牛磺酸对糖尿病早期大鼠视网膜Müller细胞改变的防护效应及防护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病(Diabetes mellitus, DM)的发病率在世界范围内呈快速增长的趋势。糖尿病视网膜病变(Diabetic retinopathy, DR)是糖尿病最为常见的严重并发症,是造成成年人失明的主要原因。DR的临床症状主要包括:视网膜血管渗透性增加、水肿以及内皮细胞增生等。目前,治疗DR最主要的方法是全视网膜光凝固法(Panretinal photocoagulation, PRP)。减少DR发病率的方法主要包括控制糖尿病患者血糖水平和血压。然而,一些患者尽管能很好的控制血糖水平和血压,但仍会发展成DR。因此寻找一种新的防治DR的方法已成为必需。长期以来,DR的防治重点是针对血管病变。然而,越来越多的研究发现,糖尿病患者眼底出现可测的微血管病变之前就出现了视网膜Müller细胞功能的改变,Müller细胞的改变先于血管改变,Müller细胞的改变最终导致视网膜微血管发生病变,并且随着微血管病变的出现,进一步发展。所以,从临床意义出发,对DR的防治重点应在视网膜血管病变之前。
     一些研究报道,Müller细胞凋亡、胶质原纤维酸性蛋白(Glial fibrillary acidic protein, GFAP)在Müller细胞中过表达、Müller细胞中血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)分泌增加和谷氨酸代谢异常可能是糖尿病引起视网膜功能损害的早期因素,这些因素继而引起视网膜内谷氨酸浓度增加,增加的谷氨酸浓度会过度刺激突触后神经元细胞膜上的谷氨酸受体,对神经细胞造成明显的毒性作用,并且谷氨酸浓度过高会加速视网膜微血管细胞的死亡,进而发展成临床可见的DR。近年来,对Müller细胞的研究主要集中在其转运和清除神经元释放的谷氨酸的能力上。谷氨酸转运体(Glutamate transporters, GLAST)、谷氨酰胺合成酶(Glutamine synthetase, GS)以及谷氨酸脱羧酶(Glutamate decarboxylase, GAD)是Müller细胞转运并降解谷氨酸的几个重要环节。Müller细胞通过其胞膜上的GLAST摄取神经元释放的谷氨酸,摄入的谷氨酸经Müller细胞内GS转化成无毒的谷氨酰胺,谷氨酰胺再运出细胞外提供给神经元合成谷氨酸。摄入Müller细胞的谷氨酸也可经细胞内的GAD降解成γ-氨基丁酸(γ-aminobutyric acid, GABA)。通过这种方式,视网膜神经递质池被重新补充,谷氨酸兴奋毒性受到抑制。
     牛磺酸是视网膜组织中含量较高的一种游离氨基酸。以往研究表明,牛磺酸在视网膜中具有多种复杂的生物学效应。与视网膜神经组织的发育、分化、正常结构及功能的维持、移植后的再生及一些视网膜疾病的发病机制都有密切的联系。视网膜是通过血-视网膜屏障来富集牛磺酸的,牛磺酸脂溶性差,通过细胞膜的速度较慢,但其在视网膜细胞内外的浓度差可达400:1,这是由于视网膜细胞上存在大量牛磺酸转运蛋白(Taurine transporter,TauT),所以牛磺酸能很快进入视网膜细胞,发挥其视觉保护作用。有实验证实,在高血糖患者体内,大量山梨醇聚集可引起体内代偿性的牛磺酸消耗增加,从而使视网膜色素上皮细胞、血小板、神经以及晶状体中牛磺酸含量降低。已经证实,糖尿病时细胞内牛磺酸缺乏是引起慢性细胞毒性的一个主要因素。临床研究发现,给胰岛素依赖型糖尿病病人膳食中补充牛磺酸,可使血浆和血小板中牛磺酸水平恢复正常,血小板聚集得到改善。另外,牛磺酸还可以降低糖尿病死亡率。尽管牛磺酸对糖尿病的防护效应已经得到证实,牛磺酸对糖尿病诱导的Müller细胞改变的防护作用没有报道。
     基于以上分析,我们推测,牛磺酸可能对糖尿病引起视网膜Müller细胞改变具有防护效应。本研究体内实验采用链脲佐菌素(streptozotocin, STZ)诱导的Sprague-Dawley (SD)大鼠糖尿病模型,以牛磺酸强化的饲料对糖尿病大鼠进行营养干预。体外实验采用SD大鼠视网膜Müller细胞高糖模型,在培养介质中添加牛磺酸干预。通过HE染色、电镜、TUNEL、ERG、免疫组织化学、氨基酸分析、免疫细胞化学、激光共聚焦分析技术、流式细胞技术、RT-PCR、Western blotting、放射液闪等先进实验技术方法,在体内观察糖尿病诱导的大鼠视网膜结构和功能的改变及牛磺酸的防护效应,体外观察高糖诱导的Müller细胞形态和功能的改变及牛磺酸的防护效应,并在体内外进一步研究牛磺酸防护糖尿病和高糖引起的Müller细胞改变的分子机制。
     主要结果和结论如下:
     1. STZ诱导糖尿病12周后,大鼠视网膜内核层(Inner nuclear layer, INL)和神经节细胞层(Ganglion cell layer, GCL)细胞数显著减少,Müller细胞胞体出现肿胀。超微结构显示,Müller细胞核固缩,核电子密度增大,染色质边集,细胞空泡变性。5%牛磺酸干预后,以上病理改变和超微损伤明显减轻。但牛磺酸干预对血糖没有明显影响,提示牛磺酸对糖尿病大鼠早期视网膜病变的防护作用并非通过降低血糖来实现的。
     2.视网膜电图(Electroretinogram, ERG)检测结果显示,STZ诱导糖尿病8周后,大鼠视杆细胞反应a波、b波、最大反应b波、phot-ERG b波、OPs p4波的潜伏期明显延长,OPs Os1波的振幅明显降低。1%牛磺酸干预对以上各波的潜伏期无明显影响,但可增加OPs Os1波的振幅;5%牛磺酸干预可明显缩短视杆细胞反应a波、b波、最大反应b波、phot-ERG b波、OPs p4波的潜伏期,增加OPs Os1波的振幅。表明糖尿病早期即发生了视网膜神经功能损伤,牛磺酸对这一损伤具有明显的防护效应。
     3. STZ诱导糖尿病2周时,视网膜中即可见少量TUNEL阳性细胞。12周时,视网膜中可见大量TUNEL阳性细胞,阳性细胞占总细胞的33%左右,主要分布在外核层和内核层。1%和5%牛磺酸干预均使视网膜中TUNEL阳性细胞数明显减少。Müller细胞经25 mmol/L高糖培养后,细胞形态发生明显改变,存活率明显降低,细胞核中出现典型的凋亡小体。流式细胞分析结果表明,高糖培养使Müller细胞凋亡率明显增加(高糖组36.52% vs正常对照组0.34%)。在培养介质中加入0.1mmol/L、1mmol/L和10mmol/L牛磺酸可显著提高Müller细胞存活率,降低Müller细胞凋亡率(低、中、高剂量牛磺酸组Müller细胞凋亡率分别是:16.43%、3.75%和2.01%)。
     4. GFAP是胶质细胞反应性增生的标志物,VEGF是一种促新生血管形成的生长因子。体内STZ诱导糖尿病2、4、8和12周,大鼠视网膜GFAP、VEGF mRNA及蛋白水平呈时间依赖性上调。牛磺酸干预可有效拮抗GFAP、VEGF mRNA及蛋白表达上调。体外25 mmol/L高糖培养也使Müller细胞GFAP、VEGF mRNA及蛋白表达增加。1 mmol/L和10 mmol/L牛磺酸可有效抑制高糖诱导的GFAP、VEGF上调表达。体内外实验结果表明,牛磺酸可有效抑制糖尿病和高糖诱导的胶质细胞反应性增生、下调Müller细胞中VEGF的表达。
     5.糖尿病和高糖诱导Müller细胞中TauT表达抑制,引起TauT mRNA及蛋白表达明显下降。牛磺酸干预可上调Müller细胞中TauT的表达,提高细胞内外牛磺酸的转运能力,从而有效抑制糖尿病引起的视网膜中牛磺酸浓度降低。
     6. STZ诱导糖尿病引起视网膜内谷氨酸浓度显著升高。GLAST、GS和GAD是Müller细胞转运并降解谷氨酸的几个重要环节。糖尿病和高糖引起Müller细胞GLAST、GS和GAD mRNA及蛋白表达显著下降。高糖培养时,Müller细胞对L-[2,3-3H]-谷氨酸的摄取能力明显减弱。牛磺酸干预明显增加Müller细胞中GLAST、GS和GAD的表达,增强Müller细胞谷氨酸摄取能力,使视网膜中谷氨酸浓度明显降低,进而有效抑制糖尿病引起的谷氨酸兴奋毒性。
     综上所述,糖尿病和高糖诱导Müller细胞结构和功能发生异常改变,牛磺酸对上述异常改变具有防护效应。进一步研究发现。牛磺酸通过提高Müller细胞牛磺酸转运能力、谷氨酸转运及清除能力来维持视网膜牛磺酸浓度的稳态及内环境的稳定。该实验结果为牛磺酸用于糖尿病早期视网膜病变的防治提供重要的实验依据。
Diabetes mellitus is increasing worldwide at an alarming rate. Diabetic retinopathy (DR) is a common complication of diabetes and a leading cause of legal blindness in working-age adults. The clinical hallmarks of DR include increased vascular permeability, leading to edema, and endothelial cell proliferation. The mainstay of therapy for DR is panretinal photocoagulation. Other agents that are known to decrease the risk of developing DR include controlling blood glucose levels and blood pressure, however, some patients develop retinopathy despite good control of blood glucose and blood pressure. Thus new therapies able to prevent the development or progression of DR are needed. Much of the research effort has been focused on vascular changes, but it is becoming apparent that other degenerative changes occur beyond the vascular cells of the retina. These include the altered expression of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) in the Müller cells, and always combined with alteration in glutamate metabolism.
     Müller cells, the main glial cell within the retina, are vital for maintaining the normal health of the retina and have been implicated in many retinal diseases, including DR. Recently, some studies have demonstrated that the increased Müller cells’reactivity and Müller cells’glutamate dysmetabolism are early pathogenic events, which always resulted in an increment in retinal glutamate levels in diabetes. Increased glutamate can accelerate the death of retinal vascular cells and nonvascular cells, which might play an important role in the pathogenesis of retinopathy. A major physiological function of Müller cells is to regulate the ionic and molecular composition of the retinal microenvironment. An intensively investigated function of Müller cells was assumed as their ability to eliminate synaptically released glutamate, a neurotransmitter with more than 90% of the synapses placed in the retina. Glutamate transporters (GLAST), glutamine synthetase (GS) and glutamate decarboxylase (GAD) were found in Müller cells. So, it was postulated that synaptically released glutamate in retina was absorbed by Müller cells via GLAST transportation and rapidly converted to glutamine andγ-aminobutyric acid (GABA) with the aid of GS and GAD. The resulting glutamine was then returned to the neurons for glutamate re-synthesis. By this way, the neurotransmitter pool was replenished and glutamate neurotoxicity has been successfully prevented.
     Taurine (2-aminoethanesulfonic acid), a sulphur-containingβ-amino acid, is one of the most abundant free amino acids in various tissues, and has been proved to play important roles in numerous physiological functions, such as osmoregulation, modulation of neurotransmitters, membrance stabilization, and antioxidation in mammals. It was concluded that intracellular depletion of taurine contributes much to chronic cytotoxicity in diabetes. Several studies have recently indicated that taurine exhibited beneficial effects in adults with DM. A lower level of taurine was clinically obtained in insulin-dependent and insulin-independent DM patients, taurine was decreased in plasma and platelets. In addition, an inverse correlation between the log of plasma taurine and glycosylated hemoglobin has been found. Moreover, in insulin-dependent diabetic patients, taurine supplementation decreased platelet aggregability, restored its own plasma and platelet levels, and abolished the inverse correlation between log plasma taurine and glycosylated hemoglobin. Moreover, the long-term dietary taurine supplementation retarded the morbidity of diabetes.
     Based on the analysis above, we presume taurine maybe an effective protective agent of Müller cells changes induced by diabetes. The aim of this study was to investigate the effects of taurine supplementation on diabetes-induced Müller cells alterations in rats retina and the associated molecular mechanism. The Sprague-Dawley (SD) rats model of streptozotocin (STZ)-induced diabetes was used in vivo study. In vitro study, Müller cells cultured in high glucose were used as the model. TUNEL, immunohistochemistry, immuocytochemistry, amino acid analysis, laser confocal analytical assay, flow cytometry, RT-PCR and western blotting method were used to study the structural and functional changes induced by diabetes and high glucose. Meanwhile the proective effects of taurine and the associated molecular mechanism of taurine transporter, glutmate clearance pathway were deeply studied.
     The main results and conclusions were summarized as follows:
     1. The inner layer cells arranged irregularly and the intercellular spaces became wide in diabetic rats retina. The cells’number in inner nuclear layer (INL) and ganglion cell layer (GCL) was decreased obviously. Increased electron density, chromatin margination and karyopycnosis/karyorrhexis were observed easily in retinal Müller cells of diabetic rats. Some vacuolation appeared in the cytoplasm of Müller cells. Taurine treatment could significantly improve the changes of histopathology and ultrastructure in diabetic rats retina. Although no significant change has been observed with blood glucose content in taurine treatment group, taurine could protect the structural damages of retina induced by diabetes effectively, which indicating that the protective mechanisms of taurine was not by decreasing the levels of blood glucose in diabetic rats.
     2. The implicit times of a and b wave of rod-response, b wave of max-response, p4 wave of OPs and b wave of phot-ERG of diabetic rats were respectively prolonged significantly compared to those of control ones. The Os1 amplitude of OPs was significantly decreased in diabetic rats. Although no significant improvement in 1% taurine treatment group, 5% taurine treatment could significantly reverse the changes of above wave, which suggesed that the functions of Müller cells changed in the early stage of diabetic rats and could be protected by taurine treatment.
     3. In vivo study, some TUNEL-positive cells were observed in diabetic rats retina at 2 weeks. In 12 weeks, there were more TUNEL-positive cells found in diabetic rats retina than that in normal controls and the TUNEL-positive cells were 33% in total cells. When treatment with taurine, the TUNEL-positive percent was markedly decreased. In vitro study, increased karyopycnosis/karyorrhexis and some apoptotic bodies were found in high glucose cultured Müller cells. rate of apoptosis in Müller cells incubated in high glucose increased significantly (36.52% vs 0.34% in controls). Treatment with taurine could inhibit apoptosis (the apoptosis rate was 16.43%, 3.75% and 2.01% in low-dost, meta-dose and high-dose taurine group respectively).
     4. A common marker for reactive gliosis is the well-described increase in the expression of GFAP. VEGF is a potent angiogenic growth factor. RT-PCR and western-blotting analysis showed increases in GFAP, VEGF mRNA and protein expression in STZ-induced diabetic retina and high glucose cultured Müller cells compared to normal controls. Treatment with taurine significantly blocked the increases in GFAP, VEGF mRNA and protein expression in diabetic retina and high glucose cultured Müller cells.
     5. The level of taurine was decreased in untreated diabetic rats and was repleted by taurine supplementation. Our study suggested that the expression of TauT was reduced in diabetes and high glucose group and could be stimulated expression by taurine supplementation.
     6. The concentration of glutamate was increased in untreated diabetic rats vs nondiabetic controls, and this increase was prevented by taurine. the expressions of GLAST, GS and GAD were reduced in diabetes and high glucose group and could be stimulated expression by taurine supplementation. The ability of L-[2,3-3H]-glutamate uptake was attenuated in Müller cells in high glutamate cultured group and could be potentized by taurine.
     In brief, Our studies revealed that taurine ameliorates diabetic retinopathy possibly via increasing the ability of taurine transporter and relieving anti-excitotoxicity of glutamate, which suggest a possible utility of taurine as an adjuvant therapeutic agent in the management of diabetes and its complications.
引文
1. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997; 14: 51-85.
    2. Klein R, Klein BEK. Vision Disorders in Diabetes. National Diabetes Data Group Diabetes in America. NIH, Bethesda, MD. 1995; 293-337.
    3. Klein R, Klein BE, Moss SE, et al. The Wisconsin epidemiologic study of diabetic retinopathy: II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1984; 102: 520-526.
    4. Aiello LM. Perspectives on diabetic retinopathy. Am J Ophthalmol. 2003; 136: 122-135.
    5. Klein BE, Klein R, Moss SE. et al. A cohort study of the relationship of diabetic retinopathy to blood pressure. Arch Ophthalmol. 1995; 113: 601-606.
    6. Bresnick GH. Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol. 1986; 104: 989-990.
    7. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes. 1998; 47: 445-449.
    8. Lieth E, Gardner TW, Barber AJ, et al. Retinal neurodegeneration:early pathology in diabetes. Clin Exp Ophthalmol. 2000; 28: 3-8.
    9. Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in shortterm experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998; 47: 815-820.
    10. Rungger-Br?ndle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000; 41: 1971-1980.
    11. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci. 2000; 41: 3561-3568.
    12. Erickson P, Fisher S, Guerin C, et al. Glial fibrillary acidic protein increases in Müller cells after retinal detachment. Exp Eye Res. 1987; 44: 37-48.
    13. Eisenfeld A, Bunt-Milam A, Vijay Sarthy P. Müller cells expression of glial fibrillaryacidic protein after genetic and experimental photoreceptor degeneration in the rat retina. Invest Ophthalmol Vis Sci. 1984; 25:1321-1328.
    14. Bignami A, Dahl D. The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. Exp Eye Res. 1979; 28: 63-69.
    15. Diederen RM, La Heij EC, Deutz NE. Increased glutamate levels in the vitreous of patients with retinal detachment. Exp Eye Res. 2006; 83: 45-50.
    16. Kalloniatis M, Tomisich G. Amino acid neurochemistry of the vertebrate retina. Prog Retin Eye Res. 1999; 18: 811-866.
    17. Ehinger B. Glial and neuronal uptake of GABA, glutamic acid, glutamine and glutathione in the rabbit retina. Exp Eye Res. 1977; 25: 221-234.
    18. Thurston JH, Hauhart RE, Dirgo JA. Taurine: A role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci. 1980; 26: 1561-1568.
    19. Bernardi N. On the role of taurine in the cerebellar cortex: a reappraisal. Acta Physiol Pharmacol Ther Latinoam. 1985; 35: 153–164.
    20. Kuriyama K. Taurine as a neuromodulator. Fed Proc. 1980; 39:2680-2684.
    21. Pasantes-Morales H, Wright CE, Gaull GE. Taurine protection of lymphoblastoid cells from iron-ascorbate-induced damage. Biochem Pharmacol. 1985; 34: 2205-2207.
    22. Nakamura T, Ogasawara M, Nemoto M, et al. The protective effect of taurine on the biomembrane against damage produced by oxygen radicals. Biol Pharm Bull. 1993; 16: 970-972.
    23. Hansen SH. The role of taurine in diabetes mellitus and development of diabetic complications. Diabetes Metab Res Rev. 2001; 17:330-346.
    24. Kaplan B, Karabay G, Za?yapan RD, et al. Effects of taurine in glucose and taurine administration. Amino Acids. 2004; 27: 327-333.
    25. Di Leo MAS, Ghirlanda G, Gentiloni Silveri N, et al. Potential therapeutic effect of antioxidants in experimental diabetic retina: A comparison between chronic taurine and vitamin E plus selenium supplementations. Free Radic Res. 2003; 37: 323-330.
    26. De Luca G, Calpona PR, Caponetti A, et al. Taurine and osmoregulation: Platelet taurine content, uptake, and release in type 2 diabetes mellitus. Metabolism. 2001; 50: 60-64.
    27. Engerman RL. Pathogenesis of diabetic retinopathy. Diabetes. 1989; 38: 1203-1206.
    28. Della Sala S, Bertoni G, Somazzi L, et al. Impaired contrast sensitivity in diabetic patients with and without retinopathy: a new technique for rapid assessment. Br J Ophthalmol. 1985; 69: 136-142.
    29. Bresnick GH, Palta M. Oscillatory potential amplitudes: relation to severity of diabetic retinopathy. Arch Ophthalmol. 1987; 105: 929-933.
    30. Sone H, Kawakami Y, Okuda Y, et al. Ocular vascular endothelial growth factor levels in diabetic rats are elevated before observable retinal proliferative changes. Diabetologia. 1997; 40: 726-730.
    31. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992; 72:101-163.
    32. Hayes K, Sturman JA. Taurine in metabolism. Annu Rev Nutr. 1981; 1: 401-425.
    33. Shioda R, Reinach PS, Hisatsune T, et al. Osmosensitive taurine transporter expression and activity in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2002; 43: 2916-2922.
    34. Geggel HS, Ament M, Heckenlively JR, et al. Nutritional requirement for taurine in patients receiving long-term parenteral nutrition. N Engl J Med. 1985; 312:142-146.
    35. Rodica PB, Kelli AS, Carol VH, et al. Depletion of Taurine in Experimental Diabetic Neuropathy: Implications for Nerve Metabolic, Vascular, and Functional Deficits. Experimental Neurology. 2001; 168 : 259-272.
    36. Di Leo MAS, Santini SA, Cercone S, et al. Chronic taurine supplementation ameliorates oxidative stress and Na-K-ATPase impairment in the retina of diabetic rats. Amino Acids. 2002; 23: 401- 406.
    37. Odetti P, Pesce C, Traverso N, et al. Comparative trial of N-acetyl-cysteine, taurine, and oxerutin on skin and kidney damage in long-term experimental diabetes. Diabetes. 2002; 52: 499-505.
    38. Franconi A, Loizzo G, Ghirlanda G, et al. Taurine supplementation in diabetes mellitus. Curr Opin Clin Nutr Metab Care. 2006; 9: 32-36.
    39. Kowluru RA, Engerman RL, Case GL, et al. Retinal glutamate in diabetes and effect of antioxidants.Neurochem Int. 2001; 38:385-390.
    40. Ambati J, Chalam KV, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutam ate, and vascular endothelial growth factorlevels in the vitreous of patients withproliferative diabetic retinopathy. Arch Ophthalmol. 1997; 115: 1161-1166.
    41. Ishikawa A, Ishiguro S, Tamai M. Changes in GABA metabolism in streptozotocin induced diabetic rat retinas. Curr Eye Res. 1996a; 15: 63-71.
    42. Ishikawa A, Ishiguro S, Tamai M. Accumulation of gamma-aminobutyric acid in diabetic rat retinal Müller cells evidenced by electron microscopic immunocytochemistry. Curr Eye Res. 1996b; 15: 958-964.
    43. Saransaari P, Oja SS. Enhanced GABA release in cell-damaging conditions in the adult and developing mouse h ippocampus. Int J Dev Neurosci. 1997; 15:163-174.
    44. Ewing IJ, Deary MW, Strachan BM, et al. Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocrine Reviews. 1998; 4: 462-476.
    45. Li Q, Puro DG. Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells. Invest Ophthalmol Vis Sci. 2002; 43: 3109-3116.
    46.徐朝霞,糜漫天,许红霞.牛磺酸对糖尿病大鼠视网膜的保护作用.中国公共卫生. 2005;21(8):950-952.
    47. Roufail E, Soulis T, Boel E, et al. Depletion of nitric oxide synthase-containing neurons in the diabetic retina: reversal by aminoguanidine. Diabetologia. 1998; 41(12): 1419-1425.
    48. Ripps H, Witkovsky P. Neuron-glia interaction in the brain and retina. In: Chader GG, Osborne NN, eds. Progress in Retina and Eye Research. Oxford: Pergamon Press. 1985; 181-219.
    49. Nork TM, Wallow IH, Sramek SJ, et al. Müller’s cell involvement in proliferative diabetic retinopathy. Arch Ophthalmol. 1987; 105: 1424-1429.
    50. McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000; 5(Suppl 1): 3-10.
    51. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001; 280: 1358-1366.
    52. Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003; 19: 442-455.
    53. Witmer AN, Blaauwgeers HG, Weich HA, et al. Altered expression patterns of VEGFreceptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey. Invest Ophthalmol Vis Sci. 2002; 43: 849-857.
    54. Stone J, Itin A, Alon T, et al. Development of retinal vasculature is mediated by hypoxiainduced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci. 1995; 15: 4738-4747.
    55. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia.Ⅶ. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001; 50: 1938-1942.
    56. Spitaler MM, Graier WF. Vascular targets of redox signaling in diabetes mellitus. Diabetologia. 2002; 45: 476-494.
    57. Geggel H, Ament M, Heckenlively J. Nutritional requirement for taurine in patients receiving long-term, parenteral nutrition. N Engl J Med. 1985; 312: 142-146.
    58. Hayes KC, Carey RE, Schmidt SY. Retinal degeneration associated with taurine deficiency in the cat. Science. 1975; 188: 949-951.
    59. Warskulat U, Flogel U, Jacoby C, et al. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J. 2004; 18: 577-579.
    60. Amira ES, Hany N, Seiji M, et al. Osmoregulation of taurine transporter function and expression in retinal pigment epithelial, ganglion, and Müller cells. Investigative Ophthalmology and Visual Science. 2004; 45:694-701.
    61. Ward MM, Jobling AI, Kalloniatis M, et al. Glutamate uptake in retinal glial cells during diabetes. Diabetologia. 2005; 48(2): 351-360.
    62. Moreno MC, Sande P, Marcos HA, et al. Effect of glaucoma on the retinal glutamate/glutamine cycle activity. FASEB J. 2005; 19(9): 1161-1162.
    63. Berger UV, DeSilva TM, Chen W, et al. Cellular and subcellular mRNA localization of glutamate transporter isoforms GLT1a and GLT1b in rat brain by in situ hybridization. J Comp Neurol. 2005; 492(1): 78-89.
    64. Ward MM, Jobling AI, Puthussery T, et al. Localization and expression of the glutamate transporter, excitatory amino acid transporter 4, within astrocytes of the rat retina. Cell Tissue Res. 2004; 315(3): 305-310.
    65. Harada T, Harada C, Watanabe M, et al. Functions of the two glutamate transportersGLAST and GLT-1 in the retina. Proc Natl Acad Sci USA. 1998; 95(8): 4663-4666.
    66. Rauen T, Taylor WR, Kuhlbrodt K, et al. High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res. 1998; 291(1): 19-31.
    67. Shaked I, Ben-Dror I, Vardimon L. Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina. J Neurochem. 2002; 83: 574-580.
    68. Prada FA, Quesada A, Dorado ME, et al. Glutamine synthetase (GS) activity and spatial and temporal patterns of GS expression in the developing chick retina: relationship with synaptogenesis in the outer plexiform layer. Glia. 1998; 22: 221-236.
    69. Derouiche A, Rauen T. Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res. 1995; 42(1): 131-143.
    70. Bu DF, Erlander MJ, Hitz BC, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci. 1992; 89: 2115-2119.
    71. Behar N, Ma W, Hudson L, et al. Analysis of the anatomical distribution of GAD67 mRNAs encoding truncated glutamic decarboxylase protein in the embryonic rat brain. Dev Brain Res. 1994; 77: 77-87.
    72. Johnson MA, Vardi N. Regional differences in GABA and GAD immunoreactivity in rabbit horizontal cells. Vis Neurosci. 1998; 15: 743-753.
    73. Lee DS, Tian J, Phan T. Cloning and sequence analysis of a murine cDNA encoding glutamate decarboxylase (GAD65). Biochem Biophys Acta. 1993; 1216: 157-160.
    74. Szabo G, Katarova Z, Greenspan R. Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development. Mol Cell Biol. 1994;14: 7535-7545.
    75. Messersmith EK, Redburn DA. Kainic acid lesioning alters outer plexiform layer development in neonatal rabbit retina. Int J Dev Neurosci. 1990; 8: 447-461.
    76. Bringmann A, Skatchkov SN, Pannicke T, et al. Müller glial cells in anuran retina. Microsc Res Tech. 2000; 50(5): 384-393.
    77. Reichenbach A, Faude F, Enzmann V, et al. The Müller (glial) cell in normal and diseased retina: a case for single-cell electrophysiology. Ophthalmic Res. 1997; 29(5):326-340.
    78. Segawa M, Hirata Y, Fujimori S, et al. The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia. Metabolism. 1988; 37: 454-460.
    79. Barber AJ, Nakamura M, Wolpert EB, et al. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-Kinase/Akt-mediated mechanism that reduces the activation of Caspase-3. J Biol Chem. 2001; 276: 32814– 32821.
    80. Carmo A, Cunha JG, Carvalho AP, et al. Nitric oxide synthase activity in retinas from noninsulin-dependent diabetic Goto-Kakizaki rats: correlation with blood-retinal barrier permeability. Nitric Oxide. 2000; 4:590-596.
    81.王越晖,宋鄂,冷瀛,等.兔视网膜Müller细胞原代培养[J ].吉林大学学报:医学版. 2003;29 (3): 367-369.
    82.刘瑶,曾水清,魏厚仁.视网膜Müller细胞的培养.国外医学眼科学分册. 1995;19(1):43-45.
    83. Wakakura M , Foulds WS. Immunocytochem ical characteristics of Muller cells cultured from adult rabbit retina. Invest Oph thalmo Vis Sci. 1988; 29(6): 892-900.
    84. Newman E, Reichenbach A. The Müller cell: a functional element of the retina. Trends Neurosci. 1996; 19: 307-312.
    85. Huxlin KR, Dreher Z, Schulz M, et al. Glial reactivity in the retina of adult rats. Glia. 1995; 15: 105-118.
    86. Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994; 331: 1480-1487.
    87. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes. 1994; 46: 1473-1480.
    88. Aiello LP, Gardner TW, King GL, et al. Diabetic retinopathy. Diabetes Care. 1998; 21: 143-156.
    89. Amin RH, Frank RN, Kennedy A, et al. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 1997; 38: 36- 47.
    90. Antonetti DA, Barber AJ, Khin S, et al. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes. 1997; 47: 1953– 1959.
    91. Arauz-Pacheco C, Ramirez LC, Pruneda L, et al. The effect of the aldose reductase inhibitor, ponalrestat, on the progression of diabetic retinopathy. J Diabetes Complicat. 1992; 6: 131-137.
    92.宋鄂,杨威,崔治华,等.高浓度胰岛素对视网膜Muller细胞VEGF表达的影响. International Journal of Ophthalmology. 2004; 4(2): 201-205.
    93. Gagne J, Milot M, Gelinas S, et al. Binding properties of glutamate receptors in streptozotocin-induced diabetes in rats. Diabetes. 1997; 46: 841-846.
    94. Gardoni F, Kamal A, Bellone C, et al. Effects of streptozotocindiabetes on the hippocampal NMDA receptor complex in rats. J Neurochem. 2002; 80: 438-447.
    95. Kowluru RA, Engerman RL, Case GL, et al. Retinal glutamate in diabetes and effect of antioxidants. Neurochem Int. 2001; 38: 385-390.
    96. Zorumski CF, Olney JW. Excitotoxic neuronal damage and neuropsychiatric disorders. Pharmacol Ther. 1993; 59: 145-162.
    97. Tyler CJ, Fite KV, Devries GJ. Distribution of GAD-like immunoreactivity in the retina and central visual system of Rana pipiens. J Comp Neurol. 1995; 353: 439-450.
    98. Hyde JC, Robinson N. Localisation of sites of GABA catabolism in the rat retina. Nature. 1974; 248: 432-433.
    99. Cubells JF, Blanchard JS, Smith DM. In vivo action of enzyme-activated irreversible inhibitors of glutamic acid decarboxylase and gamma-aminobutyric acid transaminase in retina vs. brain. J Pharmacol Exp Therapeutics. 1986; 238: 508-514.
    100. Davanger OP, Ottersen, Storm-Mathisen J. Glutamate, GABA, and glycine in the human retina: an immunocytochemical investigation. J Comp Neurol. 1991; 311: 483-494.
    101. Han X, Chesney RW, Budreau AM, et al. Regulation of expression of taurine transport in two continuous renal epithelial cell lines and inhibition of taurine transporter by a site-directed antibody. Adv Exp Med Biol. 1996; 403: 173-191.
    102. Heller-Stilb B, van Roeyen C, Rascher K, et al. Disruption of the taurine transportergene (taut) leads to retinal degeneration in mice. FASEB J. 2002; 16: 231-233.
    103. Jayanthi LD, Ramamoorthy S, Mahesh VB, et al. Substrate-specific regulation of the taurine transporter in human placental choriocarcinoma cells (JAR). Biochim Biophys Acta 1995; 1235: 351-360.
    104. Takatani T, Takahashi K, Uozumi Y, et al. Taurine prevents the ischemia-induced apoptosis in cultured neonatal rat cardiomyocytes through Akt/caspase-9 pathway. Biochem Biophys Res Commun. 2004; 316: 484-489.
    105. Yuan LQ, Xie H, Luo XH, et al. Taurine transporter is expressed in osteoblasts. Amino Acids. 2006; 31: 157-163.
    1. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med. 1997; 14 (Suppl 5): 1-85.
    2. Aiello LP, Gardner TW, King GL, et al. Diabetic retinopathy. DiabetesCare. 1998; 21: 143-156.
    3. Engerman RL, Kern TS. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes. 1987; 36: 808-812.
    4. Su E-N, Alder VA, Yu D-Y, et al. Continued progression of retinopathy despite spontaneous recovery to normoglycemia in a long-term study of stretozotocin-induced diabetes in rats. Graefes Arch Clin Exp Ophthalmol. 2000; 238: 163-173.
    5. Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res. 1996; 32: 687-698.
    6. Engerman RL. Pathogenesis of diabetic retinopathy. Diabetes. 1989; 38: 1203-1206
    7. Denis U, Lecomte M, Paget C, et al. Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med. 2002; 33: 236-247.
    8. Nayak RC, Agardh CD, Kwok MG, et al. Circulating anti-pericyte autoantibodies are present in Type 2 diabetic patients and are associated with non-proliferative retinopathy. Diabetologia. 2003; 46: 511-513.
    9. Attawia MA, Nayak RC. Circulating antipericyte autoantibodies in diabetic retinopathy. Retina. 1999; 19: 390-400.
    10. McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000; 5 (Suppl 1): 3-10.
    11. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001; 280: 1358-1366.
    12. Sandercoe TM, Geller SF, Hendrickson AE, et al. VEGF expression by ganglion cells in central retina before formation of the foveal depression in monkey retina: evidence of developmental hypoxia. J Comp Neurol. 2003; 462: 42-54.
    13. Gerhardinger C, Brown LF, Roy S, et al. Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy. Am J Pathol. 1998; 152: 1453-1462.
    14. Rakoczy PE, Brankov M, Fonceca A, et al. Enhanced recombinant adeno-associated virus-mediated vascular endothelial growth factor expression in the adult mouse retina: a potential model for diabetic retinopathy. Diabetes. 2003; 52: 857-863.
    15. Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003; 19: 442-455.
    16. Ogata N, Wada M, Otsuji T, Jet al. Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 2002; 43: 1168-1175.
    17. Aymerich MS, Alberdi EM, Martinez A, et al. Evidence for pigment epithelium-derived factor receptors in the neural retina. Invest Ophthalmol Vis Sci. 2001; 42: 3287-3293.
    18. Nicholls MG, Richards AM, Agarwal M. The importance of the renin-angiotensin system in cardiovascular disease. J Hum Hypertens. 1998; 12: 295-299.
    19. Kato H, Suzuki H, Tajima S, et al. Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertens. 1991; 9: 17-22.
    20. Otani A, Takagi H, Suzuma K, et al. Angiotensin II potentiates endothelial growth factor-induced angiogenic activity in retinal microcapillary endothelial cells. Circ Res. 1998; 82: 619-628.
    21. Danser AHJ, van den Dorpel MA, Deinum J, et al. Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinoapthy. J Clin Endocrinol Metab. 1989; 68: 160-167.
    22. Deinum J, Derkx FH, Danser AH, et al. Indentification and quantification of renin and prorenin in the bovine eye. Endocrinol. 1990; 126: 1673-1682.
    23. Berka JL, Stubbs AJ, Wang DZ-M, et al. Renin-containing Müller cells of the retina display endocrine features. Invest Ophthalmol Vis Sci. 1995; 36: 1450-1458.
    24. Tout S, Chan-Ling T, Hollander H, et al. The role of Müller cells in the formation of the blood-retinal barrier. Neuroscience. 1993; 55: 291-301.
    25. Makita Z, Radoff S, Rayfield EJ, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991; 325: 836-842.
    26. Xia P, Aiello LP, Ishii H, et al. Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest. 1996; 98: 2018-2026.
    27. Bloodworth JM Jr. Diabetic retinopathy. Diabetes. 1962; 11: 1-22.
    28. Barber AJ, Lieth E, Khin SA, et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998; 102: 783-791.
    29. Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, Oh SJ. Apoptotic death of photoreceptors in the streptozotocininduced diabetic rat retina. Diabetologia. 2003; 46: 1260-1268.
    30. Martin PM, Roon P, Van Ells TK, et al. Death of retinal neurons in streptozotocin-induced diabetic mice. Invest Ophthalmol Vis Sci. 2004; 45: 3330-3336.
    31. Granit R. Components of the retinal action potential in mammals and their relations to the discharge in the optic nerve. J Physiol (Lond). 1933; 77: 207-238.
    32. Yonemura D, Aoki T, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthalmol. 1962; 68: 19-24.
    33. Verrotti A, Lobefalo L, Petitti M T, et al. Relationship between contrast sensitivity and metabolic control in diabetics with and without retinopathy. Ann Med. 1998; 30: 369-374.
    34. Ripps H, Witkovsky P. Neuron-glia interaction in the brain and retina. In: Chader GG, Osborne NN, eds. Progress in Retina and Eye Research. Oxford: Pergamon Press. 1985; 181-219.
    35. Nork TM, Wallow IH, Sramek SJ, et al. Müller’s cell involvement in proliferativediabetic retinopathy. Arch Ophthalmol. 1987; 105: 1424-1429.
    36. Lieth E, Barber AJ, Xu B, et al. Glial reactivity and impaired glutamate metabolism in shortterm experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998; 47: 815-820.
    37. Rungger-Br?ndle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2000; 41: 1971-1980.
    38. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci. 2000; 41: 3561-3568.
    39. Ambati J, Chalam KV, Chawla DK, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol. 1997; 115: 1161-1166.
    40. Li Q, Puro DG. Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells. Invest Ophthalmol Vis Sci. 2002; 43: 3109-3116.
    41. Ward MM, Jobling AI, Kalloniatis M, et al. Glutamate uptake in retinal glial cells during diabetes. Diabetologia. 2005; 48: 351-360.
    42. Ishikawa A, Ishiguro S, Tamai M. Accumulation of gamma-aminobutyric acid in diabetic rat retinal Müller cells evidenced by electron microscopic immunocytochemistry. Curr Eye Res. 1996; 15: 958-964.
    1. Huxtable RJ. Physiological actions of taurine. Physiol Rev. 1992; 72: 101-163.
    2. Hayes K, Rabin A, Berson E. An ultrastructure study of nutritionally induced and reversed retinal degeneration in cats. Am J Path. 1975; 78: 505-509.
    3. Hayes K, Sturman JA. Taurine in metabolism. Annu Rev Nutr. 1981; 1: 401-425.
    4. Geggel HS, Ament M, Heckenlively JR, et al. Nutritional requirement for taurine in
    5. patients receiving long-term parenteral nutrition. N Engl J Med. 1985; 312: 142-146.
    6. Heller-Stilb B, van Roeyen C, Rascher Ket al. Disruption of the taurine transporter gene (taurinet) leads to retinal degeneration in mice. FASEB J. 2001;10.1096/fj01-0691fje.
    7. Reccia R, Pignalosa B, Grasso A, et al. Taurine treatment in retinitis pigmentosa. Acta Neurol. 1980; 2: 132-136.
    8. Pasantes-Morales H, Quiroz H, Quesada O. Treatment with taurine, diltiazem and vitamin E retards the progressive visual field reduction in retinitis pigmentosa: A 3 years follow-up study. Metab Brain Dis. 2002; 17: 183-197.
    9. Pion PD, Kittleson MD, Rogers QR, et al. Myocardial failure in cats associated with low plasma taurine: A reversible cardiomyopathy Science. 1987; 237: 764-768.
    10. Pion PD, Sanderson SL, Kittelson MD. The effectiveness of taurine and levocarnitine in dogs with heart disease. Vet Clin North Am Small Anim Pract. 1998; 28: 1495-1514.
    11. Lake N. Loss of cardiac myofibrils: Mechanism of contractile deficits induced by taurine deficiency. Am J Physiol. 1993; 264: 1323-1326.
    12. vom Dahl S, Monnighoff I, Haussinger D. Decrease of plasma taurine in Gaucher disease and its substained correction during enzyme replacement therapy. Amino Acids. 2000; 19: 585-592.
    13. Franconi F, Bennardini F, Mattana A et al. Plasma and platelet taurine are reduced in subjects with insulindependent diabetes mellitus: Effects of taurine supplementation. Am J Clin Nutr. 1995; 61:1115-1119.
    14. Franconi F, Miceli M, Fazzini A, et al. Taurine and diabetes mellitus: Human and experimental models. Adv Exp Med Biol. 1996; 403: 579-582.
    15. De Luca G, Calpona PR, Caponetti A, et al. Taurine and osmoregulation: Platelet taurine content, uptake, and release in type 2 diabetes mellitus. Metabolism. 2001;50:60-64.
    16. Airaksinen EM, Airaksinen MM, Sihvola P, et al. Decrease in the uptake and concentration of taurine in blood platelets of retinitis pigmentosa patients. Metab Pediatr Ophthalmol. 1981; 5: 45-48.
    17. Hansen SH. The role of taurine in diabetes mellitus and development of diabetic complications. Diabetes Metab Res Rev. 2001; 17: 330-346.
    18. Bustamante J, Lobo MVT, Alonso FJ, et al. An osmotic-sensitive taurine pool is localized in rat pancreatic islet cells containing glucagon and somatostatin. Am J Physiol Endocrinol Metab. 2001; 281: E1275-E1285.
    19. Cherif H, Reusens B, Dahri S, et al. Stimulatory effects of taurine on the insulin secretion of fetal rat islets cultured in vitro. J Endocrinol. 1996; 151: 501-506.
    20. Cherif H, Reusens B, Ahn MT, et al. Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J Endocrinol. 1998; 159: 341-348.
    21. Goodman HO, Shihabi ZK. Supplemental taurine in diabetic rats: Effect on plasma glucose and triglycerides. Biochem Med Metab Biol. 1990; 43: 1-9.
    22. Di Leo MAS, Ghirlanda G, Gentiloni Silveri N, et al. Potential therapeutic effect of antioxidants in experimental diabetic retina: A comparison between chronic taurine and vitamin E plus selenium supplementations. Free Radic Res. 2003; 37: 323-330.
    23. Nakaya Y, Minami A, Haradica N, et al. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima fatty rat, a model of spontaneous type 2 diabetes mellitus. Am J Clin Nutr. 2000; 71: 54-58.
    24. Odetti P, Pesce C, Traverso N, et al. Comparative trial of N-acetyl-cysteine, taurine, and oxerutin on skin and kidney damage in long-term experimental diabetes. Diabetes. 2002; 52: 499-505.
    25. Trachtman H, Futterweitt S, Prenner J, et al. Antioxidants reverse the antiproliferative effect of high glucose and advanced glycosylation end products in cultured rat mesangial cells. Biochem Biophys Res Commun. 1994;199: 346-352.
    26. Milei JR, Ferreira R, Llesuy S, et al. Reduction of reperfusion injury with preoperative rapid intravenous infusion of taurine during myocardial revascularization. Am Heart J. 1992; 123: 339-345.
    27. Tadolini B, Pintus G, Pinna, et al. Effect of taurine and hypotaurine on lipidperoxidation. Biochem Biophys Res Commun. 1995; 213: 820-826.
    28. Weiss SJ, Klein R, Slivka A, et al. Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation. J Clin Invest. 1982; 70: 598-607.
    29. Zglinczynski JM, Stelmaszynka T, Domasnski J, et al. Chloramines as intermediate of oxidation reaction of amino acids by myeloperoxidase. Biochim Biophys Acta. 1971; 233: 419-424.
    30. Cantin A. Taurine modulation of hypochlorous acid-induced lung epithelial cell injury in vitro. J Clin Invest. 1994; 93: 606-614.
    31. Kearns S, Dawson R. Cytoprotective effect of taurine against hypochlorous acid toxicity to PC12 cells. Adv Exp Med Biol. 2000; 483: 563-570.
    32. Raschke P, Massoudy P, Becker BF. Taurine protects the heart from neutrophil-induced reperfusion injury. Free Radic Biol Med. 1995; 19: 461-471.
    33. Cunningham C, Tipton KF, Dixon HBF. Conversion of taurine into N-chloramine (taurine chloramine) and sulphoacetaldehyde in response to oxidative stress. J Biochem. 1998; 330: 939-945.
    34. Marcinkiewicz J, Grabowska A, Bereta J, et al. Taurine chloramines, a product of activated neutrophils, inhibits the generation of nitric oxide and other macrophage inflammatory mediators. J Leukoc Biol. 1995; 58: 667-674.
    35. Liu Y, Tonna-DeMaise M, Park E, et al. Taurine chloramine inhibits production of nitric oxide and prostaglandin E2 in activated C6 glioma cells by suppressing inducible nitric oxide synthase and cyclooxygenase-2 expression. Mol Brain Res. 1998; 59: 189-195.
    36. Park E, Jia J, Quinn MR, et al. Taurine chloramine inhibits lymphocyte proliferation and decreases cytokine production in activated human leukocytes. Clin Immunol. 2002; 102: 179-184.
    37. Ogino T, Kobuchi H, Sen CK, et al. Monochloramine inhibits phorbol esterinducible neutrophil respiratory burst activation and T cell interleukin-2 receptor expression by inhibiting inducible protein kinase C activity. J Biol Chem. 1997; 272: 26247-26252.
    38. Murakami S, Yamagishi I, Asami Y, et al. Hypolipidemic effect of taurine in stroke-prone spontaneously hypertensive rats. Pharmacology. 1996; 52: 303-313.
    39. Murakami S, Kondo-Ohta Y, Tomisawa K. Improvement in cholesterol metabolism inmice given chronic treatment of taurine and fed a high-fat diet. Life Sci. 1999; 64: 83-91.
    40. Balkan J, Kanbagli O, Hatipoglu A, et al. Improving effect of dietary taurine supplementation on the oxidative stress and lipid levels in the plasma, liver and aorta of rabbits fed on a high-cholesterol diet. Biosci Biotechnol Biochem. 2002; 66: 1755-1758.
    41. Yokogoshi H, Oda H. Dietary taurine enhances cholesterol degradation and reduces serum and liver cholesterol concentrations in rats fed a high-cholesterol diet. Amino Acids. 2002; 23: 433-439.
    42. Petty MA, Kintz J, DiFrancesco GF. The effects of taurine on atherosclerosis development in cholesterol fed rabbits. Eur J Pharmacol. 1990; 180: 119-127.
    43. Murakami S, Kondo Y,Toda Y, et al. Effect of taurine on cholesterol metabolism in hamsters: Up-regulation of low density lipoprotein (LDL) receptor by taurine. Life Sci. 2002; 70: 2355-2366.
    44. Franconi F, Martini F, Stendardi I, et al. Effect of taurine on calcium levels and contractility in guinea-pig ventricular strips. Biochem Pharmacol. 1982; 31: 3181-3187.
    45. Vilchis C, Salceda R. Effect of diabetes mellitus on levels and uptake of putative amino acid neurotrasmtitters in rat retina and retinal pigment epithelium. Neurochem Res. 1996; 21: 1167-1171.
    46. Di Leo MAS, Santini SA, Cercone S, et al. Chronic taurine supplementation ameliorates oxidative stress and Na-K-ATPase impairment in the retina of diabetic rats. Amino Acids. 2002; 23: 401- 406.
    1. Amos AF, McCarty DJ, Zimmet P (1997) The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 14:51-85
    2. Klein R, Klein BEK (1995) Vision Disorders in Diabetes. National Diabetes Data Group Diabetes in America. NIH, Bethesda, MD 293-337
    3. Klein R, Klein BE, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy: II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520-526
    4. Aiello LM (2003) Perspectives on diabetic retinopathy. Am J Ophthalmol 136:122-135
    5. Klein BE, Klein R, Moss SE et al (1995) A cohort study of the relationship of diabetic retinopathy to blood pressure. Arch Ophthalmol 113:601-606
    6. Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 104:989-990
    7. Mizutani M, Gerhardinger C, Lorenzi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47:445-449
    8. Lieth E, Gardner TW, Barber Ajet al (2000) Retinal neurodegeneration:early pathology in diabetes. Clin Exp Ophthalmol 28:3-8
    9. Della Sala S, Bertoni G, Somazzi L et al (1985) Impaired contrast sensitivity in diabetic patients with and without retinopathy: a new technique for rapid assessment. Br J Ophthalmol 69:136-142
    10. Bresnick GH, Palta M (1987) Oscillatory potential amplitudes: relation to severity of diabetic retinopathy. Arch Ophthalmol 105:929-933
    11. Juen S, Kieselbach GF (1990) Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 108:372-375
    12. Lieth E, Barber AJ, Xu B et al (1998) Glial reactivity and impaired glutamate metabolism in shortterm experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 47:815-820
    13. Rungger-Br?ndle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41:1971-1980
    14. Barber AJ, Antonetti DA, Gardner TW (2000) Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci 41:3561-3568
    15. Sone H, Kawakami Y, Okuda Y, Sekine Y, Honmura S, Matsuo K, Segawa T, Suzuki H, Yamashita K (1997) Ocular vascular endothelial growth factor levels in diabetic rats are elevated before observable retinal proliferative changes. Diabetologia 40:726-730
    16. Hofman P, Blaauwgeers HG, Vrensen GF et al (2001) Role of VEGF-A in endothelial phenotypic shift in human diabetic retinopathy and VEGF-A-induced retinopathy in monkeys. Ophthalmic Res 33:156-162
    17. Boulton M, Foreman D, Williams G et al (1998) VEGF localisation in diabetic retinopathy. Br J Ophthalmol 82:561-568
    18. Amin RH, Frank RN, Kennedy A et al (1997) Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with non-proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 38:36-47
    19. Ng YK, Zeng XX, Ling EA (2004) Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin- induced diabetic rats. Brain Res 1018:66-72
    20. Li Q, Puro DG (2002) Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells. Invest Ophthalmol Vis Sci 43:3109-3116
    21. Diederen RM, La Heij EC, Deutz NE (2006) Increased glutamate levels in the vitreous of patients with retinal detachment. Exp Eye Res 83:45-50
    22. Kalloniatis M, Tomisich G (1999) Amino acid neurochemistry of the vertebrate retina. Prog Retin Eye Res 18:811-866
    23. Ehinger B (1977) Glial and neuronal uptake of GABA, glutamic acid, glutamine and glutathione in the rabbit retina. Exp Eye Res 25:221-234
    24. Thurston JH, Hauhart RE, Dirgo JA (1980) Taurine: A role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 26:1561-1568
    25. Bernardi N (1985) On the role of taurine in the cerebellar cortex: a reappraisal. Acta Physiol Pharmacol Ther Latinoam 35:153-164
    26. Kuriyama K (1980) Taurine as a neuromodulator. Fed Proc 39:2680-2684
    27. Pasantes-Morales H, Wright CE, Gaull GE (1985) Taurine protection of lymphoblastoid cells from iron-ascorbate-induced damage. Biochem Pharmacol 34:2205-2207
    28. Nakamura T, Ogasawara M, Nemoto M et al (1993) The protective effect of taurine on the biomembrane against damage produced by oxygen radicals. Biol Pharm Bull 16:970-972
    29. Kaplan B, Karabay G, Za?yapan RD et al (2004) Effects of taurine in glucose and taurine administration. Amino Acids 27:327-333
    30. Di Leo MAS, Santini SA, Cercone S et al (2002) Chronic taurine supplementation ameliorates oxidative stress and Na-K-ATPase impairment in the retina of diabetic rats. Amino Acids 23:401-406
    31. Hansen SH (2001) The role of taurine in diabetes mellitus and development of diabetic complications. Diabet Metab Res Rev 17:330-346
    32. Franconi MAS, Di Leo F, Bennardini G et al (2004) Is taurine beneficial in reducing risk factors for diabetes mellitus? Neurochem Res 29:143-150
    33. Franconi A, Loizzo G, Ghirlanda G et al (2006) Taurine supplementation in diabetes mellitus. Curr Opin Clin Nutr Metab Care 9:32-36
    34. Di Leo MAS, Ghirlanda G, Gentiloni Silveri N et al (2003) Potential therapeutic effect of antioxidants in experimental diabetic retina: A comparison between chronic taurine and vitamin E plus selenium supplementations. Free Radic Res 37:323-330
    35. De Luca G, Calpona PR, Caponetti A et al (2001) Taurine and osmoregulation: Platelet taurine content, uptake, and release in type 2 diabetes mellitus. Metabolism 50:60-64
    36. Yu XP, Chen K, Wei N et al (2007) Dietary taurine reduces retinal damage produced by photochemical stress via antioxidant and anti-apoptotic mechanisms in Sprague-Dawley rats. Br J Nutr 98:711-719
    37. Yu XP, Xu ZX, Mi MT et al (2008) Dietary taurine supplementation ameliorates diabetic retinopathy via anti-excitotoxicity of glutamate in streptozotocin-induced sprague-dawley rats. Neurochem Res 33:500-507
    38. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 23:1939-1951
    39. Rauen T, Taylor WR, Kuhlbrodt K et al (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res 291:19-31
    40. Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101-163
    41. Hayes K, Rabin A, Berson E (1975) An ultrastructure study of nutritionally induced and reversed retinal degeneration in cats. Am J Path 78:505-509
    42. Odetti P, Pesce C, Traverso N et al (2002) Comparative trial of N-acetyl-cysteine, taurine, and oxerutin on skin and kidney damage in long-term experimental diabetes. Diabetes 52:499-505
    43. Asnaghi V, Gerhardinger C, Hoehn T et al (2003) A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 52:506-511
    44. Tout S, Chan-Ling T, Hollander H et al (1993) The role of Müller cells in the formation of the blood-retinal barrier. Neuroscience 55:291-301
    45. Rauen T, Rothstein JD, Wassle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325-336
    46. Pow DV, Robinson SR (1994) Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60:355-366
    47. Pow DV, Crook DK (1996) Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: use of specific antibodies directed against the d-stereoisomers of glutamate and glutamine. Neuroscience 70:295-302
    48. Ward MM, Jobling AI, Kalloniatis M et al (2005) Glutamate uptake in retinal glial cells during diabetes. Diabetologia 48:351-360
    49. Ishikawa A, Ishiguro S, Tamai M (1996) Changes in GABA metabolism in streptozotocininduced diabetic rat retinas. Curr Eye Res 15:63-71
    50. Ishikawa A, Ishiguro S, Tamai M (1996) Accumulation of gamma-aminobutyric acid in diabetic rat retinal Müller cells evidenced by electron microscopic immunocytochemistry. Curr Eye Res 15:958-964