose R, Verheij M, Haimovitz-friedman, et al. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signal[J]. Cell, 1995, 82:405-414.
    [19] Perry D K. The role of de novo ceramide synthesis in chemotherapy induced apoptosis[J]. Ann. N. Y. Acad. Sci. 2000, 905:91-96.
    [20] Lesnick R, Golde D W. The sphingomyelin pathway in tumor necrosis factor and inter-leukin-1 signaling[J]. Cell, 1994, 77:325-328.
    [21] Hannun Y A. The sphingomyelin cycle and the second messenger function of ceramide[J] J Biol Chem, 1994, 269: 3125-3128.
    [22] Thudiechum, J. L. W., "Reports of the Medical Officer of Privy Council and Local Government Board", N. Ser., No, Ⅷ, 1876, 117.
    [23] Sakakura C, Sweeney E A, Shirahama T, et al. Selectivity of sphingosine-induced apoptosis. Lack of activity of dlerythyrodihyd-rosphingosine[J]. Biochem Biophys Res Commun 1998; 246:827-30.
    [24] Cuvillier O, Edsall L, Spiegel S. Involvement of sphingosine in Mitochondris dependent Fas-induced Apoptosis of Type Ⅱ Jurkat T Cells[J] J. Biol. Chem. 2000, 275:15691-15670.
    [25] Hung W C, Chang H C, Chuang L Y. Activation of caspase-3 like proteases in apoptosis induced by sphingosine and other long chain bases in Hep3B hepatoma cells[J]. Bio chem. J. 1999, 338:161-166.
    [26] Hannun Y A, Loomis C R, Merrill Jr AH, et al. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets[J]. J. Biol. Chem. 1986, 21: 12604-12609.
    [27] Sweeney E A, Sakakura C, Shirahama T, et al. Sphingosine and its Methylated derivativeN, N-dimethlysphingosine(DMS) induce Apoptosis in a. variety of human cancer cell lines[J]. Int J Cancer, 1996, 66:358-366.
    [28] 于占彩,李振光,王远臣.磷脂信使与细胞凋亡[J]。基础医学与临床,2003:23(1).
    [29] Hannun Y A, Greenberg C S, Bell R M. Sphingosine inhibition of agonist-dependent secretion and activation of activation of human platelets implies that protein kinase C is anecessary and common event of the signal transduction. [J].
    [30] Hisano N, Yatomi Y, Fujino M A, et al. Quantification of sphingosine derivetives in human platelets: inducible formation of free sphingosine[J]. J. Biochem(Tokyo), 1998, 123, (2):263-268.
    [31] Alexey Titievsky, Ira Titievskaya, Michael Pasternack, et al. Sphingosine inhibits Voltage-operated Calcium Channels in GH4Cl[J]. Cells, 1998, 273(1): 242-247.
    [32] Chris Mathes, Andrea Fleig, reinhold Penner, et al. Calcium Release activated Calcium Current(ICRAC) Is a Direct Target for Sphingosine[J]. J. Biol Chem, 1998, 273(39): 25020-25030.
    [33] Jefferson A B, Schulman H. Sphingosine. inhibits calmoduin dependent enzyme[J]. J. Biol Chem, 1988, 263 (30): 15241-15244.
    [34] Arnold R S, Newton A C. Inhibition of the insulin receptor tyrosine kinase by sphingosine[J]. Bio Chemistry, 1991, 30(31):7747-7754.
    [35] Yamada K, Sakane F, Imai S. Sphingosine activities cellular diacylglycerol kinase in intact Jurkat cells, a human T-cell line[J]. Biochim Biophys Acta, 1993, 1169(3):217-224.
    [36] Donald O B, Hannun Y A, Reynolds C H, et al. Activity of casein kinase Ⅱ by sphingosine[J]. J. Biol Chem, 1991, 266(32):21773-21776.
    [37] Megidish T, White T, Takio K, et al. The signal modulator protein 14-3-3 id a target of sphingosine-or N, N-dimethylsphingosine-dependent kinase in 3T3(A31)cells[J]. BioChem Biophy Res Commun, 1995, 216 (3):739-747.
    [38] Merrill A H Jr, Schmelz E M, Dillehay D L, et al. Sphingolipids-the enigmatic lipid class: biochemistry, physiology, and pathophysiology[J]. Toxicol Appl Pharmacol, 1997, 142(1):208-225.
    [39] Dbaibo G S, Wolff R A, Obeid L M, et al. Activation of a retinoblastoma-protein-dependent pathway by sphingosine[J]. Biochem J. 1995, 310(Pt2):453-459.
    [40] Jarvis W D, Fornari F A Jr, Auer K L, et al. Coordinate regulation of stress and mitogen-activated protein kinase in the qpoptotic actions of ceramide and sphingosine[J]. Mol Pharmacol, 1997, 52(6): 935-947.
    [41] Edsall L C, Van Brockly J R, Cuvillier O, et al. N, N-Dimethylsphingosine is a potent competitive inhibit or of sphingosine kinase but not of ceramide and sphingosine[J]. M-ol Pharmacol, 1997, 52(6):935-947.
    [42] Murohara T, Buerke M, Margiotta J, et al. Myoeardial and endothelial protection by TMS in ischemiareperfusion injury[J]. Am J Physiol, 1995, 269(2):504-514.
    [43] Huwiler A, Kolter T, Pfeilschifter J, et al. Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 2000, 1485:63-99.
    [44] Coroneos E, Wang Y, Panuska J R, et al. Sphingolipid metabolites differentially regulate extra cellular signal-regulated kinase and stress-activated protein kinase cascades. Biochem J 1996; 316:13-7.
    [45] Wakita H, Tokura Y, Yagi H, et al. Keratinocyte differentiation is induced by cell-permeant ceramides and its proliferation is promoted by sphingosine. Arch Dermatol Res 1994, 286: 350-354.
    [46] Olivera A, Zhang H, Carlson R O, et al. Stereospecificity of protein kinases in the apoptotic actions of ceramide and sphingosine[J]. Mol Pharmacol 1997, 52:935-47.
    [47] Dbaibo G S, Wolff R A, Obeid L M, et al. Activation of a retinoblastoma-protein-dependent pathway by sphingosine. Biochem J 1995, 310:453-459.
    [48] Sweeney E A, Inokuchi J, Igarashi Y. Inhibition of sphingolipid induced apoptosis by caspase inhibitors indicates that sphingosine acts in an earlier part of the apoptotic pathway than ceramide[J]. FEBS Lett 1998, 425:61-65.
    [49] Hung W C, Chang H C, Chuang L Y. Activation of caspase-3-like proteases in apoptosis induced by sphingosine and other long-chain bases in Hep3B hepatoma cells[J]. Biochem J 1999, 338:161-166.
    [50] Merrill A H, Wang E. Biosynthesis of long-chain(phingolipid) baseds from serine by LM cells. Evidence for introduction of the 4-trans-double bond after de novo biosynthesis of N-acylsphinganine (s). J. Biol. Chem, 1986, 261:3764-3769.
    [51] Zhang H, Buckley N E, Gibson K, et al. Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway[J]. J Biol Chem 1990, 265:76-81.
    [52] Alessenko A V. The role of sphingomyelin in cycle metobolites intransduction of signals of cell proliferation, differentiation and death[J]. Membr Cell Biol, 2000, 13(2):303-320.
    [53] Carpio L C, Stephan E, Kamer A, et al. Sphingolipds stimulate cell growth via MAP kinase activation inosteoblastic cells[J]. Prostaglandins Leukot Essent Fatty Acids, 1999, 61 (5):267-273.
    [54] Zhang H, Naishadl N D, Murphey M M, et al. Increases in phosphatidic acid levels accompany shingosine stimulated proliferation of quiescent Swiss3T3 cells[J]. J Biol Chem, 1990, 265:21309-21316.
    [55] Chun P C., Stanley J F La, Leslie R B. Sphingosine mediated phosphatidylinositol Metabolism and Calcium Mobilization[J]. J Biol Chem, 1994, 269(8):5849-5856.
    [56] Ghosh T K, Bian J, Gill D L. Intracellular calcium release mediated by sphingosine derivatives generated in cells[J]. J Science, 1990, 243:1653-1656.
    [57] Turnern Nc, Jones MM., In Turner Nc, Krammer PJ(eds). Adaptation of Plants To Water and High Temperature Stress[J]. John Wiley and Sons. New York. 1990. P87.
    [58] 王忠等.植物生理学[M].北京农业出版社,2000,296-298,434-436,422-423.
    [59] Tang Z C. The accumulation of free proline and its role in water stressed Sorghum seedling. Act phytophysl Sonia, 1989, 15(1): 105-110.
    [60] 王爱国,罗广华等.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986,(2):55-57.
    [61] 陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90.
    [62] 王建华,刘鸿先等.超氧化物歧化酶(SOD)在逆境和衰老生理中的作用[J].植物生理学通讯,1989,(1):1
    [63] 王宝山,赵思齐.干旱对小麦幼苗膜质过氧化及保护酶的影响[J].山东师范大学报(自然科学版),1987,1:29.
    [64] 于同泉,刘宗萍等.水分胁迫下SOD、MDA动态变化与抗旱性的关系[J].北京农业学院学报,1995,10(1):22-25.
    [65] 林义章,施木田等.水分胁迫对若干芸苔属蔬菜某些生理生化指标的影响[J].福建农业大学学报,1996,25(4):438-441
    [66] 吕长平,石学晖等.水分胁迫对草莓叶SOD活性以及MDA和Vc含量的影响[J].湖南农业大学学报,1996,22(5):451-455.
    [67] 张宪政,江晓峰等.小麦水分胁迫与活性氧[J].国外农业,1996,(1):18-21
    [68] Smimoff N. The role of activity oxygen in the response of plants to water deficit and desiccation[J]. New Phytol, 1993, 125:27-31.
    [69] 华东师范大学生物系植物生理教研室编.植物生理学实验指导[M].北京:人民教育出版社,198l,143-144.
    [70] Rao M. V., Paliyath G., Ormrod D. P.. Ultraviolet-B radiation and ozone-indueed biochemical changes in the antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiol., 1996, 125:189-198.
    [71] 徐朗莱,叶茂炳.过氧化物酶活力连续记录测定法[J].南京农业大学学报.1989,12(3):82-83.
    [72] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantifies of protein utilizing the principle of protein-dye binding[J]. Anal Biochem. 1976, 72(1):248-254.
    [73] 白宝章,汤学军.植物生理学测试技术[M].北京:中国科学技术出版社,1993,76.
    [74] 赵敏,王钢,姜若兰.鞘氨醇调节人胰腺癌细胞株JF305生长和钙代谢[J].肿瘤研究与临床,2001,(13)4:152-154.
    [75] Bertrand A, Castonguay Y, Nadeau P. Changes intranslatable mRNAs in water-stressed common bean genotypes of contrastin drought tolerance[J]. Plant Cell Physiol, 1994, 35(7):1043-1048.
    [76] Rao A H, Karunasree B, Reddy A R. Water stress-responsive 23Kda polypeptide from rice seedling is boiling stable and is related to the RAB16 family of proteins[J]. Plant Phys iol., 1993, 142: 88-93.
    [77] Shao Yanjun, Li Guangmin, Xin Chunyan. Effect of Water Stress on the Winter Wheat Callus[J]. Acta Agriculturae Boreali-Sinica, 2000, 15 (1):47-52.
    [78] LI Bo, JIA Xiufeng, Yuan Chengzhi, et. al. Callus change of different alfal favarieties under polyethylene glycol stress[J]. Pratacultural Science, 2004, 21(4):28-30.
    [79] Giannopolitis C. N., Ries S. K. Superoxide dismutase. I. Occurrence in higher plants[J]. Plant Physiol. 1977, 59: 261-165.
    [80] 林植芳,李双顺,林桂珠等.水稻叶片的衰老与超氧化物歧化酶活性及膜脂过氧化作用的关系[J].植物学报,1984,26:605-615.
    [81] 陈贵,胡文玉,谢甫绨等.提取植物体内DNA作为衰老指标的探讨[J].植物生理学通讯,1991,27 (1):44-46.
    [82] 许长成,赵世杰,邹琦等.植物膜脂过氧化水平硫代巴比妥酸测定法中的干扰因素[J].植物生理学通讯,1993,29(5):361-363.
    [83] Converso D A, Fernandez M E. Peroxidase isozymes from wheat germ:purification and properties[J]. Phytochemisty, 1995, 40:1341-1345.
    [84] Nishihama R, Banno H, Shibata W, et al. Plant homologues of components of MAPK(mitohen-activated protein kinase)signal pathways in yeast and animal cells[J]. Plant Cell Physiol, 1995, 36:749-757.
    [85] Hardie D G. Plant protein serine/threonine kinase:classification and functions[J]. Annu. Rev. Plant. Physiol. Plant. Mol. Biol, 1999, 50:97-131.
    [86] Smith R D, Walker J C. Plant protein phosphatases[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47: 101-125.