铸钢表面镍基渗层的负压铸渗工艺及其摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温氧化磨损是一类苛刻工况下材料的典型失效形式。采用高温耐磨材料制备这些工况条件下使用的零部件,成本高,其表面高温耐磨性能提高的同时,韧性往往大幅降低。表面工程方法能够在满足基体韧性的同时获得表面高温耐磨性能。但是,常规的表面工程方法都是在工件成型后的二次表面涂层制备技术,额外消耗能源,并可能引起工件变形,表面强化层难以与基体实现冶金结合,附着强度有限,制约工件性能提高。
     “铸渗”是将表面改性处理融合到金属部件的铸造过程中,在工件铸造成型过程中实现表面强化,已经成为提高铸钢工件高温磨损性能的有效技术之一。“铸渗”具有工艺方法简捷、不需要专用设备、生产周期短、成本低、零件不变形等优势。不仅节能降耗,而且表面渗层与基体结合强度高,是一种表面功能层与铸件-次成型的新型复合制造技术。
     本文以钢材热轧制生产线重要辅助装置导卫板为对象,针对其在高温环境下诱导、夹持轧制件,与高温被轧制材料相互摩擦,严重磨损破坏的特征,研究开发适合ZG45基体的耐磨、耐高温氧化的镍基合金渗层和Ni/ZrO2复合渗层负压铸渗工艺,在本工艺研究中结合常规的涂料法和膏块法的优点提出了涂膏工艺,并利用涂膏工艺制备出质量良好的表面合金及复合渗层,科技成果查新表明:在铸钢表面渗层制备中未见有采用涂膏法制备预制层的相关科技报道与专利报道;采用表面形貌分析、表面化学成分分析、表面结构分析、材料力学性能测试等多种方法,对镍基合金渗层和Ni/ZrO2复合层的表面形貌、粗糙度、相结构与成分、硬度、渗层与基体的结合强度等进行了科学表征,研究了负压铸渗渗层的形成机理;通过镍基合金渗层和Ni/ZrO2复合层的常温和高温摩擦学试验,探讨了负压铸渗镍基合金渗层和Ni/ZrO2复合层制备工艺及其对常温与高温摩擦学性能的影响;实现了负压铸渗镍基复合层在导卫板的工程应用,实际使用获得良好效果,使用寿命比原有导卫板提高2-3倍。
     研究发现:ZG45表面镍基合金渗层的相组成主要为Ni-Cr-Fe, Cr-Ni, FeNi, Ni B。渗层表面宏观硬度达HRC58.6,镍基合金渗层从渗层到基体的显微硬度呈梯度分布,渗层的最高硬度出现在亚表层。渗层与基体具有很好的协调变形能力,破坏时弯曲强度为80.23MPa。镍基合金渗层的体积磨损率是随着温度的升高而增加,在各个温度下,耐磨性高于基体ZG45,渗层的摩擦系数均小于基体的摩擦系数。
     ZG45表面Ni/ZrO2复合层的相组成主要为ZrO2、Cr2B、NiB、NiFe以及固溶体。表面宏观硬度可达HRC60-64,高于镍基合金渗层,显微硬度呈梯度变化,最高硬度出现在亚表层。Ni/ZrO2复合渗层与基体具有很好的变形协调性,出现类似屈服的现象,对应的弯曲强度为66.3MPa,比相同条件下基体的弯曲强度提高42%,渗层破坏的弯曲强度为87.6MPa。以GCr15为对偶件室温摩擦条件下,复合渗层的体积磨损仅为基体材料的4.6%;以Si3N4为对偶件不同温度条件下,随温度升高,复合渗层的磨损增大,摩擦系数降低;在各个温度下15%ZrO2渗层的耐磨性优于10%ZrO2渗层的耐磨性。
     高温环境下,渗层表面金属与氧反应生成氧化膜参与了摩擦过程而改变了磨损性质,同时,镍基合金渗层与Ni/ZrO2复合渗层的耐高温性能优于基体的耐高温性能,因此,高温摩擦磨损性能得到提高。高温条件下的材料的摩擦磨损性能是高温氧化与摩擦磨损的交互作用的结果。
     基于预制层毛细管内基体金属液流动的计算分析,提出了影响镍基渗层形成以及镍基渗层厚度的主要因素(毛细管两端的压差P、毛细管半径R、液态金属的粘度η以及金属液保持液态的时间t),提出了铸钢表面镍基渗层的形成过程物理模型,即:液态金属的渗入过程+渗层的致密化过程。镍基合金渗层的形成属于完全熔化冶金熔合机制,而Ni/ZrO2复合渗层的形成属于合金粉末冶金熔化包覆不熔陶瓷颗粒的复合层形成机制。
     以导卫板作为应用研究对象,开展的铸钢表面铸渗的初步应用研究试验发现:浇注温度和预制层的涂挂工艺是影响ZG45表面渗层形成以及渗层质量的主要因素,为表面铸渗技术在其它铸钢零部件上的应用奠定了基础。
The oxidation and wear was the main failure form for materials under elevated temperature, high speed and over loading rigorous conditions. These parts fabricated using wear-resisting materials could meet the requirement for wear resistance under elevated temperature. But the toughness of materials would be decreased obviously, which could not meet the basal toughness requirement for structural materials. However these parts could not meet the whole service propeties and the cost of the materials are high, which resulted in their service life could not be prolonged. The surface engineering technology was good method for setting this kind of problem. These surface technologies were carried out after the parts forming. The sources of energy would be expended additionally and the deformation was concomitant during the fabrication of surface coating. The surface properties were finite owing to the mechanical bond between the surface coatings and substrate.
     The infiltration technique is a novel process for producing surface materials. The surface infiltrated layer was obtained during the casting process using the superheat of pouring melt and the latent heat during solidification. The infiltration casting technology has become a kind effectual technology for improving the surface properties of casting steel. It has potential advantages to achieve a near-net shape product in a simple and cost effective manner, widely select the substrate, and have good bonding between the surface layer and substrate.
     Guide plate is an important accessory for steel line rolling production, which mainly used for booting and carrying the steel wire passed the rolling equipment. On the actual production line, the abrasion of guide plate is very serious. Based on the special working conditions of guide plate, guide plate material has become really important for innovation and improvement. In this paper, a wear-resistant and high temperature oxidation-resistance of the infiltrated Ni based alloying infiltrated layer and Ni/ZrO2 infiltrated composite layer were fabricated on the ZG45 surface through vacuum infiltration casting technique. The washing pasty technics was put forward on the bassis of the merit of coating and pasty was combined. The surface infiltrated layer or composite layer was fabricated using washing pasty technics on the cast steel substrate. The novelty checking report results show that this technics have no correlative reports during the process of fabricating infiltrated layer on cast steel surface.The surface appearance of infiltrated layer, micro-structure of infiltrated layer, hardness of infiltrated layer, the binding strength between the surface infiltrated layer and substrate were investigated by using all kinds of analysis methods. The wear behaviour of infiltrated layer was studied by using ordinary temperature friction tester under room temperature and high temperature. The application of Ni-based infiltrated layer on the guide plate was realized, and the application effect was good. The service life of guide plate with infiltrated layer was improved by 2-3 times.
     The results show that the major phase of the Ni based infiltrated layer were Ni-Cr-Fe, Cr-Ni, FeNi and NiB. The macro-hardness of infiltrated layer reached HRC58.6. The distribution of micro-hardness of the Ni based infiltrated layer presents the gradient variation from surface of infiltrated layer to substrate. The micro-hardness reached the maximum value at the sub-surface of infiltrated layer. Three point bending tests suggest that the infiltrated layer could deform accommodating with the deformation of substrate while bending. The binding strength was 80.23 MPa when the infiltrated layer failed. The results show that wear rate of infiltrated layer increased with the increasing testing temperature. The wear resistance of infiltrated layer was excellent than that of the ZG45. The friction coefficient of infiltrated layer was less than that of substrate under any temperature conditions.
     Ni/ZrO2 composite infiltrated layer was composed of ZrO2、Cr2B、NiB、NiFe and solid solution. The macro-hardness could reach HRC60 to HRC64 that was much higher than that of the substrate. The micro-hardness presents gradient changes from the surface of infiltrated composite layer to substrate, and the maximum happened at the sub-surface of the whole infiltrated layer. The composite infiltrated layer could deform accommodating with the deformation of substrate. The yielding phenomenon appeared during the bending process, and the bending strength was 66.3MPa when the yielding phenomenon happened that was 42% higher than that of the substrate. The bending strength was 87.6 MPa when the infiltrated layer failed. The wear rate of composite infiltrated layer was 4.6% of wear rate of ZG45.The wear performance at high temperature condition was investigated using SisN4 as counterbody. The wear rate increased and the friction coefficient decreased with the increasing temperature. The wear resistance of Ni/ZrO2 composite infiltrated layer with 15% content was superior to that of Ni/ZrO2 composite infiltrated layer with 10% content under any temperature conditions.
     During the wearing process under elevated temperature, the oxidation would happen and the oxides changed the surface circumstance, which made a decision about the wear performance. The performance of infiltrated layer and composite infiltrated layer was better than that of ZG45 under elevated temperature. The wear performance was improved comparing with the substrate ZG45. The oxidation interacted with wear under elevated temperature condition, which decided the wear performance of infiltrated layer.
     The main influencing parameters include the pressure difference between the entrance and exit of capillary, the radius of capillary, the viscosity of liquid metal and the holding liquid time for substrate through analyzing the flow of metal liquid among the capillary of preform. The processes maybe include two steps. One was the infiltration of ZG45 melt liquid, and the second was the compacting process of infiltrated layer. The Ni-based infiltrated layer belongs to metallurgical infiltrated layer, and the Ni/ZrO2 infiltrated layer belong to that the Ni-based powder melted and surrounded the ZrO2 ceramic particles.
     The vacuum infiltration casting technology has been applied on the guide plate for obtaining excellent surfacial modification. The results investigated that the main processing parameters affecting the infiltrated layer are pouring temperature and processing technique of preformed layer. This would be the foundation for the application of this technology on other parts.
引文
[1]蒲小聪,林金辉,禾苗.高温金属基复合材料的研究进展[J].热加工工艺,2009,(10):118-121.
    [2]孙希泰.材料表面强化技术[M],北京:化学工业出版社,2005,1-10
    [3]李文虎.铸渗法制备金属表面涂层的研究现状与进展[J].热加工工艺,2009,(17):17~20.
    [4]李志明,钱士强,王伟,等.电刷镀Ni-P合金镀层的高温摩擦磨损性能[J].上海工程技术大学学报,2010,(1):78-82.
    [5]秦泗栋,王树奇,鞠新庆,等.钢表面铸渗烧结涂层的研究[J].表面技术,2009,(04):60-62.
    [6]Devicharan Chidambarama, Clive R. Claytona, Mitchell R. Dorfman, Evaluation of the electrochemical behavior of HVOF-sprayed alloy coatings—Ⅱ [J], Surface & Coatings Technology 192 (2007) 278~283
    [7]Y.S. Tian, C.Z. Chen, S.T. Li, Q.H. Huo, Research progress on laser surface modification of titanium alloys [J], Applied Surface Science 242 (2008):177~184
    [8]A. Perez del Pino, P. Serra, J.L. Morenza, Oxidation of titanium through Nd:YAG laser irradiation [J], Appl. Surf. Sci.197-198 (2002) 887
    [9]L. Lavisse, D. Grevey, C. Langlade, B. Vannes, Early stage of the laser-induced oxidation of titanium substrates [J], Appl. Surf. Sci.186(1~4)(2002) 150
    [10]T.M. Yue, J.K. Yu, Z. Mei, H.C. Man, Excimer laser surfacetreatment of Ti-6A1-4V alloy for corrosion resistance enhancement [J], Mater. Lett.52 (3) (2002)206
    [11]Z. Sun, I. Annergren, D. Pan, T.A. Mai, Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet [J], Mater. Sci. Eng. A 345 (2003) 293
    [12]E.Gyorgy, A. Perezdel Pino,P.Serra,J.L.Morenza, Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen [J], Surf. Coat. Technol,173 (2~3) (2003) 265
    [13]M.S. Selamat, T.N. Baker, L.M. Watson, Study of the surface layer formed by the laser processing of Ti-6A1-4V alloy in a dilute nitrogen environment [J], J. Mater. Process. Technol,113(1-3) (2001) 509
    [14]贾玉丰,谢敬佩,王文焱,等.铸造钢铁基表面复合材料的研究及其进展[J]. 加工工艺,2009,(07):59-62,65
    [15]H.B. Chen, Q.Q. Luo, Study on laser gas alloying for titanium alloy [J], Laser J.18 (3) (1997) 32
    [16]H.C. Man, Z.D. Cui, T.M. Yue, F.T. Cheng, Cavitation erosion behavior of laser gas nitrided Ti and Ti6A14Valloy [J], Mater. Sci. Eng. A,355 (2008) 167
    [17]Y. Li, L. Qu, F.H. Wang, The electrochemical corrosion behavior of TiN and (Ti, A1)N coatings in acid and salt solution [J], Corros. Sci.45 (7) (2009) 1367
    [18]H.W. Wang, M.M. Stack, Corrosion of PVD TiN coatings under simultaneous erosion in sodium carbonate/bicarbonate buffered slurries [J], Surf. Coat. Technol. 105 (1-2) (1998) 141
    [19]C.K. Sha, J.C. Lin, H.L. Tsai, The impact characteristics of Ti-6A1-4V plates hard facing by laser alloying NiAl+ZrO2 powder [J], J. Mater. Process. Technol.140 (1~3) (2003)197
    [20]J.D. Majumdar, B.L. Mordike, I. Manna, Friction and wear behavior of Ti following laser surface alloying with Si, Al and Si+A1[J], Wear 242 (1-2) (2000) 18
    [21]M.S. Selamat, L.M.Watson, T.N. Baker, XRD and XPS studies on surface MMC layer of SiC reinforced Ti-6A1-4V alloy [J], J. Mater. Process. Technol.(2007), 142(3),725
    [22]P. Jiang, J.J. Zhang, G.L. Yu, H.M. Wang, Wear-resistant Ti5Si3/Ti composite coatings made by laser alloying [J], Rare Metal Mater. Eng.29 (4) (2007) 269 (in Chinese)
    [23]S. Mridha, T.N. Baker, Metal matrix composite layer formation with 3 mm SiCp powder on IMI318 titanium alloy surfaces through laser treatment [J], J. Mater. Process. Technol.63 (1~3) (1997) 432
    [24]Y. Chen, H.M. Wang, Microstructure and high-temperature wear resistance of a laser surface alloyed g-TiAl with carbon [J], Appl. Surf. Sci.220 (2009) 186
    [25]Y.S. Tian, C.Z. Chen, D.Y.Wang, Y. Xu, T.Q. Lei, Analysis on the growth mechanism of TiC crystals and the mechanical properties of the laser surface alloyed layers on pure titanium [J], Laser Technol.6 (28) (2007) 504
    [26]R.L. Sun, J.F. Mao, D.Z. Yang, Microstructural characterization of NiCrlBSiC laser clad layer on titanium alloy substrate [J], Surf. Coat. Technol.150(2-3) (2002) 199
    [27]R.L. Sun, J.F. Mao, D.Z. Yang, Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC-TiC layer on titanium alloy substrate [J], Surf. Coat. Technol.155 (2~3) (2009)203
    [28]R.L. Sun, D.Z. Yang, L.X. Guo, S.L. Dong, Laser cladding of Ti-6A1-4V alloy with TiC and TiC+NiCrBSi powders [J], Surf. Coat. Technol.135 (2~3) (2001) 307
    [29]R.L. Sun, D.Z. Yang, L.X. Guo, S.L. Dong, Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate [J], Surf. Coat. Technol.132 (23)(2009)251
    [30]H.M. Wang, Y.F. Liu, Microstructure and wear resistance of laser clad Ti5Si3/NiTi2 intermetallic composite coating on titanium alloy [J], Mater. Sci. Eng. A 338 (2008) 126
    [31]Y. Wang, H.M. Wang, Wear resistance of laser clad Ti2Ni3Si reinforced intermetallic composite coatings on titanium alloy [J], Appl. Surf. Sci.229 (2007) 81.
    [32]P. Li, Y.R. Deng, Transition-zone microstructure of Ti alloy surface melted ZrO2 by laser [J], Rare Metal Mater. Eng.24 (5) (1995) 17
    [33]P. Li, Y.R. Deng, Microstructure of ceramic coating of laser coating ZrO2 on titanium alloy [J], Rare Metal Mater. Eng.24 (4) (1995) 19
    [34]S. Zhang, W.T. Wu, M.C. Wang, H.C. Man, In-situ synthesisand wear performance of TiC particle reinforced composite coating on alloy Ti6A14V [J], Surf. Coat. Technol.138 (1),(2006) 95
    [35]Y.S. Tian, C.Z. Chen, D.Y. Wang, Z.L. Wang, Study on microstructures and mechanical properties of in-situ formed multiphase coating by laser cladding of titanium alloy with silicon and graphite powders [J], China. J. Lasers 31 (7) (2004) 1
    [36]王渠东,丁文江,金俊泽.离心铸造复合材料的研究与发展[J].材料导报,1998,12(3):61~67
    [37]孟德权,高崭,张伟强.铸渗工艺对刮板输送机铲板组织和性能的影响[J].煤炭学报,2009,(10):1416-1419.
    [38]Davis K G, Magay J G. Cast-in-place hardfacing [J]. AFS Trans,1981,89:385 402
    [39]伊新.材料表面铸渗技术的应用与发展[J].热处理技术与装备,2008,(06):9~10,27.
    [40]蔡志海,张平,牛庆银,等.多弧离子镀CrN x涂层的工艺与摩擦磨损性能[J].装甲兵工程学院学报,2009,(3):77-80.
    [41]李彦明,刘忆,时海芳,等.低铬铸铁铸渗WC颗粒的工艺研究[J].热加工艺,2008,(03):93~95.
    [42]曾绍连,李卫.碳化钨增强钢铁基耐磨复合材料的研究和应用[J].特种铸造及有色合金,2007,(06):441~444,407.
    [43]范兴平,魏晓伟.球磨机衬板表面铸渗工艺的优化[J].机械工程材料,2007,(02):29~31.
    [44]杨世洲,丁义超,.铸造烧结法制备表面铁基复合材料的致密化机理及耐磨性能[J].机械工程材料,2010,(4):38~41,46.
    [45]王书利,王爱琴,谢敬佩,王文焱.铸造表面合金化的研究及其进展[J].热加工工艺,2010,(05):63~66+70.
    [46]计玉珍,鲍崇高.高频熔炼制备A1203陶瓷颗粒增强耐热钢基复合材料[J].铸造技术,2008,(07):888-890.
    [47]秦国营.消失模铸渗工艺在铁路货车易磨损件上的应用[J].科技资讯,2010,(22):8~9.
    [48]刘建伟,解念锁.表面复合材料制备技术与应用[J].科技创新导报,2009,(32):206.
    [49]高炳易.复合颗粒铸渗制备钢基表面复合材料研究[J].热加工工艺,2010,(04):89~92.
    [50]孙凯,于梅,安宁.WC/铁基复合材料铸渗复合层的研究[J].热加工工艺,2009,(11):63~65.
    [51]I. Gracia, J. Fransaer, J.P. Celis, Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles [J], Surf. Coat. Technol.148 (2001) 171~178
    [52]N.K. Shrestha, K. Sakurada, M. Masuko, T. Saji, Composite coatings of nickel and ceramic particles prepared in two steps [J], Surf. Coat. Technol.140,2001,175~ 181
    [53]A. Grosjean, M. Rezrazi, P. Bercot, Some morphological characteristics of the incorporation of silicon carbide (SiC) particles into electroless nickel deposits[J] Surf. Coat. Technol.130 (2009)252
    [54]N.K. Shrestha, I. Miwa, T. Saji, Electrochemical and mechanical interactions during erosion-corrosion of a high-velocity oxy-fuel coating and a stainless steel [J], J. Electrochem. Soc.148 (2), (2008) C106
    [55]C. Dedeloudis, M.K. Kaisheva, N. Muleshkov, T. Mueshkov, P.Nowak, J. Fransaer, J.P. Celis, Application of drop-weight interfacial tensiometry to the quantitative analysis of Cu/SiO2 composite coatings[J], Plat. Surf. Finish.86 (8) (1999) 57
    [56]D.H. Cheng, W.Y. Xu, L.Q. Hua, Z.Y. Zhang, X.J. Wan, Influence of various substrate materials on the structure and magnetic properties of Fe-N thin films deposited by DC magnetron sputtering [J], Plat. Surf. Finish.85 (2) (1998) 61
    [57]S.H. Yeh, C.C. Wan, Study the etching mechanism of photosensitive dry film on depositing gold during fabrication of printed circuit board [J], Plat. Surf. Finish.84 (3) (1997) 54
    [58]D. Gierlotka, E. Rowinski, A. Budniok, E. Lagiewka, Ni-P-NiO electrolytic layers as anode materials [J], J. Appl.Electrochem.27 (1997) 1349
    [59]周永欣,赵西城,吕振林.等消失模铸渗法制备SiC颗粒增强钢基表面复合材料[J].机械工程材料,2007,(05):33~35,54.
    [60]Hansen. S. Casting on Surfacing of Polystyrene Pattern Castings [J]. AFS Transactions,1985,93
    [61]Ezhov V. L, etal. Increasing Service Life of Cast Hot2Moulding Dies[J]. Liteione Proizvodstvo,1991,(5)
    [62]He,Y. Analysis of the Mechanism of Surface Alloying During Casting[J] Metallurgy Italiana,1998, (11),243~251
    [63]杨涛林,陈跃,李晓宾,等.铸钢表面钒铬铸渗层组织及干滑动磨损性能研究[J].铸造技术,2007,(02):186-189.
    [64]王莹,工艺因素对表面复合铸渗层质量的影响[J].铸造技术,2010,(8)1010-1012.
    [65]Delannay F,etal. The Wetting of Solids by Molten and Its Relation to the Preparation of MMCs [J].Mater. Sci.1987,22
    [66]孟德权,高崭,张伟强.45钢表面铬、硼、碳三元铸渗层的组织和硬度[J].机械工程材料,2009,(10):40~42.
    [67]刘旋,.浇注温度对真空实型铸渗效果的影响规律研究[J].中国铸造装备与技术,2010,(4):18-21.
    [68]Zhang Jun,etal. Cast Surface Alloying by Centrifugal Casting Method[C] Proceedings of 61th World Foundry Congress,1995,9
    [69]孙亚琴,潘嘉祺,陈麒忠,等.复合涂层对铝合金铸件表面硬度影响的研究[J].铸造技术,2008,(10):1393~1396.
    [70]Gurin S S. Production of Highly Durable Cast Iron Moulds [J].Liteinoe Proizvodstvo,1993, (5), pp.131
    [71]I. V. Uskov,etal. Improving the Wear Resistance of Steel Castings by Strengthening the Surface with Silicon Carbide and Chromium Carbide Powders [J]. Soviet Journal of Friction and Wear,1989, (2), pp.36
    [72]谢明强,魏晓伟.铸渗法制备活塞环硬质表层的工艺研究[J].西华大学学报(自然科学版),2008,(03):52~55,109.
    [73]金汉,吕振林,周永欣,等V-EPC法制备SiC颗粒增强铸铁基表面复合材料[J].铸造技术,2011,(03):325-327.
    [74]许斌,杨胶溪,冯承明;灰铸铁表面WC颗粒-高铬铸铁铸渗层研究[J].热加工工艺.1998,(06):10~11
    [75]严有为,汪大经.铸渗涂料研究及其应用[J].铸造,1994(2):12-14
    [76]刘庆星;黄源;相士杰等铸渗工艺在耐蚀零件上的研究与应用[J].铸特种铸造及有色合金,1989,(04):23-24
    [77]Mechel. Surface Alloying the Operating Layer of Ingot Moulds [J].Mezhdunarodnays Kniga,1998,(3):112~114
    [78]蔡振升等.铸渗硼对灰铸铁钢锭模寿命的影响[J].铸造技术,1992,(6):3-6
    [79]王一三.等.铸渗法表秒耐磨复合层的研究[J].铸造,1999,(4):19-22
    [80]刘金海,钱立,郝万德.灰铸铁铸型碳化硼涂料渗硼的研究[J].现代铸铁,1991,(02):9~16.
    [81]K. G. Budinsky:Surface Engineering for Wear Resistance [C],1st ed., Prentice-Hall, New York, NY,1988, pp.231
    [82]K. Krishnaveni, T.S.N. Sankara Narayanan, S.K. Seshadri, Electroless Ni-B coatings:preparation and evaluation of hardness and wear resistance[J], Surface& Coatings Technology 190(2005) 115~121
    [83]F. Delaunois, P. Lienard, Heat treatments for electroless nickel-boron plating on aluminium alloys[J], Surf. Coat. Technol.160 (2006) 239~248
    [84]K. Krishnaveni, T.S.N. Sankara Narayanan, S.K. Seshadri, Electroless Ni-B coatings:preparation and evaluation of hardness and wear resistance[J], Surface & Coatings Technology 190(2005) 115~121
    [85]Q. Li, G.M. Song, etal., Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC[J], Wear 254 (2003) 222~229
    [86]R.L. Sun, J.F. Mao, D.Z. Yang, Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC-TiC layer on titanium alloy substrate[J], Surf. Coat. Technol.155 (2008) 203~207
    [87]M. Cadenas, R. Vijande, etal., Wear behavior of laser cladded and plasma sprayed WC-Co coatings [J], Wear 212 (2) (1997) 244~253
    [88]I. Garcia, J. Fuente, J.J. Damborenea, (Ti, A1)/(Ti, A1)N coatings produced by laser surface alloying[J], Mater. Lett.53 (2007) 44~51
    [89]X.B. Wang, Y. Liang, S.L. Yang, Formation of TiB2 whiskers in laser clad Fe-Ti-B coatings[J], Surf. Coat. Technol.137 (2006) 209~216
    [90]M.G. Gee, A. Gant, I. Hutchings, R. Bethke, K. Schiffman, K. Van Acker, S. Poulat, Y. Gachon, J. von Stebut, Progress towards standardization of ball cratering[J], Wear 255 (1-6) (2009) 1~13
    [91]D. Lou, J. Hellman, D. Luhulima, J. Liimatainen, V.K. Lindroos, Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites[J], Mater. Sci. Eng. A 340 (1~2) (2008) 155~162
    [92]Q. Yang, T. Senda, A. Ohmori, Effect of carbide grain size on microstructure and sliding wear behavior of HVOF-sprayed WC-12% Co coatings[J], Wear 254 (1-2) (2003)23~34
    [93]H. Liao, B. Normand, C. Coddet, Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings[J], Surf. Coat. Technol.124 (2-3) (2007) 235~242
    [94]R.I. Trezona, D.N. Allsopp, I.M. Hutchings, Transitions between two-body and three-body abrasive wear:influence of test conditions in the microscale abrasive wear test[J], Wear 225~229(1)(1999)205~214
    [95]H.-J. Kim, S.-Y. Hwang, C.-H. Lee, P. Juvanon, Assessment of wear performance of flame sprayed and fused Ni-based coatings[J], Surf. Coat. Technol.172 (2-3) (2009) 262~269
    [96]N.M Renevier, N. Lobiondo, V.C Fox, D.G Teer, J. Hampshire, Performance of MoS2/metal composite coatings used for dry machining and other industrial applications [J], Surface and Coatings Technology 123 (2006) 84~91
    [97]C. Louro, A. Cavaleiro, Oxidation behaviour of W-N-M (M= Ni, Ti) sputtered films[J], Surf. Coat. Technol.74-75 (1995) 998~1004
    [98]Heeman Choe, David C. Dunand, Mechanical properties of oxidation-resistant Ni-Crfoams[J], Materials Science and Engineering A 384 (2004) 184~193
    [99]S. Ahmaniemi, P. Vuoristo, T. Ma'ntyla, C. Gualco, A. Bonadei, R. Di Maggio, Thermal cycling resistance of modified thick thermal barrier coatings[J], Surface & Coatings Technology 190 (2005) 378~387
    [100]杨贵荣.等.铸渗法制备铜基表面复合材料[J].复合材料学报2005,(1):18-23
    [101]刘建秀,刘永军,高红霞,等.真空实型铸造钢基复合材料的制备与性能研究[J].煤矿机械,2008,(01):51~53.
    [102]刘炳.铸钢件表面铸渗硅复合层的研究[J].特种铸造及有色合金,2007,(01):14~15,8.
    [103]Mechel.Surface Alloying the Operating Layer of Moulds[J]. Mezhdunarwdays Kniga,1998,(3)
    [104]李烨飞,高义民,王必辉,等WC-TiC-Co/Cr20复合材料的制备与界面特性[J].稀有金属材料与工程,2010,(04):715-718
    [105]李晓宾,陈跃,杨涛林.ZG310-570表面消失模铸渗层磨粒磨损性能研究[J].铸造,2007,(06):594~596.
    [106]高明星,郭长庆,程军.WC颗粒增强高锰钢基表面复合材料组织和硬度的研究[J].内蒙古科技大学学报,2008,(04):311-315.
    [107]渡边贞四郎.金属被覆铸造法[J],铸物,1982,55167:381-387
    [108]YANG Guirong, HAO Yuan, SONG Wenming, MA Ying. Surface composite on the copper substrate fabricated by infiltration casting, J.Acta Materiae Compositae Sinica,2005,1
    [109]Guirong YANG,Yuan HAO, Wenming SONG,Jinjun Lu,Ying MA,Surface compositse fabricated by bacuum infiltration casting technique,Journal of University of Science and Technology Beijing,Volune 12,Number 5,october 2005
    [110]刘旋,李祖来,蒋业华,等.真空实型铸渗法制备自生TiC颗粒增强钢基表面复合材料的组织研究[J].铸造,2009,(4):341-343,348.
    [111]祝凯.铸渗技术制备表面复合材料研究现状及发展趋势[J].黑龙江冶金,2006,(03):43~44.
    [112]孟德权,张永青,张伟强.中碳钢表面铸渗合金化层组织和性能研究[J].热加工工艺,2009,(01):71~72.
    [113]袁昌伦,李炎,魏世忠,等.铁基表面复合材料的制备技术及研究进展[J].热加工工艺,2009,(1):35-38.
    [114]杨涛林,陈跃,李晓宾.铸钢表面钒铬铸渗层的微观分析及干滑动磨损性能研究[J].铸造,2008,(01):15-19.
    [115]李文虎,徐峰,刘福田.铸渗法制备Mo2FeB2增强钢基表面复合材料[J].特种铸造及有色合金,2009,(01):57-59,3.
    [116]邵建敏,裴旭明,刘建秀,等.钢基表层复合材料制备及其磨损性能研究[J].西安交通大学学报,2009,(9):81-85.
    [117]王恩泽,郑燕青,邢建东,等.铸渗法制备颗粒增强钢基复合材料的研究[J].复合材料学报,1998,(2):14~17
    [118]JIN Zong-zhe, YUE Xue-mei, BAO Yi-wang, ZHANG Guo-jun, Relationship between tensile strength and flexural strength and size effect on flexural strength[J], Modern technical ceramic.1997,73(3):29~33
    [119]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992,10-33
    [120]宋文明,郝远,杨贵荣,等.铜合金表面复合材料的负压铸渗工艺研究[J].铸造,2005(10):998-1001
    [121]陈振华,沈百令,魏世忠,等.表面合金化导卫板的研制[J].轧钢,1990(2):29~33
    [122]姚三九,宋增光.熔炼工艺对高铬铸铁性能的影响[J].河北冶金,1997,2:31-33
    [123]Munir Z A. Synthesis of high temperature materials by self-propagating combus-tion methods [J]. ceramic Bulletin,1988,67(2):342
    [124]McMeeking R M, Evans A G. Mechanics of transformation-toughening in brittle materials[J], J Am Ceram Soc,1982,65(5):242.
    [125]宁海霞,成小乐.WC钢基表面复合材料的粉末冶金工艺研究[J].煤矿机械,2009,(7):61-63.
    [126]Grant NJ. etal. High conductivity copper and aluminum alloys[J], Losgeles: California, Feb.26-Marl.1984,26(3):103.
    [127]Devicharan Chidambarama, Clive R. Claytona, Mitchell R. Dorfman, Evaluation of the electrochemical behavior of HVOF-sprayed alloy coatings-Ⅱ[J], Surface& Coatings Technology 192 (2005) 278-283
    [128]王志胜,李祖来,蒋业华,等.WC颗粒增强钢基表面复合材料的高温摩擦磨损性能[J].铸造,2010,(3):280-283.
    [129]铸工手册编写组,铸造有色合金手册[M],北京:机械工业出版社,1982,4
    [130]铸工手册编写组,铸造手册[M],北京:机械工业出版社,1978,4-12
    [131]郑林庆主编,摩擦学原理[M],北京:高等教育出版社,1994,81-90
    [132]R.Asthana, P.K. Rohatgi, Melt infiltration of silicon carbide compacts, Metall [J]. 1992,83(12)887-892.
    [133]R.Akhter, K.G. Watkins and W.M.Steen, Electrochemical characterisation of laser welded zinc coated steel, Materials Letter [J].1990,9:550~556
    [134]程瑶,郭长庆,程军Ti-Fe粉对颗粒增强45钢基表面复合材料复合层质量及组织的影响[J].内蒙古科技大学学报,2010,(1):23~28.
    [135]Cui Yihua, Tao Jie, Wo Dingzhu. Study on technology for manufacturing MMC by V-EPC method [C]. In:Chang-Sun Hong. Chun-Gon Kim. ACCM 22,2000
    [136]王佳,王志胜,李祖来,等V-EPC铸渗制备自生TiC颗粒增强钢基表面复合材料[J].铸造技术,2010,(5):579-583.
    [137]苏华钦主编.冶金传输原理[M].南京:东南大学出版社,1989,10-12.
    [138]J.F. Archard.Friction between metal surfaces. Wear,1986,113(1),3
    [139]董若瑾主编,冶金原理[M].北京:机械冶金工业出版社,1980,7-45
    [140]J.F. Archard.Friction between metal surfaces. Wear,1986,113(1),16
    [141]J.F. Archard. Elastohydrodynamic lubrication of real surfaces. Tribology, 1973,6(1),8~14
    [142]J.F. Archard.Friction-An Introduction to tribology:F. P. Bowden and D. Tabor Heineman educational book (Science study series). Tribology International, Volume 8, Issue 6, December 1975,268
    [143]J.F. Archard.Microscopic aspects of adhesion and lubrication. Tribology Internatio-nal, Volume 15, Issue 5, October 1982, Page 242
    [144]R.Holm.Electric Contacts.Almgvist & Wicksells,Uppsala,1946
    [145]J.T.Burwell and C.D.Strang.Metallic wear.proc.R.Soc,212,212A,1952,470-77