LEDGFp52对大鼠视网膜神经节细胞作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】提高损伤后视网膜神经节细胞(RGCs)存活和再生能力的研究是眼科和神经生物学科共同关注的热点和焦点。具有神经保护性效能的神经营养因子是实现视觉系统中枢神经修复基因治疗和移植的前提和物质基础。然而,既往的研究多集中在某种生长和营养因子的单一研究,迄今为止,还未能找到一种因子能对RGC提供持续的营养支持作用足以克服其周围的再生抑制环境而促进损伤的轴突再生。如果能寻找到某种在转录水平或转录前作用的因子,则该因子有可能启动RGC生长的极链式反应,轴突再生的难题也就迎刃而解了。晶状体来源的上皮生长因子(lens epithelium derived growth factor, LEDGF)是2000年新发现的一种新的生长、粘附、分化、抗凋亡和存活因子,它能提高多数细胞生长粘附能力、促进其分化、延长其存活。LEDGF基因位于人类染色体9p21,该基因选择性的剪切而产生两种蛋白,即LEDGFp75和LEDGFp52蛋白。相比LEDGFp52而言,LEDGFp75只是一个弱的转录辅活化子。最近的研究表明LEDGFp75能促进多种细胞的生长与存活,譬如对晶状体上皮细胞、视网膜光感受器细胞、视网膜色素上皮细胞所发挥的生长刺激和促进存活效应。进一步的研究发现LEDGF在脑内的发育及区域表达,提示其参与神经上皮干细胞分化及神经发生。因此,有专家提议将LEDGF作为视网膜疾病的治疗性蛋白和神经营养因子转染的候选分子。基于LEDGFp75具有一定的眼部保护作用的研究前提、联系LEDGFp52可能比LEDGp75生物学作用更强的生物信息学预测、结合国际上对LEDGFp52这一转录活化子研究很少的事实和视神经再生研究中积极寻找具有神经保护和生长促进效能神经营养因子的要求,我们选择LEDGFp52作为研究的目标。那么,LEDGFp52作为一个新发现的因子,它是否能对RGC起到神经保护和生长促进作用呢?它对RGC神经元生长相关基因和蛋白又有什么影响呢?这有待于我们通过实验研究来明确。
     【目的】在原代大鼠RGCs培养的基础上进行LEDGFp52基因和蛋白两个水平正负双向调控实验,观察它们对大鼠RGCs突起数目及轴突长度、RGC神经元特异性相关基因和蛋白的调控,全面了解LEDGFp52基因和蛋白对大鼠RGCs生长的影响,为研发更有效的RGC生长和营养因子奠定基础,为探索视神经损伤修复的新途径提供实验依据。
     【方法】NEUROBASALTM Media无血清体系培养RGCs,采用RT-PCR和细胞免疫荧光化学检测LEDGFp52基因和蛋白在RGCs表达;构建rhLEDGFp52基因原核表达载体、诱导表达及纯化蛋白;细菌内同源重组法构建LEDGFp52基因腺病毒载体、体外表达及制备病毒;构建siRNA-LEDGFp52真核表达载体、鉴定该载体并检测其对LEDGFp52蛋白的抑制率。
     1、LEDGFp52基因和蛋白对大鼠RGCs的突起数目及轴突长度调控作用的观察:分为实验组和对照组,实验组在大鼠RGCs培养36h后分别将LEDGFp52(2×10-4g/L)和Ab-LEDGF(2.5×10-4g/L)加入RGCs的无血清培养基中,在LipofectamineTM2000介导下将Ad-LEDGFp52(2.5×10-4g/L)(3×10-4pfu/L)和siRNA-LEDGFp52(6×10-4g/L)转染进RGC,分别在处理后12h、24h、36h、48h、72h和96h在相差显微镜下观察。设阳性对照组(CNTF10-4g/L)和空白对照组(不加处理因素),观察时相点同上。对照组及实验组的每组观察孔数为12孔,重复3次。检测指标:RGCs轴突长度和单个细胞的突起数目。分析软件:IPP图像分析系统。
     2、LEDGFp52基因和蛋白对RGC神经元生长相关基因和蛋白调控效应的研究:处理因素及分组同上。检测指标:主要采用RT-PCR和细胞免疫荧光化学检测技术进一步研究LEDGFp52对RGC神经元生长相关的GAP-43、NF-L和MAP-2基因与蛋白的调控。分析软件:Quantity One程序半定量分析各个目的基因在mRNA水平的相对含量,以待测基因与相应内参照光密度比值计算相对系数;LSM510-Meta-Expert程序半定量分析各个目的蛋白的平均荧光强度相对数值。
     【结果】
     1、无血清的NEUROBASALTM Media培养基是一种较好的RGCs培养体系;LEDGFp52基因及其蛋白在RGCs均有表达。
     2、利用基因重组技术将rhLEDGFp52基因构建于原核表达载体pET30a(+)中,经酶切、测序鉴定证实构建完全正确,通过IPTG诱导其在大肠杆菌BL21(DE3)中获得可溶性形式表达,rhLEDGFp52蛋白表达量占菌体蛋白总量的34.63%。Western Blot结果显示rhLEDGF2蛋白能够特异性与LEDGF-ab结合。Ni-NTA His.Bind.Resin方法进行纯化后的rhLEDGFp52,终浓度达520μg.mL-1,分析其纯度达87.93%。
     3、成功将LEDGFp52基因片段亚克隆到腺病毒穿梭质粒pAdTrack-CMV上构建腺病毒穿梭载体pAdTrack-CMV-LEDGFp52,并将腺病毒穿梭载体pAdTrack-CMV-LEDGFp52与5型腺病毒骨架质粒pAdeasy-1共转染BJ5183细菌,经细菌内同源重组产生携带LEDGFp52基因重组腺病毒载体pAd-LEDGFp52,将pAd-LEDGFp52经脂质体法转化293细胞包装产生重组腺病毒Ad-LEDGFp52,滴度可达5×1012 pfu.L-1。将Ad-LEDGFp52体外转染293细胞,在该细胞中有效表达目的基因LEDGFp52,CPE法及Westernblot均证实了该目的基因表达。
     4、成功构建LEDGFp52基因RNA干扰(RNAi)的真核细胞表达载体,重组质粒转染HeLa细胞48小时,Westernblotting检测到LEDGFp52蛋白表达的改变,Quantity One程序半定量分析LEDGFp52蛋白明显下调了70%。
     5、LEDGFp52在基因水平和蛋白水平均可调控RGCs生长,表现为正向调节RGCs轴突显著增长,负向调节RGCs轴突显著缩短,而且正向调控时有高峰效应。
     6、LEDGFp52是RGC树突化因子,同时也是RGC轴突延伸因子。
     7、LEDGFp52在基因和蛋白两个水平对RGC神经元生长相关的基因/蛋白GAP-43、NF-L和MAP-2的表达均有显著的调控作用,表现为正向调节RGCs神经元生长相关基因/蛋白表达升高,负向调节RGCs神经元生长相关基因/蛋白表达降低。
     【结论】
     1.首次确立了LEDGFp52基因及其蛋白在RGCs的表达。
     2.利用基因重组技术成功获得rhLEDGFp52蛋白,终浓度达520μg.mL-1,纯度达87.93%;经细菌内同源重组成功制备LEDGFp52的重组腺病毒,滴度可达5×1012 pfu.L-1,并能够在真核细胞中获得高效稳定的表达;利用RNAi技术可成功构建抑制LEDGFp52表达的小干扰RNA重组体,该重组体使LEDGFp52蛋白明显下调70%。
     3. LEDGFp52基因和蛋白能显著调控大鼠RGCs单个细胞突起数目及轴突平均长度,其作用强于CNTF。
     4. LEDGFp52是RGC树突化因子,也是RGC轴突延伸因子。
     5. LEDGFp52基因和蛋白通过调控RGC神经元生长相关的基因/蛋白GAP-43、NF-L和MAP-2的表达促进RGC生长。
     6. LEDGFp52基因在调控RGC树突化时有其它树突化因子的参与。
Backgrounds
     The study on enhancing survival and regeneration of injured RGCs has been a common hot spot and focus in ophthalmological research as well as neurobiological investigation. Neuroprotective factor is a prerequisite and substance foundation of gene therapy and transplantation implement in CNS restoration of visual system. However, in the past a few years, the study on neuroprotective factor just focused on the factor itself, up to now, we haven’t attained a certain factor which could provide persistent nutritional support for injured RGCs to surmount their regeneration inhibited circumstance and promote axonal outgrowth. If we can find a special factor which could play an important role on transcription or pre-transcription level, perhaps the factor could initiate the growth-chain-reaction of RGCs, the tough problem on axonal regeneration will be solved. LEDGF is a novel growth, adhering, differentiation, anti-apoptosis and survival factor, which was isolated from the cDNA Lib in 2000. The gene of LEDGF was located in 9p21, and it can be alternative splicing produced two isoforms—LEDGFp52 and LEDGFp75. LEDGFp75 was just a lepto-transcription coactivator compared with LEDGFp52, and previous investigation has identified that LEDGFp75 had neuroprotective effect, it can elevate growth and adhering abilities of most cells, such as LEC, RPE and RPR of ocular cells, promote their differentiation and prolong their survival. Sequential researches revealed that LEDGF was regionally expressed in developing brain, and it was involved in the process of neuroepithelia stem cell differentiation and neurogenesis. Therefore, some specialists have suggested LEDGFp75 should be a candidate for remedial protein and neuronutritional transfection factor of retinal desease. Based on the research of neuroprotective effect of LEDGFp75 on some ocular cells, in accordance with the bioinformatics inference that LEDGFp52 is maybe much more competent than LEDGFp75, cohered to the reality that study on LEDGFp52 is very rare in the world, and coped with the requirement of neuroprotective and growth-promoting nutritional factor for RGCs axonal regeneration, we chose LEDGFp52 as our research target. Thus, to be a relatively novel revelation, does LEDGFp52 have a growth-promoting effect on RGCs? Can LEDGFp52 regulate the expression of RGCs neuronal specificity associated gene & protein? An empirical study is necessary to identifying these issues.
     Purposes
     To positively and negatively regulate LEDGFp52 both on gene level and protein level on the base of primary RGCs culturing; to observe their impact on the prominence numbers & axonal length of rat RGCs, to investigate their influence to RGC neuronal specificity associated gene & protein; to understand the effect of LEDGFp52 gene &protein on rat RGCs growth, to lay a foundation for seeking more competent growth and nutrition factor of RGC,to furnish exploration on new path of injured optic nerve recovery with experimental proof .
     Methods
     Neurobasal TM Media serum-free system was used in culturing RGCs, RT-PCR and CMIFC was applied to detect the expression of LEDGFp52 gene & protein on RGCs; rhLEDGFp52 prokaryotic expression vector was constructed, rhLEDGFp52 protein expression was induced and purified; LEDGFp52 adenovirus vector was constructed by homologous recombination in bacteria, in vitro expression was executed and virus was prepared; siRNA-LEDGFp52 eukaryotic expression vector was constructed and identified, and the inhibition ratio on LEDGFp52 protein was examinated.
     1. Observation of LEDGFp52 gene & protein effect on prominence numbers & axonal length of rat RGCs: experimental groups and control groups were divided. In experiment groups, LEDGFp52(2×10-4g/L) and Ab-LEDGF(2.5×10-4g/L) were added into the RGCs serum-free media, Ad-LEDGFp52(2.5×10-4g/L)(3×10-4pfu/L) and siRNA-LEDGFp52(6×10-4g/L) were transfected into RGCs by Lipofectamine TM 2000 while RGCs culturing 36hours. In treatment 12h, 24h, 36h, 48h, 72h and 96h, observe the alteration under the contrast phase microscope. Positive control group CNTF(10-4g/L) and blank control group were set up and observation timing point were same as above. In each control groups and experimental groups 12 wells cells were observed and each well was repeatedly observed 3 times. The observation indexes were prominence numbers & axonal length of rat RGCs and the analyses software was IPP image analytical system.
     2. Investigation of LEDGFp52 gene & protein regulating RGC neuronal specificity associated gene & protein: the treatment factors and subgroups were same as above. The detection indexes were gene expression changes & protein expression variations of GAP-43, NF-L and MAP-2, the gene changing was studied by RT-PCR and the protein varying was detected by CMIFC. The analyses softwares were Quantity One & LSM510-Meta-Expert, the former was used in semiquantitative analysis relative amount of each gene in mRNA level and the latter was applied in semiquantitative analysis mean fluorescence intensity of each protein.
     Results
     1. The serum-free Neurobasal TM Media is a better culturing system for RGCs, both gene and protein of LEDGFp52 was expressed in RGCs.
     2. LEDGFp52 gene was inserted into prokaryotic expression vector by gene recombination technique, the construction was identified by enzyme digesting and sequencing, and the target protein dissoluble expression was induced by IPTG, the expression amount of rhLEDGFp52 was accounted to 34.63% of total bacteria protein. The Westernblotting result revealed that rhLEDGFp52 protein could be specifically integrated with LEDGF monoclone antibody. rhLEDGFp52 was purified by Ni-NTA His.Bind.Resin Method, and the final concentration was reached to 520μg.mL-1, its purity was 87.93%.
     3. LEDGFp52 gene fragment was successfully inserted into the adenoviral shuttle plasmid pAdTrack-CMV and pAdTrack-CMV-LEDGFp52 was obtained. Then, it was cotransfected BJ5183 bacteria with TyV adenoviral backbone plasmid pAdeasy-1, the recombinant adenoviral vector pAd-LEDGFp52 was produced by homologous recombination in bacteria. And, pAd-LEDGFp52 was transformed into 293cells with lipofectamine TM 2000, the recombinant adenovirus Ad-LEDGFp52 was bred, and the titre was upto 5×1012 pfu.L-1.At last, 293cells were transfected by Ad-LEDGFp52 in vitro, the expression of LEDGFp52 was confirmed by CPE and Westblotting.
     4. LEDGFp52 gene RNA interference eukaryotic expression vector was successfully constructed, the alteration of LEDGFp52 protein expression was detected by Westblotting in 48h once recombinant plasmid transfected HeLa cells, and the expression was significantly downregulated about 70%.
     5. The RGCs growth was regulated by LEDGFp52 gene as well as protein, and manifestation was as follows: the axonal length was increased by up-regulation, and decreased by down-regulation; the peak potency appeared in positive regulation.
     6. LEDGFp52 was an arborisation factor as well as an axonal elongation factor of RGC.
     7. The RGCs neuronal specificity growth associated genes & proteins—GAP-43 , NF-L and MAP-2 were noticeably regulated by LEDGFp52 gene & protein, and manifestation was as follows: all genes & proteins expression were heightened by up-regulation and depressed by down-regulation.
     Conclusions
     1. The expression of LEDGFp52 on RGCs was first established.
     2. rhLEDGFp52 protein was successfully obtained, LEDGFp52 recombinant adenovirus was prepared and small interference RNA recombinant was constructed which could be used in suppressing expression of LEDGFp52. All the protein, virus and recombinant had provided material prerequisites for further studying on biological effect of LEDGFp52 on ocular region.
     3.The process numbers & axonal length of RGCs were significantly impacted by LEDGFp52 gene & protein .And LEDGFp52 is much more competent than CNTF.
     4. LEDGFp52 was an arborisation factor of RGCs as well as axonal elongation factor .
     5. LEDGFp52 gene & protein noticeably regulated the RGCs neuronal specificity growth associated gene &proteins—GAP-43, NF-L and MAP-2 regulating RGCs growth. And this is the main mechanism of LEDGFp52 regulating RGCs growth.
     6. There were some other arborisation factors participating in controlling RGC arborisation by LEDGFp52 gene.
引文
1、Isenmann, S., Kretz, A., Cellerino, A. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog. Retin. Eye Res, 2003,22:483–543.
    2、Harvey,A. R., Hu Y.,Leaver S. G., Mellough C. B., Park K., Verhaagen J., Plant G. W., Cui Qi. Gene therapy and transplantation in CNS repair: The visual system. Progress in Retinal and Eye Research, 2006 ,25:449–489
    3、Inoue, T., Hosokawa, M., Morigiwa, K., Ohashi, Y., Fukuda, Y.Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. J. Neurosci, 2002,22:4468–4477
    4、Cui, Q., Cho, K.S., So, K.-F., Yip, H.K., 2004. Synergistic effect of Nogoneutralizing antibody IN-1 and ciliary neurotrophic factor on axonal regeneration in adult rodent visual systems. J. Neurotrauma. 21, 617–625
    5、Morgenstern, D.A., Asher, R.A., Naidu, M., Carlstedt, T., Levine, J.M., Fawcett, J.W., 2003. Expression and glycanation of the NG2 proteoglycan in developing, adult, and damaged peripheral nerve. Mol. Cell Neurosci. 24, 787–802
    6、Makoto Nakamura, Dhirendra P. Singh, Eri Kubo, Leo T. Chylack, Jr, and Toshimichi Shinohara.LEDGF: Survival of Embryonic Chick Retinal Photoreceptor Cells. Invest Ophthalmol Vis Sci. 2000;41:1168–1175.
    7、Dhirendra P. Singh, Akira Kimura, Leo T. Chylack Jr., Toshimichi Shinohara. Lens epithelium-derived growth factor (LEDGF/p75) and p52 are derived from a single gene by alternative splicing. Gene ,2000,242 :265–273.
    8、Ge H, Si Y, Roeder RG .Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternative regulatory mechanism of transcriptional activation. EMBO J., 1998,17:6723–6729.
    9、Leo T. Chylack Jr, Ling Fu, Ronald Mancini, Matthew D. Martin-Rehrmann,Aleister J. Saunders, Genevieve Konopka, Di Tian, E. Tessa Hedley-Whyte,Rebecca D. Folkerth, Lee E. Goldstein. Lens epithelium-derived growth factor (LEDGF/p75) expression in fetal and adult human brain. Experimental Eye Research,2004, 79:941–948.
    10、Thanos C, Emerich D. Delivery of neurotrophic factors and therapeutic proteins for retinal diseases. Expert Opin Biol Ther. 2005 ,5(11):1443-52.
    11、Ge H, Si Y, Wolffe A P. A Novel Transcriptional Coactivator, p52,FunctionallyInteracts with the EssentialSplicing Factor ASF/SF2. Molecular Cell, 1998,2:751–759.
    12、Hussey D J, Moore S, Nicola M ,Dobrovic A. Fusion of the NUP98 gene with the LEDGF/p52 gene defines a recurrent acute myeloid leukemia translocation. BMC Genetics,2001,2:20-23
    13、Brewer GJ. Isolation and culture of adult rat hippocampal neurons.J Neurosci Methods, 1997, 71: 145-158.
    14、Brewer GH. Serum-free B27/Neurobasal medium supports deferential growth of neurons from the striatum, substantia nigra,septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res, 1995, 42: 674-683.
    15、Brewer, G.J., Torricelli, J.R., Evege, E.K. and Price,P.J. Optimized survival of hippocampal neurons in B27 supplemented NEUROBASAL. A new serumfree medium combination. J. Neurosci. Res, 1993, 35: 567-576.
    16、Dhirendra P. Singh, Nobuyuki Ohguro, Takanobu Kikuchi, Toshiharu Sueno,Venkat N. Reddy, Kenshi Yuge, et al. Lens epithelium derived growth factor: effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem Biophys Res Commun,2000,267:373–381.
    17、Singh, D.P., Ohguro, N., Kikuchi, T.,Sueno, T. Gene sequence and functional studies of lens epithelial cell derived growth factor (LEDGF). Invest. Ophthalmol. Vis. Sci,1998, (Suppl )39:S777-782.
    18、Singh DP, Fatma N, Usukura J,Sharma P. LEDGF: activation of transcription of many stress related genes. Invest Ophthalmol Vis Sci 2000; (Suppl) 41:1727-1730.
    19、Yuji Nishizawa , Jiro Usukura, Dhirendra P. Singh ,Eri Kubo. Spatial and temporal dynamics of two alternatively spliced regulatory factors, lens epithelium-derived growth factor (ledgf/p75) and p52,in the nucleus. Cell Tissue Res ,2001,305:107–114.
    20、Lu CR, Chen L, Dou CQ,et al. Arresten expressed in vivo suppresses the growth of SGC-7901 tumor xenografts in nude mice.ZhonghuaWaiKeZaZhi, 2005, 43(21): 1391-1394.
    21、Hu G. DNA polymerase-catalyzed addition of non-templated extra nucleotides to the 3’end of a DNA fragment. DNA Cell Biel, 1993, 12(8):763-770.
    22、King J, Haase PC, Robinson AS, et al. Thermolabile folding intermediates:inclusion body precursors and chaperonin substrates. FASEB J, 1996,10(1): 57-66.
    23、罗文娟,刘美光,王传富,王丽梅.人血小板源性生长因子B链基因的克隆表达及其对猫角膜内皮细胞体外增殖的影响.中华眼科杂志,2006,,42(5):415-419.
    24、陈晓黎,雷霆,杨军,周乐,王一理. GST2HPV58 E6融合蛋白的表达与纯化.中国皮肤性病学杂志,2006.20(4):193-195.
    25、周爱萍,张祖昌,许欣,樊学军,占利,孙敏,裴晓方.重组沙门菌侵袭蛋白A的原核表达与纯化.四川大学学报(医学版),2006; 37 (3) : 369 372.
    26、胡兴斌,尹文,韦三华,雷迎峰,吕欣,孙梦宁,杨敬,徐志凯.乙型肝炎病毒截短C基因与前S1基因在大肠杆菌中的融合表达及纯化.第四军医大学学报2006,27 (1):49-52.
    27、Roberts DM, Nanda A, Havenga MJ, Abbink P,Lynch DM, Ewald BA,et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature,2006,441(7090):239-243.
    28、Lemckert AA, Grimbergen J, Smits S, Hartkoorn E, Holterman L, Berkhout B, et al. Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus type 49: manufacture on PER.C6 cells, tropism and immunogenicity. J Gen Virol, 2006,87( 10):2891-28999.
    29、He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B A simplified system for generating recombinant adenoviruses.Proc Natl Acad Sci USA ,1998,95:2509–2514.
    30、Dai J, Rabie AB, Hagg U, Xu R. Alternative gene therapy strategies for the repair of craniofacial bone defects. Curr Gene Ther, 2004, 4(4): 469-485.
    31、Cao B, Mytinger JR, Huard J. Adenovirus mediated gene transfer to skeletal muscle. Microsc Res Tech, 2002, 58(1): 45-51 .
    32、Mitani K, Kubo S. Adenovirus as an integrating vector. Cur Gene Ther 2002,2:135-144.
    33、Barry M, McFadden G. Apoptosis regulators from DNA viruses. Current Opinion Immunol ,1998,10:422-430.
    34、Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q, Allen H, Franlin L, Parks RJ, Graham FL, Kochanek S, Bett AJ, Caskey CT.An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA, 1998,95:7866-7871.
    35、Krougliak V, Graham FL. Development of cell lines capable of complementing E1, E4 and protein IX defective adenovirus type 5 mutants. Human Gene Therapy, 1995, 6:1575-1586.
    36、马春明,杨朝鲜,闫乃红,袁琼兰,高小青,邓莉.胶质细胞源性神经营养因子重组腺病毒载体穿梭质粒的构建及鉴定。神经解剖学杂志,2006,22(2):199-202.
    37、宁寒冰,赵丽娜,李婷婷,王晓霞,李继昌,刘志国,樊代明.腺病毒细菌重组系统表达Crg22蛋白的实验研究.细胞与分子免疫学杂志,2006, 22 (3):283-285.
    38、Aoki Y, Gioea D,Oidaira H, Kamiya J,kiyosawa K.RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol,2003,30(122):96-102.
    39、Hannon GJ.RNA Interference.Nature,2002,418(6894):244-251.
    40、Elbashir SM, Harborth J, Weber K, Tuschl T.Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods,2002,26(2):199-213.
    41、Elbashir SM, Lendeckel W,Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs.Genes Dev ,2001,15(2):188-200.
    42、PaddisonPJ,CaudyAA,BernsteinE,etal.Short hairpin RNAs(shRNAs) induce sequence specific silencing in mammalian cells. Genes & Dev, 2002, 16(8): 948–958.
    43、蔡春梅,孙葆忱,刘旭阳.短发夹RNA对人视网膜色素上皮细胞血管内皮生长因子表达的抑制.中华眼科杂志,2006(42)4:335-337.
    44、Bonhoeffer T.Yuste R. Spine Motility: Phenomenology,Mechanisms, and Function. Neuron, 2002, 35: 1019-1027.
    45、Yuste R., Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci, 2001, 24: 1071-1089.
    46、Ziv NE ,Smith SJ . Evidence for a role of dendritic filopodia in synapto-genesis and spine formation. Neuron ,1996 ,17 (1) :91-102.
    47、Lendvai B ,Stern EA ,Chen B ,et al . Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature ,2000 ,404 (6780) :876-881.
    48、Jontes JD ,Smith SJ . Filopodia spines and the generation of synaptic diversity . Neuron ,2000 ,27 (1) :11-14.
    49、Fiala JC ,FeinbergM,Popov V ,et al . Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci ,1998 ,18 (21) :8900-8911.
    50、Matus A. Actin-based plasticity in dendritic spines . Science ,2000 ,290(5492) :754-758.
    51、Perkel DH and Perkel RJ . Dendritic spines : role of active membrane in modulating synapthe dffcacy . Brain Res 1985 ,325 :331-335.
    52、Pysh J Jand Weiss GM .Exercise during development induces an increase in purkinje cell dendritic tree size. Sciene ,1979 ,206 :230-231.
    53、Analiza L. Sanchez, Benjamin J. Matthews, Margarita M. Meynard, Bing Hu, Sana Javed andSusana Cohen Cory . BDNF increases synapse density in dendrites of developing tectal neurons in vivo.Development,2006, 133: 2477-2486.
    54、Bing Hu, Angeliki Maria Nikolakopoulou and Susana Cohen-Cory. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo. Development, 2005,132:4285-4298.
    55、Barbara Lom, Jeffrey Cogen, Analiza Lontok Sanchez.Local and Target-Derived Brain-Derived Neurotrophic Factor Exert Opposing Effects on the Dendritic Arborization of Retinal Ganglion Cells In Vivo. The Journal of Neuroscience, 2002, 22(17):7639–7649.
    56、Vidga Ganapathy, Carlos A.Casiano. LEDGF/p75:a novel nuclear autoantigen at the crossroad of cell survival and apoptosis. Autoimmunity Reviews,2003,2:290-297.
    57、Toshimichi Shinohara,Dhirendra P. Singh,Nigar Fatma.LEDGF,a survival factor, activates stress-related genes .Progress in Retinal and Eye Research,2002, 21:341–358.
    58、Dietz, G.P., Ba¨hr, M. Peptide-enhanced cellular internalization of proteins in neuroscience. Brain Res. Bull,2005, 68:103–114.
    59、Dietz, G.P., Kilic, E., Ba¨hr, M. Inhibition of neuronal apoptosis in vitro and in vivo using TAT-mediated protein transduction. Mol. Cell Neurosci, 2002,21:29–37.
    60、Diem, R., Taheri, N., Dietz, G.P., Kuhnert, A., Maier, K., Sattler, M.B., Gadjanski, I., Merkler, D., Bahr, M. HIV-Tat-mediated Bcl-XL delivery protects retinal ganglion cells during experimental autoimmune optic neuritis. Neurobiol. Dis, 2005, 20: 218–226.
    61、Diem, R., Taheri, N., Dietz, G.P., Kuhnert, A., Maier, K., Sattler, M.B., Gadjanski, I., Merkler, D., Bahr, M. HIV-Tat-mediated Bcl-XL delivery protects retinal ganglion cells during experimental autoimmune optic neuritis. Neurobiol. Dis, 2005, 20: 218–226.
    62、Wyrick, J. J. and Young R.A. Deciphering gene expression regulatory networks. Curr Opin Genet Dev 2002, 12(2): 130-6.
    63、Goldberg JL, BarresBA.The relationship between neuronal survival and regeneration1 Annu Rev Neurosci, 2000, 23: 579-612.
    64、Goldberg JL, KlassenMP, Hua Y, et al1 Amacrine-signaled loss of intrinsic axon growthability by retinal ganglion cells. Science, 2002, 296: 1860-1864.
    65、Benowitz L.I., Routtenberg A. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci,1997, 20: 84–91.
    66、Mieri K.F., Saffel J.L., Walsh F.S., Doherty P.Neurite outgrowth stimulated by neural cell adhesion molecules requires growth-associated protein-43 (GAP-43) function and is associated with GAP-43 phosphorylation in growth cones. J. Neurosci,1998, 18 (24): 10429–10437.
    67、Elizabeth A. Warner . Dustin Z. DeYoung .Thao X. Hoang . Brett T. Franchini . Ulf Westerlund .Leif A. Havton.Differential distribution of growth associated protein (GAP-43) in the motor nuclei of the adult rat conus medullaris. Exp Brain Res ,2005, 161: 527–531.
    68、Groves, M., Ng, Y.W., Ciard, A., Scaravilli, F. Sciatic nerve injury in the adult rat: comparison of effects on oligosaccharide,CGRP and GAP43 immunoreactivity in primary afferents following two types of trauma. J. Neurocytol,1996, 26: 219–231.
    69、Aigner L ., Arber S., Kapfhammer J.P., Laux T., Schneider C., Botteri F., Brenner H.R., Caroni P. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in adult nervous system of transgenic mice. Cell , 1995,83: 269–278.
    70、Donovan SL, Mamounas LA, AndrewsAM. GAP-43 is critical for normal development of the serotonergic innervation in forebrain. J Neurosci, 2002, 22 (9) : 3543-3552.
    71、Koutcherov Y, Mai JK, Paxinos G. Hypothalamus of the human fetus. J Chem Neuroanat, 2003, 26 (4) : 253-270.
    72、Wei Wang, Kimberly E. Dow.Quantitative analysis of mRNA expression of neuron-specific growth-associated genes in rat primary neurons by competitive RT-PCR. Brain Research Protocols,1998, 2:199–208.
    73、Su-Ja Oh , Keun-Young Kim , Eun-Jin Lee , Sung-Jin Park , Seong-Oh Kwon ,Chang-Sub Jung, Mun-Yong Lee, Myung-Hoon Chun.Inhibition of nitric oxide synthase induces increased production of growth-associated protein 43 in the developing retina of the postnatal rat. Developmental Brain Research,2002,136: 179–183.
    74、Ekstrom, P., Johansson, K.,. Differentiation of ganglion cells and amacrine cells in the rat retina: correlation with expression of HuC/D and GAP-43 proteins. Brain Res.Dev. Brain Res. 2003,145:1-8.
    75、Ivanov, D., Dvoriantchikova, G., Nathanson, L., McKinnon, S.J., Shestopalov, V.I.. Microarray analysis of gene expression in adult retinal ganglion cells. FEBS Lett. , 2006 580: 331-335.
    76、Weber J.R., Skene J.H. The activity of a highly promiscuous AP-1 element can be confined to neurons by a tissue-selective repressive element, J. Neurosci. 18 (1998) 5264–5274
    77、Sharma, P., Singh, D. P., Fatma, N., Chylack, L. T., Jr.& Shinohara, T.. Activation of LEDGF gene by thermal- and oxidative-stresses. Biochem. Biophys. Res. Commun. 2000, 276: 1320–1324.
    78、Lee MK, Marszalek JR , Cleveland DW. A mutant neurofilament subunit causes massive , selective motor neuron death : implications for the pathogenesis of human motor neuron disease. Neuron , 1994 ,13∶9 75-988.
    79、Cleveland DW, Bruijn L I , Wong PC , et al . Mechanisms of selective motor neuron death in transgenic mouse models of motor neuron disease. Neurology , 1996 ,47 (Suppl)∶S 54-S61.
    80、Wu Jihong , Yi Miaoying , Huang Qian.The structual and temporal characteristics of four intermediate filament proteins during retinal development,of rat.Chin J Ophthalmol, 2004,40(11):765-769.
    81、McKerracher L, Vidal-Sanz M, Essagian C , et al. Selective impairment of slow axonal transport after optic nerve injury in adult rats. Invest Ophthalmol Vis Sci, 2004, 45(10):2834-2841.
    82、Hanke J.Anatomical correlations of intrinsic axon repair after partial optic nerve crush in rats.Ann-Anat,2002,184(2): 113-123.
    83、Michael L. G, Christian S. L, Sameer B. S,Tom J. D, John C. NF-M is an essential target for the myelin-directed“outside-in”signaling cascade that mediates radial axonal growth .The Journal of Cell Biology, 2003 , 163(5) :1011–1020.
    84、Rao, M.V., Garcia M.L., Miyazaki Y., T. Gotow, A. Yaun, S. Mattina, C.M.Ward, N.A. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J. Cell Biol. 2002. 158:681–693.
    85、Hayes R.L., Yang K., Whitson J.S., Xue J.J., Kampfl A., Mu X.S., Zhao X., Faustinella F., Clifton G.L..Rescue of injury-induced neurofilament loss by BDNF gene transfection in primary septo-hippocampal cell cultures.Neuroscience Letters 1995,191 : 121-125.
    86、Sanchez C, Diaz-Nido J, Avila J . Phosphorylation of microtubuleassociated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol,2000, 61:133–168.
    87、Carole Abi Farah, Dalinda Liazoghli, Se′bastien Perreaul, Myle‘ne Desjardins,Alain Guimont,Angela Anton, Michel Lauzon, Gert Kreibich, Jacques Paiemen,and Nicole Leclerc.Interaction of Microtubule-associated protein-2 and p63-A new link between microtubules and rough endoplasmic reticulummemderanes in neurons. The J. Bio.Chem,2005,280(10): 9439–9449.
    88、Michele Buddle , Eric Eberhardt , Lauren H. Ciminello , Tal Levin , Richard Wing ,Kathleen DiPasquale, Kathleen M. Raley-Susman.Microtubule-associated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation. Brain Research,2003,978:38–50
    89、Langanese K ., Seidenbecher C., Wex H., Seidel B., Hartung K., Appeltauer U., Garner A., Voss B., Mueller B., Garner C., Gundelfinger E. Protein components of a rat brain synaptic junctional proteinpreparation. Mol. Brain Res,1996, 42:118–122.
    90、Song Z.-M., Undie A. S., Koh P. O., Fang Y.-Y., Zhang L., Dracheva S., Sealfon S. C., and Lidow M. S..D1 Dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. The Journal of Neuroscience, 2002, 22(14):6092–6105.
    91、Bernhardt R, Matus A. Light and electron microscope studies on the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeleton. J Comp Neurol, 1984, 226: 203~221.
    92、Kowalski RJ, Williams RC Jr. Microtubule-associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. J Biol Chem, 1993, 268: 9847~9855.
    93、林建华,雷盛民,康德智,张志坚,余良宏,吴朝阳.静脉注射骨髓间质干细胞对脊髓损伤修复作用的实验研究.中华骨科杂志,2005 ,25 (9):556-559.
    94、吴伟,王虔,梁浩,程焱.重组腺病毒载体转导的脑源性神经生长因子在大鼠体外培养海马神经元谷氨酸损伤模型中的保护作用.中华神经科杂志,2005,38(7):457-459.
    95、鄢文海,许慧,许燕,刘计荣,曹孟德,韩雪飞,邢莹.体外培养的人脐血单个核细胞MAP2及τ蛋白mRNA的表达.郑州大学学报(医学版) 2006,4(11):74-76.
    96、张琦,汤欣,丁斐.神经再生素促大鼠背根神经节生长作用的研究.解剖学报,2006,37(1):36-39.
    97、Audesirk G, Cabell L, Kern M. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons. Brain Res Dev Brain Res, 1997,(102):247–260.
    98、Lim RWL, Halpain S. Regulated association of microtubule associated protein 2 (MAP2) with Src and Grb2: evidence MAP2 as a scaffolding protein. J Biol Chem,2000,275:20578–2058.
    99、Sánchez, C.; D′?az-Nido, J.; Avila, J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog. Neurobiol. 2000, 61:133–168.
    100、Roots BI. Neurofilament accumulation induced in synapses by leupeptin. Science1983,221: 971–972.
    101、Beaudet L., Cote F., Houle D., Julien J.P. Different posttranscriptional controls for the human neurofilament light and heavy genes in transgenic mice, Brain Res. Mol. Brain Res. 1993, 18: 23–31.
    102、Zheng J., Kelly T.K., Chang B., Ryazantsev R., Rajasekaran A.K., Martin K.C., Twiss J.L. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons, J. Neurosci. 21 (2001) 9291–9303.
    103、Schuman E.M. mRNA trafficking and local protein synthesis at the synapse, Neuron 1999 ,23: 645–648.
    104、Mohr E. Subcellular RNA compartmentalization, Prog. Neurobiol. 1999, 57: 507–525.
    105、Steward O., Halpain S. Lamina-specific synaptic activation causes domain-specific alterations in dendrites immunostaining for MAP2 and CAM kinase II. J. Neurosci. 1999,19:7834–7845.
    106、Oblinger M.M., Szumlas R.A., Wong J., Liuzzi F.J. Changes in cytoskeletal geneexpression affect the composition of regenerating axonal sprouts elaborated by dorsal root ganglion neurons in vivo. J. Neurosci. 1989, 9: 2645–2653.
    107、Couillard D., Zhu S.Q., Playford D.E., Tetzlaff J.P. Studies on slow and fast components of axonal transport in mice lacking the neurofilament light (NFL) gene. Soc. Neurosci. Abstr. 1995, 21: 1792.
    108、Wolram T,Catherine L, Craig AK..Reductions in motoneuronal neurofilament synthesis by successive axotomies: A possible explanation for the conditioning lesion effect on axon regeneration.Experimential Neurology 1996,139:95–106.
    1. Levin, L.A., Gordon, L.K., 2002. Retinal ganglion cell disorders: types and treatments. Prog. Retin. Eye Res. 21, 465–484.
    2. Isenmann, S., Kretz, A., Cellerino, A., 2003. Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog. Retin. Eye Res. 22, 483–543.
    3. Isenmann, S., Schmeer, C., Kretz, A., 2004. How to keep injured CNS neurons viable– strategies for neuroprotection and gene transfer to retinal ganglion cells. Mol. Cell Neurosci. 26, 1–16.
    4. Martin, K.R., Quigley, H.A., Zack, D.J., Levkovitch-Verbin, H., Kielczewski, J., Valenta, D., Baumrind, L., Pease, M.E., Klein, R.L., Hauswirth, W.W., 2003. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 44, 4357–4365.
    5. Osborne, N.N., Chidlow, G., Layton, C.J., Wood, J.P., Casson, R.J., Melena, J., 2004b. Optic nerve and neuroprotection strategies. Eye 18, 1075–1084.
    6. Borras, T., 2003. Recent developments in ocular gene therapy. Exp. Eye Res. 76, 643–652.
    7. Surace, E.M., Auricchio, A., 2003. Adeno-associated viral vectors for retinal gene transfer. Prog. Retin. Eye Res. 22, 705–719.
    8. Lund, R.D., Ono, S.J., Keegan, D.J., Lawrence, J.M., 2003. Retinal transplantation: progress and problems in clinical application. J. Leukoc. Biol. 74, 151–160.
    9. Klassen, H., Sakaguchi, D.S., Young, M.J., 2004b. Stem cells and retinal repair. Prog. Retin. Eye Res. 23, 149–181.
    10. Rolling, F., 2004. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther. 11 (Suppl. 1), S26–S32.
    11. Aramant, R.B., Seiler, M.J., 2005. Progress in retinal sheet transplantation. Prog. Retin. Eye Res. 23, 474–494.
    12. Das, A.M., Zhao, X., Ahmad, I., 2005. Stem cell therapy for retinal degeneration: retinal neurons from heterologous sources. Semin. Ophthalmol. 20, 3–10.
    13. Dinculescu, A., Glushakova, L., Min, S.H., Hauswirth, W.W., 2005. Adeno-associated virus-vectored gene therapy for retinal disease. Hum. Gene Ther. 16, 649–663.
    14. Wenzel, A., Grimm, C., Samardzija, M., Reme′, C.E., 2005. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration.Prog. Ret. Eye Res. 24, 275–306.
    15. Chaum, E., 2003. Retinal neuroprotection by growth factors: a mechanistic perspective. J. Cell Biochem. 88, 57–75.
    16. Hojo, M., Abe, T., Sugano, E., Yoshioka, Y., Saigo, Y., Tomita, H., Wakusawa, R., Tamai, M., 2004. Photoreceptor protection by iris pigment epithelial transplantation transduced with AAV-mediated brain-derived neurotrophic factor gene. Invest. Ophthalmol. Vis. Sci. 45, 3721–3726.
    17. Lawrence, J.M., Keegan, D.J., Muir, E.M., Coffey, P.J., Rogers, J.H., Wilby, M.J., Fawcett, J.W., Lund, R.D., 2004. Transplantation of Schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rats. Invest. Ophthalmol. Vis. Sci. 45, 267–274.
    18. Bush, R.A., Lei, B., Tao, W., Raz, D., Chan, C.C., Cox, T.A., Santos-Muffley, M., Sieving, P.A., 2004. Encapsulated cell-based intraocular delivery of ciliary neurotrophic factor in normal rabbit: dose-dependent effects on ERG and retinal histology. Invest. Ophthalmol. Vis. Sci. 45, 2420–2430.
    19. Sieving, P.A., Caruso, R.C., Tao, W., Coleman, H.R., Thompson, D.J., Fullmer, K.R., Bush, R.A., 2006. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl. Acad. Sci. 103, 3896–3901.
    20. Arnhold, S., Klein, H., Semkova, I., Addicks, K., Schraermeyer, U., 2004. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest. Ophthalmol. Vis. Sci. 45, 4251–4255
    21. Tschernutter, M., Schlichtenbrede, F.C., Howe, S., Balaggan, K.S., Munro, P.M., Bainbridge, J.W., Thrasher, A.J., Smith, A.J., Ali, R.R., 2005. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther. 12, 694–701.
    22. Fraefel, C., Mendes-Madeira, A., Mabon, O., Lefebvre, A., Le Meur, G., Ackermann, M., Moullier, P., Rolling, F., 2005. In vivo gene transfer to the rat retina using herpes simplex virus type 1 (HSV-1)-based amplicon vectors. Gene Ther. 12, 1283–1288.
    23. Ruitenberg, M.J., Blits, B., Dijkhuizen, P.A., te Beek, E.T., Bakker, A., van Heerikhuize, J.J., Pool, C.W., Hermens, W.T., Boer, G.J., Verhaagen, J., 2004. Adeno-associated viral vector-mediated gene transfer of brain-derived neurotrophic factor reverses atrophy ofrubrospinal neurons following both acute and chronic spinal cord injury. Neurobiol. Dis. 15, 394–406
    24. Isenmann, S., Engel, S., Ku¨gler, S., Gravel, C., Weller, M., Ba¨hr, M., 2001. Intravitreal adenoviral gene transfer evokes an immune response in the retina that is directed against the heterologous lacZ transgene product but does not limit transgene expression. Brain Res. 892, 229–240.
    25. Campochiaro, P.A., Nguyen, Q.D., Shah, S.M., Klein, M.L., Holz, E., Frank, R.N., Saperstein, D.A., Gupta, A., Stout, J.T., Macko, J., DiBartolomeo, R., Wei, L.L., 2006. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum. Gene Ther. 17,167–176.
    26. Gao, G., Vandenberghe, L.H., Wilson, J.M., 2005. New recombinant serotypes of AAV vectors. Curr. Gene Ther. 5, 285–297.
    27. Burger, C., Gorbatyuk, O.S., Velardo, M.J., Peden, C.S., Williams, P., Zolotukhin, S., Reier, P.J., Mandel, R.J., Muzyczka, N., 2004. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317.
    28. Broekman, M.L.D., Comer, L.A., Hyman, B.T., Sena-Esteves, M., 2006. Adeno-asociated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 138, 501–510.
    29. Harvey, A.R., Kamphuis, W., Eggers, R., Symons, N., Blits, B., Niclou, S., Boer, G.J., Verhaagen, J., 2002. Intravitreal injection of adenoassociated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol. Cell Neurosci. 21, 141–157.
    30. Narfstrom, K., Katz, M., Bragadottir, R., Seeliger, M., Boulanger, A., Redmond, T.M., Caro, L., Lai, C.M., Rakoczy, P.E., 2003. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci. 44, 1663–1672.
    31. Schlichtenbrede, F.C., MacNeil, A., Bainbridge, J.W., Tschernutter, M., Thrasher, A.J., Smith, A.J., Ali, R.R., 2003. Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2model of retinal degeneration. Gene Ther. 10, 523–527.
    32. Smith, A.J., Schlichtenbrede, F.C., Tschernutter, M., Bainbridge, J.W., Thrasher, A.J., Ali, R.R., 2003. AAV-mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol. Ther. 8, 188–195.
    33. Dejneka, N.S., Surace, E.M., Aleman, T.S., Cideciyan, A.V., Lyubarsky, A., Savchenko, A., Redmond, T.M., Tang, W., Wei, Z., Rex, T.S., Glover, E., Maguire, A.M., Pugh Jr., E.N., Jacobson, S.G., Bennett, J., 2004. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol. Ther. 9, 182–188.
    34. Deng, W.T., Yan, Z., Dinculescu, A., Pang, J., Teusner, J.T., Cortez, N.G., Berns, K.I., Hauswirth, W.W., 2005. Adeno-associated virus-mediated expression of vascular endothelial growth factor peptides inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. Hum. Gene Ther. 16, 1247–1254.
    35. Gauthier, R., Joly, S., Pernet, V., Lachapelle, P., Di Polo, A., 2005. Brain-derived neurotrophic factor gene delivery to muller glia preserves structure and function of light-damaged photoreceptors. Invest. Ophthalmol. Vis. Sci. 46, 3383–3392
    36. Wu, W.C., Lai, C.C., Chen, S.L., Sun, M.H., Xiao, X., Chen, T.L., Lin, K.K., Kuo, S.W., Tsao, Y.P., 2005. Long-term safety of GDNF gene delivery in the retina. Curr. Eye Res. 30, 715–722.
    37. Bi, A., Cui, J., Ma, Y.-P., Olshevskaya, E., Pu, M., Dizhoor, A.M., Pan, Z.-H., 2006. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33
    38. Manno, C.S., Arruda, V.R., Pierce, G.F., Glader, B., Ragni, M., Rasko, J., Ozelo, M.C., Hoots, K., Blatt, P., Konkle, B., Dake, M., Kaye, R., Razavi, M., Zajko, A., Zehnder, J., Nakai, H., Chew, A., Leonard, D., Wright, J.F., Lessard, R.R., Sommer, J.M., Tigges, M., Sabatino, D., Luk, A., Jiang, H., Mingozzi, F., Couto, L., Ertl, H.C., High, K.A., Kay, M.A., 2006. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347
    39. McPhee, S.W., Janson, C.G., Li, C., Samulski, R.J., Camp, A.S., Francis, J., Shera, D., Lioutermann, L., Feely, M., Freese, A., Leone, P., 2006. Immune responses to AAV in a phase I study for Canavan disease .J. Gene Med. 8, 577–588
    40. Le Meur, G., Weber, M., Pereon, Y., Mendes-Madeira, A., Nivard, D., Deschamps, J.Y., Moullier, P., Rolling, F., 2005. Postsurgical assessment and long-term safety of recombinant adeno-associated virus-mediated gene transfer into the retinas of dogs andprimates. Arch. Ophthalmol. 123, 500–506
    41. Daniels, D.M., Shen, W.Y., Constable, I.J., Rakoczy, P.E., 2003. Quantitative model demonstrating that recombinant adeno-associated virus and green fluorescent protein are non-toxic to the rat retina. Clin. Experiment Ophthalmol. 31, 439–444
    42. Jacobson, S.G., Acland, G.M., Aguirre, G.D., Aleman, T.S., Schwartz, S.B., Cideciyan, A.V., Zeiss, C.J., Komaromy, A.M., Kaushal, S., Roman, A.J., Windsor, E.A., Sumaroka, A., Pearce-Kelling, S.E., Conlon, T.J., Chiodo, V.A., Boye, S.L., Flotte, T.R., Maguire, A.M., Bennett, J., Hauswirth, W.W., 2006. Safety of recombinant adenoassociated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol. Ther. 13, 1074–1084
    43. Hauswirth, W.W., Li, Q., Raisler, B., Timmers, A.M., Berns, K.I., Flannery, J.G., LaVail, M.M., Lewin, A.S., 2004. Range of retinal diseases potentially treatable by AAV-vectored gene therapy. Novartis Found Symp. 255, 179–188
    44. Auricchio, A., Rolling, F., 2005. Adeno-associated viral vectors for retinal gene transfer and treatment of retinal diseases. Curr. Gene Ther. 5, 339–348.
    45. Lund, R.D., Kwan, A.S., Keegan, D.J., Sauve′, Y., Coffey, P.J., Lawrence, J.M., 2001. Cell transplantation as a treatment for retinal disease. Prog. Retin. Eye Res. 20, 415–449
    46. Ikeda, H., Osakada, F., Watanabe, K., Mizuseki, K., Haraguchi, T., Miyoshi, H., Kamiya, D., Honda, Y., Sasai, N., Yoshimura, N., Takahashi, M., Sasai, Y., 2005. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl. Acad. Sci. 102, 11331–11336
    47. Banin, E., Obolensky, A., Idelson, M., Hemo, I., Reinhardtz, E., Pikarsky, E., Ben-Hur, T., Reubinoff, B., 2006. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells 24, 246–257
    48. Boulton, M., Roanowska, M., Wess, T., 2004. Ageing of the retinal pigment epithelium: implications for transplantation. Graefes Arch. Clin. Exp. Ophthalmol. 242, 76–84
    49. Whitmore, A.V., Libby, R.T., John, S.W., 2005. Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes? Prog. Retin. Eye Res. 24, 639–662
    50. Gupta, N., Ang, L.C., Noel de Tilly, L., Bidaisee, L., Yucel, Y.H., 2006. Human glaucoma and neural degeneration in the intra-cranial optic nerve, lateral geniculate nucleus and visual cortex of the brain. Br. J. Ophthalmol. 90, 674–678
    51. McKinnon, S.J., 2003. Glaucoma: ocular Alzheimer’s disease? Front Biosci. 8, s1140–s1156
    52. Lipton, S.A., 2003. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv. Ophthalmol. 48 (Suppl. 1), S38–S46.
    53. Tezel, G., Yang, X., Cai, J., 2005. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Invest. Ophthalmol. Vis. Sci. 46, 3177–3187
    54. Tezel, G., Li, L.Y., Patil, R.V., Wax, M.B., 2001. TNF-a and TNF-a receptor-1 in the retina of normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 42, 1787–1794
    55. Guo, L., Moss, S.E., Alexander, R.A., Ali, R.R., Fitzke, F.W., Cordeiro, M.F., 2005. Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. Invest. Ophthalmol. Vis. Sci. 46, 175–182
    56. Weinreb, R.N., Lindsey, J.D., 2005. The importance of models in glaucoma research. J. Glaucoma. 14, 302–304.
    57. Libby, R.T., Anderson, M.G., Pang, I.H., Robinson, Z.H., Savinova, O.V., Cosma, I.M., Snow, A., Wilson, L.A., Smith, R.S., Clark, A.F., John, S.W., 2005. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis. Neurosci. 22, 637–648
    58. Lindsey, J.D., Weinreb, R.N., 2005. Elevated intraocular pressure and transgenic applications in the mouse. J. Glaucoma 14, 318–320
    59. Vecino, E., Garcia-Grespo, D., Garcia, M., Martinez-Millan, L., Sharma, S.C., Carrascal, E., 2002. Rat retinal ganglion cells co-express brain derived neurotrophic factor (BDNF) and its receptor TrkB. Vision Res. 42, 151–157
    60. Wordinger, R.J., Lambert, W., Agarwal, R., Liu, X., Clark, A.F., 2003. Cells of the human optic nerve head express glial cell line-derived neurotrophic factor (GDNF) and the GDNF receptor complex. Mol. Vis. 9, 249–256
    61. Casson, R.J., Chidlow, G., Wood, J.P., Vidal-Sanz, M., Osborne, N.N., 2004. The effect of retinal ganglion cell injury on light-induced photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 45, 685–693
    62. Rudzinski, M., Wong, T.P., Saragovi, H.U., 2004. Changes in retinal expression of neurotrophins and neurotrophin receptors induced by ocular hypertension. J. Neurobiol. 58, 341–354
    63. Ji, J.Z., Elyaman, W., Yip, H.K., Lee, V.W., Yick, L.W., Hugon, J., So, K.-F., 2004.CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J. Neurosci. 19, 265–272
    64. Zhou, Y., Pernet, V., Hauswirth, W.W., Di Polo, A., 2005. Activation of the extracellular signal-regulated kinase 1/2 pathway by AAV gene transfer protects retinal ganglion cells in glaucoma Neurol. 176, 221–228. . Mol. Ther. 12, 402–412.
    65. Park, K., Luo, J.-M., Hisheh, S., Harvey, A.R., Cui, Q., 2004. Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor/cAMP-induced survival and axonal regeneration of adult retinal ganglion cells. J. Neurosci. 24, 10806–10815
    66. Cui, Q., Harvey, A.R., 2000b. CNTF promotes the regrowth of retinal ganglion cell axons into murine peripheral nerve grafts. Neuroreport 11, 3999–4002
    67. McKinnon, S.J., Lehman, D.M., Tahzib, N.G., Ransom, N.L., Reitsamer, H.A., Liston, P., LaCasse, E., Li, Q., Korneluk, R.G., Hauswirth, W.W., 2002. Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther. 5, 780–787
    68. Bakalash, S., Kipnis, J., Yoles, E., Schwartz, M., 2002. Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest. Ophthalmol. Vis. Sci. 43, 2648–2653
    69. Tezel, G., Wax, M.B., 2004. The immune system and glaucoma. Curr. Opin. Ophthalmol. 15, 80–84
    70. Osborne, N.N., Casson, R.J., Wood, J.P., Chidlow, G., Graham, M., Melena, J., 2004a. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog. Retin. Eye Res. 23, 91–147
    71. Matthews, M.K., 2005. Nonarteritic anterior ischemic optic neuropathy. Curr. Opin. Ophthalmol. 16, 341–345
    72. Pomeranz, H.D., Bhavsar, A.R., 2005. Nonarteritic ischemic optic neuropathy developing soon after use of sildenafil (Viagra): a report of seven new cases. J. Neuroophthalmol. 25, 1–9
    73. Bernstein, S.L., Guo, Y., Kelman, S.E., Flower, R.W., Johnson, M.A., 2003. Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Invest. Ophthalmol. Vis. Sci. 44, 4153–4162
    74. Ullian, E.M., Barkis, W.B., Chen, S., Diamond, J.S., Barres, B.A., 2004. Invulnerability of retinal ganglion cells to NMDA excitotoxicity. Mol. Cell Neurosci. 26, 544–557
    75. Harada, C., Nakamura, K., Namekata, K., Okumura, A., Mitamura, Y., Iizuka, Y.,Kashiwagi, K., Yoshida, K., Ohno, S., Matsuzawa, A., Tanaka, K., Ichijo, H., Harada, T., 2006. Role of apoptosis signal-regulating kinase 1 in stress-induced neural cell apoptosis in vivo. Am. J. Pathol. 168, 261–269
    76. Schwartz, M., Kipnis, J., 2005. Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases. J. Neurol. Sci. 233, 163–166
    77. Osborne, N.N., Melena, J., Chidlow, G., Wood, J.P.M., 2001. A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implications for the treatment of glaucoma. Br. J. Ophthalmol. 85, 1252–1259
    78. Bringmann, A., Uckermann, O., Pannicke, T., Iandiev, I., Reichenbach, A., Wiedemann, P., 2005. Neuronal versus glial cell swelling in the ischaemic retina. Acta. Ophthalmol. Scand. 83, 528–538
    79. Sykova′, E., 2005. Glia and volume transmission during physiological and pathological states. J. Neural. Transm. 112, 137–147
    80. Yoles, E., Friedmann, I., Barouch, R., Shani, Y., Schwartz, M., 2001. Self-protective mechanism awakened by glutamate in retinal ganglion cells
    81. Yokoyama, A., Oshitari, T., Negishi, H., Dezawa, M., Mizota, A., Adachi-Usami, E., 2001. Protection of retinal ganglion cells from ischemia-reperfusion injury by electrically applied Hsp27. Invest. Ophthalmol. Vis. Sci. 42, 3283–3286
    82. Lai, R.K., Chun, T., Hasson, D., Lee, S., Mehrbod, F., Wheeler, L., 2002. Alpha-2 adrenoceptor agonist protects retinal function after acute retinal ischemic injury in the rat. Vis. Neurosci. 19, 175–185
    83. Kalapesi, F.B., Coroneo, M.T., Hill, M.A., 2005. Human ganglion cells express the alpha-2 adrenergic receptor: relevance to neuroprotection. Br. J. Ophthalmol. 89, 758–763
    84. Schuettauf, F., Vorwerk, C., Naskar, R., Orlin, A., Quinto, K., Zurakowski, D., Dejneka, N.S., Klein, R.L., Meyer, E.M., Bennett, J., 2004. Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity. Curr. Eye Res. 29, 379–386
    85. Wu, W.C., Lai, C.C., Chen, S.L., Sun, M.H., Xiao, X., Chen, T.L., Tsai, R.J., Kuo, S.W., Tsao, Y.P., 2004. GDNF gene therapy attenuates retinal ischemic injuries in rats. Mol. Vis. 10, 93–102
    86. Leaver, S.G., Cui, Q., Plant, G.W., Verhaagen, J., Harvey, A.R., 2006a. AAV-mediated expression of CNTF, but not BDNF or GAP-43, promotes long-term survival andregeneration of injured adult retinal ganglion cells. Gene Ther. 18, 1328–1341
    87. Meyer, R., Weissert, R., Diem, R., Storch, M.K., de Graaf, K.L., Kramer, B., Ba¨hr, M., 2001. Acute neuronal apoptosis in a rat model of multiple sclerosis. J. Neurosci. 21, 6214–6220
    88. Maier, K., Rau, C.R., Storch, M.K., Sattler, M.B., Demmer, I., Weissert, R., Taheri, N., Kuhnert, A.V., Ba¨hr, M., Diem, R., 2004. Ciliary neurotrophic factor protects retinal ganglion cells from secondary cell death during acute autoimmune optic neuritis in rats. Brain Pathol. 14, 378–387
    89. Diem, R., Taheri, N., Dietz, G.P., Kuhnert, A., Maier, K., Sattler, M.B., Gadjanski, I., Merkler, D., Bahr, M., 2005. HIV-Tat-mediated Bcl-XL delivery protects retinal ganglion cells during experimental autoimmune optic neuritis. Neurobiol. Dis. 20, 218–226
    90. Jones, T.B., McDaniel, E.E., Popovich, P.G., 2005. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr. Pharm. Design 11, 1223–1236
    91. Walsh, D.T., Bresciani, L., Saunders, D., Manca, M.F., Jen, A., Gentleman, S.M., Jen, L.S., 2005. Amyloid beta peptide causes chronic glial cell activation and neuro-degeneration after intravitreal injection. Neuropathol. Appl. Neurobiol. 31, 491–502
    92. Dentchev, T., Milam, A.H., Lee, V.M., Trojanowski, J.Q., Dunaief, J.L., 2003. Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol. Vis. 9, 184–190
    93. Yamamoto, R., Yoneda, S., Hara, H., 2004. Neuroprotective effects of beta-secretase inhibitors against rat retinal ganglion cell death. Neurosci. Lett. 370, 61–64
    94. Zhi, Y., Lu, Q., Zhang, C.W., Yip, H.K., So, K.F., Cui, Q., 2005. Different optic nerve injury sites result in different responses of retinal ganglion cells to brain-derived neurotrophic factor but not neuro- trophin-4/5. Brain Res. 1047, 224–232
    95. Cui, Q., Cho, K.S., So, K.-F., Yip, H.K., 2004. Synergistic effect of Nogoneutralizing antibody IN-1 and ciliary neurotrophic factor on axonal regeneration in adult rodent visual systems. J. Neurotrauma. 21, 617–625
    96. He, M.H., Cheung, Z.H., Yu, E.H., Tay, D.K., So, K.-F., 2004. Cytochrome C release and caspase-3 activation in retinal ganglion cells following different distance of axotomy of the optic nerve in adult hamsters. Neurochem. Res. 29, 2153–2161
    97. You, S.W., So, K.F., Yip, H.K., 2000. Axonal regeneration of retinal ganglion cellsdepending on the distance of axotomy in adult hamsters. Invest. Ophthalmol. Vis. Sci. 41, 3165–3170
    98. Selles-Navarro, I., Ellezam, B., Fajardo, R., Latour, M., McKerracher, L., 2001. Retinal ganglion cell and nonneuronal cell responses to a microcrush lesion of adult rat optic nerve. Exp. Neurol. 167, 282–289
    99. Kipnis, J., Yoles, E., Schori, H., Hauben, E., Shaked, I., Schwartz, M., 2001. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J. Neurosci. 21, 4564–4571
    100.Loh, N.K., Woerly, S., Bunt, S.M., Wilton, S., Harvey, A.R., 2001. The regrowth of axons within tissue defects in the CNS is promoted by implanted hydrogel matrices that contain BDNF and CNTF producing fibroblasts. Exp. Neurol. 170, 72–84
    101.Spalding, K.L., Rush, R.A., Harvey, A.R., 2004. Target-derived and locally-derived neurotrophins support retinal ganglion cell survival in the neonatal rat retina. J. Neurobiol. 60, 319–327
    102.Spalding, K.L., Dharmarajan, A.M., Harvey, A.R., 2005b. Caspaseindependent retinal ganglion cell death following target ablation in the neonatal rat. Eur J. Neurosci. 21, 33–45
    103.Cusato, K., Stagg, S.B., Reese, B.E., 2001. Two phases of increased cell death in the inner retina following early elimination of the ganglion cell population. J. Comp. Neurol. 439, 440–449
    104.Goldberg, J.L., Klassen, M.P., Hua, Y., Barres, B.A., 2002b. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296, 1860–1864
    105.Ba¨hr, M., 2000. Live or let die—retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends Neurosci. 23, 483–490
    106.Koeberle, P.D., Ba¨hr, M., 2004. Growth and guidance cues for regenerating axons: where have they gone? J. Neurobiol. 59, 162–180
    107.Dietz, G.P., Kilic, E., Ba¨hr, M., Isenmann, S., 2001. Bcl-2 is not required in retinal ganglion cells surviving optic nerve axotomy. NeuroReport 12, 3353–3356
    108.Watanabe, M., Inukai, N., Fukuda, Y., 2001. Survival of retinal ganglion cells after transection of the optic nerve in adult cats: a quantitative study within two weeks. Vis. Neurosci. 18, 137–145
    109.Kurimoto, T., Miyoshi, T., Suzuki, A., Yakura, T., Watanabe, M., Mimura, O., Fukuda, Y., 2003. Apoptotic death of beta cells after optic nerve transection in adult cats. J.Neurosci. 23, 4023–4028
    110.Lu, Q., Cui, Q., Yip, H.K., So, K.-F., 2003. c-Jun expression in surviving and regenerating retinal ganglion cells: effect of intravitreal neurotrophic factors and peripheral nerve implant. Invest. Ophthal. Vis. Sci. 44, 5342–5348
    111.Kreutz, M.R., Seidenbecher, C.I., Sabel, B.A., 1999. Molecular plasticity of retinal ganglion cells after partial optic nerve injury. Restor. Neurol. Neurosci. 14, 127–134
    112.Ju, W.K., Kim, K.Y., Lee, M.Y., Hofmann, H.D., Kirsch, M., Cha, J.H., Oh, S.J., Chun, M.H., 2000. Up-regulated CNTF plays a protective role for retrograde degeneration in the axotomized rat retina. Neuroreport 11, 3893–3896
    113.Sarup, V., Patil, K., Sharma, S.C., 2004. Ciliary neurotrophic factor and its receptors are differentially expressed in the optic nerve transected adult rat retina. Brain Res. 1013, 152–158
    114.Cui, Q., Tang, L.S.C., Hu, B., So, K.-F., Yip, H.K., 2002. Expression of trkA, trkB, and trkC in injured and regenerating retinal ganglion cells of adult rats. Invest. Ophthalmol. Vis. Sci. 43, 1954–1964
    115.Hirsch, S., Labes, M., Ba¨hr, M., 2000. Changes in BDNF and neurotrophin receptor expression in degenerating and regenerating rat retinal ganglion cells. Restor. Neurol. Neurosci. 17, 125–134
    116.Lindqvist, N., Peinado-Ramonn, P., Vidal-Sanz, M., Hallbook, F., 2004. GDNF, Ret, GFRalpha1 and 2 in the adult rat retino-tectal system after optic nerve transection. Exp. Neurol. 187, 487–499
    117.Becker, C.G., Becker, T., Meyer, R.L., 2001. Increased NCAM-180 immunoreactivity and maintenance of L1 immunoreactivity in injured optic fibers of adult mice. Exp. Neurol. 169, 438–448
    118.Dieterich, D.C., Trivedi, N., Engelmann, R., Gundelfinger, E.D., Gordon-Weeks, P.R., Kreutz, M.R., 2002. Partial regeneration and long-term survival of rat retinal ganglion cells after optic nerve crush is accompanied by altered expression, phosphorylation and distribution of cytoskeletal proteins. Eur J. Neurosci. 15, 1433–1443
    119.Silveira, L.C., Russelakis-Carneiro, M., Perry, V.H., 1994. The ganglion cell response to optic nerve injury in the cat: differential responses revealed by neurofibrillar staining. J. Neurocytol. 23, 75–86
    120.Doster, S.K., Lozano, A.M., Aguayo, A.J., Willard, M.B., 1991. Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axoninjury. Neuron 6, 635–647
    121.Weishaupt, J.H., Klo¨cker, N., Ba¨hr, M., 2005. Axotomy-induced early down-regulation of POU-IV class transcription factors Brn-3a and Brn-3b in retinal ganglion cells. J. Mol. Neurosci. 26, 17–25
    122.Petrausch, B., Jung, M., Leppert, C.A., Stuermer, C.A.O., 2000. Lesion-induced regulation of netrin receptors and modification of netrin-1 expression in the retina of fish and grafted rats. Mol. Cell Neurosci. 16, 350–364
    123.Ellezam, B., Selles-Navarro, I., Manitt, C., Kennedy, T.E., McKerracher, L., 2001. Expression of netrin-1 and its receptors DCC and UNC-5H2 after axotomy and during regeneration of adult rat retinal ganglion cells. Exp. Neurol. 168, 105–115
    124.Shirvan, A., Kimron, M., Holdengreber, V., Ziv, I., Ben-Shaul, Y., Melamed, S., Melamed, E., Barzilai, A., Solomon, A.S., 2002. Antisemaphorin 3A antibodies rescue retinal ganglion cells from cell death following optic nerve axotomy. J. Biol.Chem. 277, 49799–49807
    125.Ben-Zvi, A., Yagil, Z., Hagalili, Y., Klein, H., Lerman, O., Behar, O., 2006. Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signaling in embryonic DRG neurons. J. Neurochem. 96, 585–597
    126.Vazquez-Chona, F.R., Khan, A.N., Chan, C.K., Moore, A.N., Dash, P.K., Hernandez, M.R., Lu, L., Chesler, E.J., Manly, K.F., Williams, R.W., Geisert Jr., E.E., 2005. Genetic networks controlling retinal injury. Mol. Vis. 11, 958–970
    127.Ivanov, D., Dvoriantchikova, G., Nathanson, L., McKinnon, S.J., Shestopalov, V.I., 2006. Microarray analysis of gene expresion in adult retinal ganglion cells. FEBS Lett. 580, 331–335
    128.Steele, M.R., Inman, D.M., Calkins, D.J., Horner, P.J., Vetter, M.L., 2006. Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest. Ophthalmol. Vis. Sci. 47, 977–985
    129.Chun, M.H., Ju, W.K., Kim, K.Y., Lee, M.Y., Hofmann, H.D., Kirsch, M., Oh, S.J., 2000. Upregulation of ciliary neurotrophic factor in reactive Muller cells in the rat retina following optic nerve transection. Brain Res. 868, 358–362
    130.Chidlow, G., Casson, R., Sobrado-Calvo, P., Vidal-Sanz, M., Osborne, N.N., 2005. Measurement of retinal injury in the rat after optic nerve transection: an RT-PCR study. Mol. Vis. 11, 387–396
    131.Zhang, C.W., Lu, Q., You, S.W., Zhi, Y., Yip, H.K., Wu, W., So, K.F., Cui, Q., 2005.CNTF and BDNF have similar effects on retinal ganglion cell survival but differential effects on nitric oxide synthase expression soon after optic nerve injury. Invest. Ophthalmol. Vis. Sci. 46, 1497–1503
    132.Huang, E.J., Reichardt, L.F., 2003. Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642
    133.Pease, M.E., McKinnon, S.J., Quigley, H.A., Kerrigan-Baumrind, L.A., Zack, D.J., 2000. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 41, 764–774
    134.Spalding, K.L., Cui, Q., Harvey, A.R., 2005a. Retinal ganglion cell neurotrophin receptor levels and trophic requirements following target ablation in the neonatal rat. Neuroscience 131, 387–395
    135.Cheng, L., Sapieha, P., Kittlerova, P., Hauswirth, W.W., Di Polo, A., 2002b. TrkB gene transfer protects retinal ganglion cells from axotomy-induced death in vivo. J. Neurosci. 22, 3977–3986
    136.De Winter, F., Cui, Q., Symons, N.A., Verhaagen, J., Harvey, A.R., 2004. Expression of class 3 semaphorins and their receptors in the neonatal and adult rat retina. Invest. Ophthal. Vis. Sci. 45, 4554–4562
    137.Abid, A., Ismail, M., Mehdi, S.Q., Khaliq, S., 2006. Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J. Med. Genet. 43, 378–381
    138.Heiduschka, P., Thanos, S., 2000b. Aurintricarboxylic acid promotes survival and regeneration of axotomised retinal ganglion cells in vivo. Neuropharmacol. 39, 889–902
    139.Huang, X., Wu, D.Y., Chen, G., Manji, H., Chen, D.F., 2003. Support of retinal ganglion cell survival and axon regeneration by lithium through a Bcl-2-dependent mechanism. Invest. Ophthalmol. Vis. Sci. 44, 347–354
    140.Schuettauf, F., Naskar, R., Vorwerk, C.K., Zurakowski, D., Dreyer, E.B., 2000. Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Invest. Ophthalmol. Vis. Sci. 41, 4313–4316
    141.Kretz, A., Schmeer, C., Tausch, S., Isenmann, S., 2006. Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ganglion cells in vivo. Neurobiol. Dis. 21, 421–430.
    142.Diem, R., Meyer, R., Weishaupt, J.H., Ba¨hr, M., 2001. Reduction of potassiumcurrents and phosphatidylinositol 3-kinase-dependent AKT phosphorylation by tumor necrosis factor-(alpha) rescues axotomized retinal ganglion cells from retrograde cell death in vivo. J. Neurosci. 21, 2058–2066
    143.Gao, H., Qiao, X., Cantor, L.B., WuDunn, D., 2002. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch. Ophthalmol. 120, 797–803
    144.Koeberle, P.D., Ball, A.K., 1999. Nitric oxide synthase inhibition delays axonal degeneration and promotes the survival of axotomized retinal ganglion cells. Exp. Neurol. 158, 366–381
    145.Koeberle, P.D., Gauldie, J., Ball, A.K., 2004. Effects of adenoviral-mediated gene transfer of interleukin-10, interleukin-4, and transforming growth factor-beta on the survival of axotomized retinal ganglion cells. Neuroscience 125, 903–920
    146.Li, S., Hu, B., Tay, D., So, K.F., Yip, H.K., 2004. Intravitreal transplants of Schwann cells and fibroblasts promote the survival of axotomized retinal ganglion cells in rats. Brain Res. 1029, 56–64
    147.Fischer, D., Heiduschka, P., Thanos, S., 2001. Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp. Neurol. 172, 257–272
    148.Yin, Y., Cui, Q., Li, Y., Irwin, N., Fischer, D., Harvey, A.R., Benowitz, L.I., 2003. Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284–2293
    149.Koeberle, P.D., Ball, A.K., 2002. Neurturin enhances the survival of axotomized retinal ganglion cells in vivo: combined effects with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Neuroscience 110, 555–567
    150.Logan, A., Ahmed, Z., Baird, A., Gonzalez, A.M., Berry, M., 2006. Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129, 490–502
    151.Lu, P., Yang, H., Jones, L.L., Filbin, M.T., Tuszynski, M.H., 2004. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. 24, 6402–6409
    152.Pearse, D.D., Pereira, F.C., Marcillo, A.E., Bates, M.L., Berrocal, Y.A., Filbin, M.T., Bunge, M.B., 2004. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616
    153.Fouad, K., Schnell, L., Bunge, M.B., Schwab, M.E., Liebscher, T., Pearse, D.D., 2005.Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 25, 1169–1178
    154.Grimpe, B., Pressman, Y., Lupa, M.D., Horn, K.P., Bunge, M.B., Silver, J., 2005. The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces. Mol. Cell Neurosci. 28, 18–29
    155.Chierzi, S., Ratto, G.M., Verma, P., Fawcett, J.W., 2005. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur J. Neurosci. 21, 2051–2062
    156.Yin, Y., Henzl, M.T., Lorber, B., Nakazawa, T., Thomas, T.T., Jiang, F., Langer, R., Benowitz, L.I., 2006. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9, 843–852
    157.Finkbeiner, S., 2000. Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol. Life Sci. 57, 394–401
    158.Mason, M.R.J., Campbell, G., Caroni, P., Anderson, P.N., Lieberman, A.R., 2000. Overexpression of GAP-43 in thalamic projection neurons of transgenic mice does not enable them to regenerate axons through peripheral nerve grafts. Exp. Neurol. 165, 143–152
    159.Cui, Q., Yip, H.K., Zhao, R.C., So, K.-F., Harvey, A.R., 2003b. Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol. Cell Neurosci. 22, 49–61
    160.Chierzi, S., Fawcett, J.W., 2001. Regeneration in the mammalian optic nerve. Restor. Neurol. Neurosci. 19, 109–118
    161.Sapieha, P.S., Duplan, L., Uetani, N., Joly, S., Tremblay, M.L., Kennedy, T.E., Di Polo, A., 2005. Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS. Mol. Cell Neurosci. 28, 625–635
    162.Goldberg, J.L., Espinosa, J.S., Xu, Y., Davidson, N., Kovacs, G.T., Barres, B.A., 2002a. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702
    163.Pernet, V., Di Polo, A., 2006. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain 129, 1014–1026
    164.Ahmed, Z., Suggate, E.L., Brown, E.R., Dent, R.G., Armstrong, S.J., Barrett, L.B.,Berry, M., Logan, A., 2006. Schwann cell-derived factor-induced modulation of the NgR/p75NTR/EGFR axis disinhibits axon growth through CNS myelin in vivo and in vitro. Brain 129, 1517–1533
    165.Monsul, N.T., Geisendorfer, A.R., Han, P.J., Banik, R., Pease, M.E., Skolasky Jr., R.L., Hoffman, P.N., 2004. Intraocular injection of dibutyryl cyclic AMP promotes axon regeneration in rat optic nerve. Exp. Neurol. 186, 124–133
    166.Klo¨cker, N., Jung, M., Stuermer, C.A., Ba¨hr, M., 2001. BDNF increases the number of axotomized rat retinal ganglion cells expressing GAP43, L1, and TAG-1 mRNA–a supportive role for nitric oxide? Neurobiol. Dis. 8, 103–113
    167.Cohen-Cory, S., 1999. BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci. 19, 9996–10003
    168.Cho, K.S., Yang, L., Lu, B., Feng Ma, H., Huang, X., Pekny, M., Chen, D.F., 2005. Re-establishing the regenerative potential of central nervous system axons in postnatal mice. Cell Sci. 118, 863–872
    169.Jiao, J., Huang, X., Feit-Leithman, R.A., Neve, R.L., Snider, W., Dartt, D.A., Chen, D.F., 2005. Bcl-2 enhances Ca(2+) signaling to support the intrinsic regenerative capacity of CNS axons. EMBO J. 24, 1068–1078
    170.Lodovichi, C., Cristo, G.D., Cenni, M.C., Maffei, L., 2001. Bcl-2 overexpression per se does not promote regeneration of neonatal crushed optic fibers. Eur J. Neurosci. 13, 833–838
    171.Inoue, T., Hosokawa, M., Morigiwa, K., Ohashi, Y., Fukuda, Y., 2002. Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. J. Neurosci. 22, 4468–4477
    172.Kretz, A., Kugler, S., Happold, C., Ba¨hr, M., Isenmann, S., 2004. Excess Bcl-XL increases the intrinsic growth potential of adult CNS neurons in vitro. Mol. Cell Neurosci. 26, 63–74
    173.David, S., Lacroix, S., 2003. Molecular approaches to spinal cord repair. Annu. Rev. Neurosci. 26, 411–440
    174.McGee, A.W., Strittmatter, S.M., 2003. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci. 26, 193–198
    175.Domeniconi, M., Filbin, M.T., 2005. Overcoming inhibitors in myelin to promote axonal regeneration. J. Neurol. Sci. 233, 43–47
    176.Mandemakers, W.J., Barres, B.A., 2005. Axon regeneration: it’s getting crowded at thegates of TROY. Curr. Biol. 15, R302–R305
    177.Park, J.B., Yiu, G., Kaneko, S., Wang, J., Chang, J., He, X.L., Garcia, K.C., He, Z., 2005. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 45, 345–351
    178.Monnier, P.P., Sierra, A., Schwab, J.M., Henke-Fahle, S., Mueller, B.K., 2003. The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol. Cell Neurosci. 22, 319–330
    179.Koprivica, V., Cho, K.S., Park, J.B., Yiu, G., Atwal, J., Gore, B., Kim, J.A., Lin, E., Tessier-Lavigne, M., Chen, D.F., He, Z., 2005. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science 310, 106–110
    180.Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., Love, C., Jones, E.Y., Kikutani, H., Lubetzki, C., Dusart, I., Chedotal, A., 2003. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J. Neurosci. 23, 9229–9239
    181.Goldberg, J.L., Vargas, M.E., Wang, J.T., Mandemakers, W., Oster, S.F., Sretavan, D.W., Barres, B.A., 2004. An oligodendrocyte lineage-specific semaphorin, Sema5A, inhibits axon growth by retinal ganglion cells. J. Neurosci. 24, 4989–4999
    182.Kantor, D.B., Chivatakarn, O., Peer, K.L., Oster, S.F., Inatani, M., Hansen, M.J., Flanagan, J.G., Yamaguchi, Y., Sretavan, D.W., Giger, R.J., Kolodkin, A.L., 2004. Semaphorin 5A is a bifunctional axon guidance cue regulated by heparan and chondroitin sulfate proteoglycans. Neuron 44, 961–975
    183.De Wit, J., Verhaagen, J., 2006. Proteoglycans as modulators of axon guidance cue function. Adv. Exp. Med. Biol., in press.
    184.Lehmann, M., Fournier, A., Selles-Navarro, I., Dergham, P., Sebok, A., Leclerc, N., Tigyi, G., McKerracher, L., 1999. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547
    185.Ellezam, B., Dubreuil, C., Winton, M., Loy, L., Dergham, P., Selles-Navarro, I., McKerracher, L., 2002. Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog. Brain Res. 137, 371–380
    186.Bertrand, J., Winton, M.J., Rodriguez-Hernandez, N., Campenot, R.B., McKerracher, L.,2005. Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J. Neurosci. 25, 1113–1121
    187.Fischer, D., Petkova, V., Thanos, S., Benowitz, L.I., 2004b. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24, 8726–8740
    188.Fischer, D., He, Z., Benowitz, L.I., 2004a. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24, 1646–1651
    189.Kwon, B.K., Liu, J., Messerer, C., Kobayashi, N.R., McGraw, J., Oschipok, L., Tetzlaff, W., 2004. Survival and regeneration of rubrospinal neurons 1 year after spinal cord injury. Exp. Neurol. 189, 45–57
    190.Bregman, B.S., Coumans, J.V., Dai, H.N., Kuhn, P.L., Lynskey, J., McAtee, M., Sandhu, F., 2002. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog. Brain Res. 137, 257–273
    191.Li, Y., Sauve′, Y., Li, D., Lund, R.D., Raisman, G., 2003. Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons. J. Neurosci. 23, 7783–7788
    192.Cui, Q., Pollett, M.A., Symons, N.A., Plant, G.W., Harvey, A.R., 2003a. A new approach to CNS repair using chimeric peripheral nerve grafts. J. Neurotrauma. 20, 17–31
    193.Heiduschka, P., Thanos, S., 2000a. Restoration of the retinofugal pathway. Prog. Retin. Eye Res. 19, 577–606
    194.Cui, Q., Lu, Q., So, K.F., Yip, H.K., 1999. CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Invest. Ophthalmol. Vis. Sci. 40, 760–766
    195.Sasaki, H., Inoue, T., Iso, H., Fukuda, Y., 1999. Recovery of visual behaviors in adult hamsters with the peripheral nerve graft to the sectioned optic nerve. Exp. Neurol. 159, 377–390
    196.Watanabe, M., Fukuda, Y., 2002. Survival and axonal regeneration of retinal ganglion cells in adult cats. Prog. Ret. Eye Res. 21, 529–553
    197.Watanabe, M., Tokita, Y., Kato, M., Fukuda, Y., 2003. Intravitreal injections of neurotrophic factors and forskolin enhance survival and axonal regeneration ofaxotomized beta ganglion cells in cat retina. Neuroscience 116, 733–742
    198.Quan, M.Z., Kosaka, J., Watanabe, M., Wakabayashi, T., Fukuda, Y., 1999. Survival of axotomized retinal ganglion cells in peripheral nerve-grafted ferrets. Invest. Ophthalmol. Vis. Sci. 40, 2360–2366
    199.Maki, H., Watanabe, M., Tokita, Y., Saito, K., Yoshida, J., 2003. Axons of alpha ganglion cells regenerate faster than other types into a peripheral nerve graft in adult cats. J. Neurosci. Res. 72, 218–226
    200.Campbell, G., Kitching, J., Anderson, P.N., Lieberman, A.R., 2003. Different effects of astrocytes and Schwann cells on regenerating retinal axons. Neuroreport 14, 2085–2088
    201.Duncan, I.D., Lunn, K.F., Holmgren, B., Urba-Holmgren, R., Brignolo-Holmes, L., 1992. The taiep rat: a myelin mutant with an associated oligodendrocyte microtubular defect. J. Neurocytol. 21, 870–884
    202.Vidal-Sanz, M., Aviles-Trigueros, M., Whiteley, S.J., Sauve′, Y., Lund, R.D., 2002. Reinnervation of the pretectum in adult rats by regenerated retinal ganglion cell axons: anatomical and functional studies. Prog. Brain Res. 137, 443–452
    203.Aviles-Trigueros, M., Sauve′, Y., Lund, R.D., Vidal-Sanz, M., 2000. Selective innervation of retinorecipient brainstem nuclei by retinal ganglion cell axons regenerating through peripheral nerve grafts in adult rats. J. Neurosci. 20, 361–374
    204.Tan, M.M.L., Harvey, A.R., 1999. Retinal axon regeneration in peripheral nerve, tectal and muscle grafts in adult rats. J. Comp. Neurol. 412, 617–632
    205.Symons, N.A., Danielsen, N., Harvey, A.R., 2001. Migration of cells into and out of peripheral nerve isografts in the peripheral and central nervous systems of the adult mouse. Eur. J. Neurosci. 14, 522–532
    206.Leaver, S.G., Harvey, A.R., Plant, G.W., 2006b. Adult olfactory ensheathing glia promote the regeneration of adult retinal ganglion cells axons in vitro. Glia 53, 467–476
    207.Sauve′, Y., Sawai, H., Rasminsky, M., 2001. Topological specificity in reinnervation of the superior colliculus by regenerated retinal ganglion cell axons in adult hamsters. J. Neurosci. 21, 951–960
    208.Rodger, J., Lindsey, K.A., Leaver, S.G., King, C.E., Dunlop, S.A., Beazley, L.D., 2001. Expression of ephrin-A2 in the superior colliculus and EphA5 in the retina following optic nerve section in adult rat. Eur J. Neurosci. 14, 1929–1936
    209.Symonds, A.C.E., Rodger, J., Tan, M.M.L., Dunlop, S.A., Beazley, L.D., Harvey, A.R., 2001. Reinnervation of the superior colliculus delays down-regulation of ephrin A2 inneonatal rat. Exp. Neurol. 170, 364–370
    210.Tropea, D., Caleo, M., Maffei, L., 2003. Synergistic effects of brain-derived neurotrophic factor and chondroitinase ABC on retinal fiber sprouting after denervation of the superior colliculus in adult rats. J. Neurosci. 23, 7034–7044
    211.Houle, J.D., Tom, V.J., Mayes, D., Wagoner, G., Phillips, N., Silver, J., 2006. Combining an autologous peripheral nervous system‘‘bridge’’and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord. J. Neurosci. 26, 7405–7415
    212.Gillon, R.S., Cui, Q., Dunlop, S.A., Harvey, A.R., 2003. Effects of immunosuppression on the regrowth of adult rat retinal ganglion cell axons into peripheral nerve allografts. J. Neurosci. Res. 74, 524–532
    213.Robinson, G.A., Madison, R.D., 2000. Survival of adult rat retinal ganglion cells with regrown axons in peripheral nerve grafts: a comparison of graft attachment with suture or fibrin glue J. Neurosurg. 93, 275–278
    214.Golka, B., Lewin-Kowalik, J., Swiech-Sabuda, E., Larysz-Brysz, M., Gorka, D., Malecka-Tendera, E., 2001. Predegenerated peripheral nerve grafts rescue retinal ganglion cells from axotomy-induced death. Exp. Neurol. 167, 118–125
    215.You, S.W., Bedi, K.S., Yip, H.K., So, K.F., 2002. Axonal regeneration of retinal ganglion cells after optic nerve pre-lesions and attachment of normal or pre-degenerated peripheral nerve grafts. Vis. Neurosci. 19, 661–668
    216.Leon, S., Yin, Y., Nguyen, J., Irwin, N., Benowitz, L.I., 2000. Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20, 4615–4626
    217.Raibon, E., Sauve′, Y., Carter, D.A., Gaillard, F., 2002. Microglial changes accompanying the promotion of retinal ganglion cell axonal regeneration into peripheral nerve grafts. J. Neurocytol. 31, 57–71
    218.Hou, B., You S-, W., Wu M-, M., Kuang, F., Liu H-, L., Jiao X-, Y., Ju, G., 2004. Neuroprotective effect of inosine on axotomized retinal ganglion cells in adult rats. Invest. Ophthalmol. Vis. Sci. 45, 662–667
    219.Klo¨cker, N., Cellerino, A., Ba¨hr, M., 1998. Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells in vivo. J. Neurosci. 18, 1038–1046
    220.Shen, Y.J., DeBellard, M.E., Salzer, J.L., Roder, J., Filbin, M.T., 1998. Myelin-associated glycoprotein in myelin and expressed by Schwann cells inhibitsaxonal regeneration and branching. Mol. Cell Neurosci. 12, 79–91
    221.Morgenstern, D.A., Asher, R.A., Naidu, M., Carlstedt, T., Levine, J.M., Fawcett, J.W., 2003. Expression and glycanation of the NG2 proteoglycan in developing, adult, and damaged peripheral nerve. Mol. Cell Neurosci. 24, 787–802
    222.Bruce, J.H., Norenberg, M.D., Kraydieh, S., Puckett, W., Marcillo, A., Dietrich, D., 2000. Schwannosis: role of gliosis and proteoglycan in human spinal cord injury. J. Neurotrauma. 17, 781–788
    223.Hu, Y., Verhaagen, J., McKerracher, L., Cui, Q., Harvey, A.R., 2006. Modification of peripheral nerve grafts and the regeneration of adult retinal ganglion cell axons. Proc. Aust. Neurosci. Soc. 17, 60
    224.Groves, M.L., McKeon, R., Werner, E., Nagarsheth, M., Meador, W., English, A.W., 2005. Axon regeneration in peripheral nerves is enhanced by proteoglycan degradation. Exp. Neurol. 195, 278–292
    225.Chen, D.L., Mackinnon, S.E., Jensen, J.N., Hunter, D.A., Grand, A.G., 2002. Failure of cyclosporin A to rescue peripheral nerve allografts in acute rejection. Ann. Plast Surg. 49, 660–667
    226.Blits, B., Dijkhuizen, P.A., Boer, G.J., Verhaagen, J., 2000. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function. Exp. Neurol. 164, 25–37
    227.Hu, Y., Leaver, S.G., Plant, G.W., Hendricks, W.T.J., Niclou, S.P., Verhaagen, J., Harvey, A.R., Cui, Q., 2005. Lentiviral-mediated transfer of CNTF to Schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol. Ther. 11, 906–915
    228.Ruitenberg, M.J., Plant, G.W., Christensen, C.L., Blits, B., Niclou, S.P., Harvey, A.R., Boer, G.J., Verhaagen, J., 2002. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord. Gene Ther. 9, 135–146
    229.Martin, K.R., Quigley, H.A., 2004. Gene therapy for optic nerve disease. Eye 18, 1049–1055
    230.Jakobsson, J., Lundberg, C., 2006. Lentiviral vectors for use in the central nervous system. Mol. Ther. 13, 484–493
    231.Mandel, R.J., Manfredsson, F.P., Foust, K.D., Rising, A., Reimsnider, S., Nash, K., Burger, C., 2006. Recombinant adeno-associated viral vectors as therapeutic agents totreat neurological disorders. Mol. Ther. 13, 463–483
    232.Thaler, S., Rejdak, R., Dietrich, K., Ladewig, T., Okuno, E., Kocki, T., Turski, W.A., Junemann, A., Zrenner, E., Schuettauf, F., 2006. A selective method for transfection of retinal ganglion cells by retrograde transfer of antisense oligonucleotides against kynurenine aminotransferase II. Mol. Vis. 12, 100–107
    233.Berry, M., Gonzalez, A.M., Clarke, W., Greenlees, L., Barrett, L., Tsang, W., Seymour, L., Bonadio, J., Logan, A., Baird, A., 2001. Sustained effects of gene-activated matrices after CNS injury. Mol. Cell Neurosci. 17, 706–716
    234.Lingor, P., Koeberle, P., Ku¨gler, S., Ba¨hr, M., 2005. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 128, 550–558
    235.Peeters, L., Sanders, N.N., Braeckmans, K., Boussery, K., Van de Voorde, J., De Smedt, S.C., Demeester, J., 2005. Vitreous: a barrier to nonviral ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 46, 3553–3561
    236.Mo, X., Yokoyama, A., Oshitari, T., Negishi, H., Dezawa, M., Mizota, A., Adachi-Usami, E., 2002. Rescue of axotomized retinal ganglion cells by BDNF gene electroporation in adult rats. Invest. Ophthalmol. Vis. Sci. 43, 2401–2405
    237.Ishikawa, H., Takano, M., Matsumoto, N., Sawada, H., Ide, C., Mimura, O., Dezawa, M., 2005. Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode. Gene Ther. 12, 289–298
    238.Dietz, G.P., Ba¨hr, M., 2005. Peptide-enhanced cellular internalization of proteins in neuroscience. Brain Res. Bull. 68, 103–114
    239.Dietz, G.P., Kilic, E., Ba¨hr, M., 2002. Inhibition of neuronal apoptosis in vitro and in vivo using TAT-mediated protein transduction. Mol. Cell Neurosci. 21, 29–37
    240.van Adel, B.A., Kostic, C., Deglon, N., Ball, A.K., Arsenijevic, Y., 2003. Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum. Gene Ther. 14, 103–115
    241.Weise, J., Isenmann, S., Klo¨cker, N., Kugler, S., Hirsch, S., Gravel, C., Ba¨hr, M., 2000. Adenovirus-mediated expression of ciliary neurotrophic factor (CNTF) rescues axotomized rat retinal ganglion cells but does not support axonal regeneration in vivo. Neurobiol. Dis. 7, 212–223
    242.Schmeer, C., Straten, G., Kugler, S., Gravel, C., Ba¨hr, M., Isenmann, S., 2002. Dose-dependent rescue of axotomized rat retinal ganglion cells by adenovirus-mediatedexpression of GDNF in vivo. Eur J. Neurosci. 15, 637–643
    243.Straten, G., Schmeer, C., Kretz, A., Gerhardt, E., Kugler, S., Schulz, J.B., Gravel, C., Ba¨hr, M., Isenmann, S., 2002. Potential synergistic protection of retinal ganglion cells from axotomy-induced apoptosis by adenoviral administration of glial cell line-derived neurotrophic factor and X-chromosome-linked inhibitor of apoptosis. Neurobiol. Dis. 11, 123–133
    244.Michel, U., Malik, I., Ebert, S., Ba¨hr, M., Kugler, S., 2005. Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons. Biochem. Biophys. Res. Commun. 326, 307–312
    245.Mizuguchi, H., Xu, Z., Ishii-Watabe, A., Uchida, E., Hayakawa, T., 2000. IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol. Ther. 1, 376–382
    246.Janson, C.G., McPhee, S.W.J., Leone, P., Freese, A., During, M.J., 2001. Viral-based gene transfer to the mammalian CNS for functional genomic studies. Trends Neurosci. 24, 706–712
    247.Sarra, G.M., Stephens, C., Schlichtenbrede, F.C., Bainbridge, J.W.B., Thrasher, A.J., Luthert, P.J., Ali, R.R., 2002. Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus. Vis. Res. 42, 541–549
    248.Malik, J.M., Shevtsova, Z., Ba¨hr, M., Ku¨gler, S., 2005. Long-term in vivo inhibition of CNS neurodegeneration by Bcl-XL gene transfer. Mol. Ther. 11, 373–381
    249.Cao, W., Li, F., Steinberg, R.H., LaVail, M.M., 2001. Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp. Eye Res. 72, 591–604
    250.Sapieha, P.S., Peltier, M., Rendahl, K.G., Manning, W.C., Di Polo, A., 2003. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol. Cell Neurosci. 24, 656–672
    251.Simon, P.D., Vorwerk, C.K., Mansukani, S.S., Chen, S.J., Wilson, J.M., Zurakowski, D., Bennett, J., Dreyer, E.B., 1999. bcl-2 gene therapy exacerbates excitotoxicity. Hum. Gene Ther. 10, 1715–1720
    252.Spalding, K.L., Tan, M.M.L., Hendry, I.A., Harvey, A.R., 2002. Anterograde transport and trophic actions of BDNF and NT-4/5 in the developing rat visual system. Mol. Cell Neurosci. 19, 485–500
    253.Hennig, A.K., Levy, B., Ogilvie, J.M., Vogler, C.A., Galvin, N., Bassnett, S., Sands, M.S., 2003. Intravitreal gene therapy reduces lysosomal storage in specific areas of the CNS in mucopolysaccharidosis VII mice. J. Neurosci. 23, 3302–3307
    254.Yip, H.K., So, K.-F., 2000. Axonal regeneration of retinal ganglion cells: effect of trophic factors. Prog. Retin. Eye Res. 19, 559–575
    255.Weibel, D., Kreutzberg, G.W., Schwab, M.E., 1995. Brain-derived neurotrophic factor (BDNF) prevents lesion-induced axonal die-back in young rat optic nerve. Brain Res. 679, 249–254
    256.Gianola, S., Rossi, F., 2004. GAP-43 overexpression in adult mouse Purkinje cells overrides myelin-derived inhibition of neurite growth. Eur J. Neurosci. 19, 819–830
    257.Shin, J.J., Fricker-Gates, R.A., Perez, F.A., Leavitt, B.R., Zurakowski, D., Macklis, J.D., 2000. Transplanted neuroblasts differentiate appropriately into projection neurons with correct neurotransmitter and receptor phenotype in neocortex undergoing targeted projection neuron degeneration. J. Neurosci. 20, 7404–7416
    258.Gates, M.A., Fricker-Gates, R.A., Macklis, J.D., 2000. Reconstruction of cortical circuitry. Prog. Brain Res. 127, 115–156
    259.Mellough, C.B., Cui, Q., Spalding, K.L., Symons, N.A., Pollett, M.A., Snyder, E.Y., Macklis, J.D., Harvey, A.R., 2004. Fate of immortalised neural precursor cells transplanted into mouse retina selectively depleted of retinal ganglion cells. Exp. Neurol. 186, 6–19
    260.Cai, D., Qiu, J., Cao, Z., McAtee, M., Bregman, B.S., Filbin, M.T., 2001. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21, 4731–4739
    261.Baker, K.A., Mendez, I., 2005. Long distance selective fiber outgrowth of transplanted hNT neurons in white matter tracts of the adult rat brain. J. Comp. Neurol. 486, 318–330
    262.Close, J.L., Gumuscu, B., Reh, T.J., 2005. Retinal neurons regulate proliferation of postnatal progenitors and Muller glia in the rat retina via TGFb signalling. Development 132, 3015–3026
    263.de Melo, J., Qiu, X., Du, G., Cristante, L., Eisenstat, D.D., 2003. Dlx1, Dlx2, Pax6, Brn3b, and Chx10 homeobox gene expression defines the retinal ganglion and inner nuclear layers of the developing and adult mouse retina. J. Comp. Neurol. 461, 187–204
    264.Kinouchi, R., Takeda, M., Yang, L., Wilhelmsson, U., Lundkvist, A., Pekny, M., Chen, D.F., 2003. Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat. Neurosci. 6, 863–868
    265.Wojciechowski, A.B., Englund, U., Lundberg, C., Warfvinge, K., 2002. Long-term survival and glial differentiation of the brain-derived precursor cell line RN33B after subretinal transplantation to adult normal rats. Stem Cells 20, 163–173
    266.Nishida, A., Honda, Y., Takahashi, M., 2001. Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat. Neurosci. 4, 1163–1164
    267.Young, M.J., 2004a. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest. Ophthalmol. Vis. Sci. 45, 4167–4173
    268.Guo, Y., Saloupis, P., Shaw, S.J., Rickman, D.W., 2003. Engraftment of adult neural progenitor cells transplanted to rat retina injured by transient ischemia. Invest. Ophthalmol. Vis. Sci. 44, 3194–3201
    269.Moshiri, A., Reh, T.A., 2004. Persistent progenitors at the retinal margin of ptc+/-mice. J. Neurosci. 24, 229–237
    270.Liljekvist-Larsson, I., Johansson, K., 2005. Retinal neurospheres prepared as tissue for transplantation. Dev. Brain Res. 160, 194–202
    271.Tropepe, V., Coles, B.L., Chiasson, B.J., Horsford, D.J., Elia, A.J., McInnes, R.R., van der Kooy, D., 2000. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036
    272.Dhomen, N.S., Balaggan, K.S., Pearson, R.A., Bainbridge, J.W., Levine, E.M., Ali, R.R., Sowden, J.C., 2006. Absence of chx10 causes neural progenitors to persist in the adult retina. Invest. Ophthalmol. Vis. Sci. 47, 386–396
    273.Ahmad, I., Tang, L., Pham, H., 2000. Identification of neural progenitors in the adult mammalian eye. Biochem. Biophys. Res. Commun. 270, 517–521
    274.Zhao, X., Das, A.V., Thoreson, W.B., James, J., Wattnem, T.E., Rodriguez-Sierra, J., Ahmad, I., 2002. Adult corneal limbal epithelium: a model for studying neural potential of non-neural stem cells/ progenitors. Dev. Biol. 250, 317–331
    275.Engelhardt, M., Bogdahn, U., Aigner, L., 2005. Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin. Brain Res. 1040, 98–111
    276.Arsenijevic, Y., Taverney, N., Kostic, C., Tekaya, M., Riva, F., Zografos, L., Schorderet,D., Munier, F., 2003. Non-neural regions of the adult human eye: a potential source of neurons? Invest. Ophthalmol. Vis. Sci. 44, 799–807
    277.Coles, B.L., Angenieux, B., Inoue, T., Del Rio-Tsonis, K., Spence, J.R., McInnes, R.R., Arsenijevic, Y., van der Kooy, D., 2004. Facile isolation and the characterization of human retinal stem cells. Proc. Natl. Acad. Sci. 101, 15772–15777
    278.Lavik, E.B., Klassen, H., Warfvinge, K., Langer, R., Young, M.J., 2005. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors. Biomaterials 26, 3187–3196
    279.Richard, I., Ader, M., Sytnyk, V., Dityatev, A., Richard, G., Schachner, M., Bartsch, U., 2005. Electroporation-based gene transfer for efficient transfection of neural precursor cells. Mol. Brain Res. 138, 182–190
    280.Muller, F.J., Snyder, E.Y., Loring, J.F., 2006. Gene therapy: can neural stem cells deliver? Nat. Rev. Neurosci. 7, 75–84
    281.Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., Lindvall, O., 2002. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970
    282.Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N., Ferriero, D.M., 2002. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813
    283.Nakatomi, H., Kuriu, T., Okabe, S., Yamamoto, S., Hatano, O., Kawahara, N., Tamura, A., Kirino, T., Nakafuku, M., 2002. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441
    284.Ooto, S., Akagi, T., Kageyama, R., Akita, J., Mandai, M., Honda, Y., Takahashi, M., 2004. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc. Natl. Acad. Sci. 101, 13654–13659
    285.Moshiri, A., Close, J., Reh, T.A., 2004. Retinal stem cells and regeneration. Int. J. Dev. Biol. 48, 1003–1014.
    286.Haynes, T., Del Rio-Tsonis, K., 2004. Retina repair, stem cells and beyond. Curr. Neurovasc. Res. 1, 231–239
    287.Rodger, J., Goto, H., Cui, Q., Chen, P.B., Harvey, A.R., 2005. cAMP regulates axon outgrowth and guidance during optic nerve regeneration in goldfish. Mol. Cell Neurosci. 30, 452–464
    288.Beazley, L.D., Rodger, J., Chen, P., Tee, L.B., Stirling, R.V., Taylor, A.L., Dunlop, S.A., 2003. Training on a visual task improves the outcome of optic nerve regeneration. J. Neurotrauma. 20, 1263–1270
    289.Turner, J.P., Sauve′, Y., Varela-Rodriguez, C., Lund, R.D., Salt, T.E., 2005. Recruitment of local excitatory circuits in the superior colliculus following deafferentation and the regeneration of retinocollicular inputs. Eur J. Neurosci. 22, 1643–1654
    290.Bok, D., Yasumura, D., Matthes, M.T., Ruiz, A., Duncan, J.L., Chappelow, A.V., Zolutukhin, S., Hauswirth, W., LaVail, M.M., 2002. Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/ peripherin mutation. Exp. Eye Res. 74, 719–735
    291.Koponen, J.K., Kankkonen, H., Kannasto, J., Wirth, T., Hillen, W., Bujard, H., Yla-Herttuala, S., 2003. Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expression in vitro and in vivo. Gene Ther. 10, 459–466
    292.Georgievska, B., Jakobsson, J., Persson, E., Ericson, C., Kirik, D., Lundberg, C., 2004. Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum. Gene Ther. 15, 934–944
    293.Dejneka, N.S., Auricchio, A., Maguire, A.M., Ye, X., Gao, G.P., Wilson, J.M., Bennett, J., 2001. Pharmacologically regulated gene expression in the retina following transduction with viral vectors. Gene Ther. 8, 442–446
    294.Folliot, S., Briot, D., Conrath, N., Provost, N., Cherel, Y., Moullier, P., Rolling, F., 2003. Sustained tetracycline-regulated transgene expression in vivo in rat retinal ganglion cells using a single type 2 adenoassociated viral vector. J. Gene Med. 5, 493–501
    295.McGee Sanftner, L.H., Abel, H., Hauswirth, W.W., Flannery, J.G., 2001a. Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol. Ther. 4, 622–629
    296.Stieger, K., Le Meur, G., Lasne, F., Weber, M., Deschamps, J.Y., Nivard, D., Mendes-Madeira, A., Provost, N., Martin, L., Moullier, P., Rolling, F., 2006. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol. Ther. 13, 967–975
    297.Rendahl, K.G., Quiroz, D., Ladner, M., Coyne, M., Seltzer, J., Manning, W.C., Escobedo, J.A., 2002. Tightly regulated long-term erythropoietin expression in vivousing tet-inducible recombinant adeno-associated viral vectors. Hum. Gene Ther. 13, 335–342
    298.Robinson, G.A., Madison, R.D., 2004. Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vis. Res. 44, 2667–2674
    299.Kafri, T., van Praag, H., Gage, F.H., Verma, I.M., 2000. Lentiviral vectors: regulated gene expression. Mol. Ther. 1, 516–521
    300.Cui, Q., 2006. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol. Neurobiol. 33, 155–179