ε-聚赖氨酸产生菌的筛选、育种及发酵研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ε-聚赖氨酸(ε-poly-Lysine,ε-PL)是少数链霉菌将L-赖氨酸单体通过α-COOH与ε-NH_2脱水缩合而成的一种氨基酸同聚物,聚合度为25-35。由于其抑菌谱广、效价高、安全无毒,再配合其水溶性好、作用pH广、热稳定强等特点,ε-PL已被广泛用作食品防腐剂。此外,ε-PL还被用于食疗剂、药物载体、基因芯片、电子材料等领域。因此,其应用价值及市场前景是非常广阔的。
     本论文首先从土壤中筛选获得了五种野生型的ε-PL产生菌;其次利用传统诱变方法及新兴的Genome Shuffling技术对这些野生菌株进行育种改造,以提升其ε-PL发酵水平;然后对获得的高产菌株进行了种间随机的原生质体融合,将其优良性状集中于同一个细胞内,进一步提升了ε-PL的产量;最后对种间融合获得的高产杂合子产ε-PL进行了强化,包括Genome Shuffling、培养基优化及发酵工艺优化,最终使其ε-PL产量达到了国内领先水平。具体研究内容如下:
     (1)从土壤中筛选放线菌时,为了有效抑制杂菌(细菌、霉菌)的生长,在分离培养基中添加了复合抑制剂:重铬酸钾30mg/L、青霉素2mg/L、氟哌酸3mg/L、制霉菌素80mg/L;对ε-PL产生菌的筛选方法做了改进,利用“双层琼脂法”代替“直接添加美蓝”法,将“菌落生长”与“排斥美蓝显色”分成了两个阶段,能够有效避免美蓝对微生物的毒害,提高了筛选效率;利用该法从土壤中筛选获得了ε-PL产生菌42株,其中至少有白色链霉菌S. albulus、禾粟链霉菌S. graminearus、吸水链霉菌S. hygroscopicus、灰褐链霉菌S. griseofuscus、稠李链霉菌S. padanus等五种菌株,其中后四种菌株在ε-PL产生菌中未见报道。
     (2)采用紫外线(UV)与亚硝基胍(NTG)对五种ε-PL产生菌进行诱变。UV诱变剂量为:功率8W,距离30cm照射4min。NTG诱变剂量为0.5mg/mL处理70min;选择了五种物质作为“筛子”:葡萄糖、ε-PL、KH_2PO_4、磺胺胍、琥珀酸为唯一碳源,确定了其(除琥珀酸)对野生菌株的临界浓度分别为:190g/L、0.06g/L、30g/L、20g/L,并复合以0.05g/L的LiCl;开展大批量的诱变及筛选工作,摇瓶发酵筛选得到了其中四种菌株(S. albulus、S. graminearus、S. griseofuscus、S. padanus)三种“筛子”(葡萄糖、磺胺胍、琥珀酸为唯一碳源)的ε-PL产量提高株,由0.38-0.49g/L提高到0.50-0.72g/L,并将其作为后续Genome Shuffling的出发菌株。
     (3)在获得“丝状”菌体的前提下,优化了原生质体制备、再生及融合的条件为:0.5%的溶菌酶、酶解温度30℃、酶解时间120min、促融剂PEG6000浓度30%(W/V)、融合过程为37℃保温10min;采取双亲灭活法进行原生质体融合,灭活条件为:紫外线(8W,30cm)照射60min、70℃水浴40min;对四种菌株(S. albulus、S. graminearus、S. griseofuscus、S. padanus)三种“筛子”(葡萄糖、磺胺胍、琥珀酸为唯一碳源)的突变株进行了三轮Genome Shuffling育种,获得了不同菌株不同“筛子”的ε-PL产量提高株,由0.38-0.49g/L提高至0.75-0.82g/L;选取其中的两株融合子GRF3-4、PAF3-2及其野生菌株进行补料分批发酵,融合子在控制pH的扩大培养中ε-PL产量由7-8g/L(野生型)提高到13-15g/L;融合子与野生菌相比,代谢途径中一些关键酶(HK、PK、PEPC、AK、CS)的活性提高,这是导致ε-PL合成能力增强的初步原因;经过诱变及GenomeShuffling育种,菌株的16S rDNA序列会发生极少碱基的变化,但不会引起菌种分类地位的改变。
     (4)对Genome Shuffling育种获得的高产融合子S. albulus(葡萄糖、琥珀酸为唯一碳源)、S. graminearus(葡萄糖、磺胺胍)、S. griseofuscus(葡萄糖、琥珀酸为唯一碳源)、S. padanus(磺胺胍、琥珀酸为唯一碳源)、以及S. hygroscopicus的野生型,共包含39株菌在内的五种菌株进行两两的种间原生质体融合育种,在杂合子中没有筛选到ε-PL产量有大幅提高的菌株;将以上所有菌株混合后进行五种菌株的种间随机融合,获得了一株高产杂合子Streptomyces sp. FEEL-1,摇瓶产量为1.1g/L,比亲株提高了37%以上;随机引物扩增多态DNA(RAPD)结果初步表明菌株FEEL-1的亲本为S. albulus、S.griseofuscus与S. padanus;杂合子Streptomyces sp. FEEL-1在控制pH的补料分批发酵中ε-PL产量达到24.5g/L,比其亲本提高了40-70%;胞内酶活(HK、PK、PEPC、AK、CS)的提高是ε-PL产量提高的初步原因,也证明了种间随机融合的有效性。
     (5)以S-2-氨乙基-L-半胱氨酸(AEC)作为抗性指标,对杂合子Streptomyces sp. FEEL-1进行了EMS诱变及三轮Genome Shuffling育种,获得了一株Streptomyces sp. FEEL-G67,其天冬氨酸激酶AK的酶活提高了1.07倍,ε-PL摇瓶产量提高至1.73g/L,补料分批发酵产量达到29.82g/L;利用PB-CCD的响应面方法对其发酵培养基(M3G)作了优化,发现对Streptomyces sp. FEEL-G67摇瓶发酵影响显著的三个因素为:酵母粉、K2HPO_4、MgSO_4,且最终优化出的培养基为(g/L):葡萄糖50,酵母粉7.5,(NH4)2SO_45,K2HPO_4·3H_2O2.5,MgSO_4·7H_2O2,ZnSO_4·7H_2O0.04,FeSO_4·7H_2O0.03。在该条件下,ε-PL摇瓶产量从1.73g/L提高到2.32g/L,补料分批发酵产量达到32.25g/L;基于对pH的发酵工艺优化,证实了高pH有利于菌体生长,而低pH有利于ε-PL的合成。以最大ε-PL比合成速率为目标,提出了两阶段pH控制策略(pH3.8-4.0),在该条件下进行补料分批发酵可使ε-PL达到36.79g/L;在此基础上流加有机氮源(酵母粉),不仅使生物量达到49.7g/L,也进一步使ε-PL产量提升至41.24g/L,这是目前国内ε-PL发酵的最高水平。
ε-poly-L-lysine (ε-PL) is a homo-poly-amino acid where L-lysine monomers are linkedthrough microorganism by peptide bonds between the carboxyl and the epsilon-amino groups.Its polymerization degree is generally ranging from25to35. Because it is water soluble,biodegradable, edible and non-toxic toward humans and environment, ε-PL and its derivativeshave been of interest for a broad range of industrial applications such as food preservatives,emulsifying agent, dietaryagent, biodegradable fibers, highly water absorbable hydrogels,drug carriers, etc. Therefore, the application value commercial production of ε-PL areconsidered highly promising.
     The work in this paper was done following several basic aspects. First, five species ofε-PL-producing strains were screened from soils with an improved detection method; Thenthe traditional mutagenic method and newly emerging Genome Shuffling approach wereadopted for rapidly breeding these organisms to improve the ε-PL productivity; Subsequently,we made a combination of these shuffled strains through stochastic protoplast fusion andobtained a hybrid with significant improvement for ε-PL production; In the end, ε-PLproductivity in the hybrid was further enhanced by Genome Shuffling, response surfacemethodology and fermentation technique optimization, which achieved the advancedfermentation level in China. The specific studies were as follows:
     (1) In order to isolate Actinomyces from soils, composite inhibitors consisted of K2Cr2O7(30mg/L)、norfloxacin (3mg/L)、penicillin (2mg/L) and nystatin (80mg/L) were added tomedium to inhibit the growth of bacteria and fungi; The detection method for screeningε-PL-producing strains was improved. The whole agar was removed with grown Actinomycesand was then covered on another agar containing the methylene blue to form a sandwich,which avoided the toxicity problem and this modified method proves effective;42ε-PL-producing strains were obtained from soils with this improved strategy at least includingS. albulus, S. griseofuscus, S. graminearus, S. hygroscopicus and S. padanus. The latter4strains among them were not reported before.
     (2) Five wild-type ε-PL-producing strains were mutagenized by UV and NTG to obtain theinitial mutant library. UV irradiation was performed by exposing strains to an UV light(power of8W) at a distance of30cm for4min. NTG mutagen concentration was0.5mg/mLwith a treated time of70min; Five substances were choosen as sieves to select mutants:glucose (Glc), ε-PL, KH_2PO_4, sulfaguanidine (SG) and succinic acid (SA) as sole carbonsource. The threshold concentrations of these substances (except for SA) for wild-type strainswere190g/L、0.06g/L、30g/L、20g/L respectively, and supplemented with LiCl of0.05g/L;After the scale-up breeding and selection, mutants with higher ε-PL production in shake-flaskfermentation test were obtained for four strains (S. albulus, S. graminearus, S. griseofuscus, S.padanus) of three substances (Glc, SG, SA), from0.38-0.49g/L to0.50-0.72g/L. Thesemutants were then adopted for Genome Shuffling.
     (3) On premise of obtaining forms of mycelia, conditions of protoplast preparation、regeneration and fusion were optimized as follows:0.5%of lysozyme,30℃of temperature,120min of treated time,30%(W/V)of PEG6000, fusion for10min under37℃; Protoplastswere deactivated by UV irradiation (8W,30cm,60min) and heating (70℃,40min); Afterthe scale-up Genome Shuffling for four strains (S. albulus, S. graminearus, S. griseofuscus, S.padanus) of three substances (Glc, SG, SA), the ε-PL production of shuffled strains wasimproved from0.38-0.49g/L to0.75-0.82g/L; Two of the shuffled strains GRF3-4andPAF3-2showed higher ε-PL production in fed-batch fermentation, from7-8g/L to13-15g/L;Compared to wild-type strains, the improvement of ε-PL production in shuffled strains wasdue to the higher enzyme activities (HK, PK, PEPC, AK, CS) in metabolic pathway; Aftermutation and Genome Shuffling,16S rDNA sequence of the strains changed few bases but itcould not change the taxonomic status.
     (4) Protoplast fusion was carried out between two species of all possible hybridizationsamong shuffled strains: S. albulus (Glc, SA), S. graminearus (Glc, SG), S. griseofuscus(GLU,SA), S. padanus (SG, SA), S. hygroscopicus (wild-type), involving10kinds of pairingcombinations but no significant improvements for ε-PL production were observed in thesetwo-spesies hybridizations; However, a hybrid designated Streptomyces sp. FEEL-1wasobtained with ε-PL production of1.1g/L (37%higher than the parents) in shake-flask whenmixed all above strains together and carried out an hybridization among five species; RAPDrevealed that FEEL-1was probably hybridized from S. padanus, S. griseofuscus and S.albulus; The ε-PL production of FEEL-1was obtained as24.5g/L in fed-batch fermentation,which was40-70%higher than those in its parents; Activities of several enzymes in FEEL-1(HK, PK, PEPC, AK, CS) were more active than those in shuffled strains, which was apossible reason for the enhancement of ε-PL production.
     (5) Genome Shuffling was employed again to further improve ε-PL production ofStreptomyces sp. FEEL-1by AEC as resistance index. A mutant named Streptomyces sp.FEEL-G67was obtained with ε-PL production of1.73g/L in shake-flask and29.82g/L infed-batch fermentation because the key enzyme activity of AK was improved by1.07-foldthan FEEL-1; Plackett-Burman design was adopted to determine that yeast extract, K2HPO_4and MgSO_4were key nutritions for ε-PL production. The optimized medium was achieved byresponse surface methodology as follows (g/L): glucose50, yeast extract7.5,(NH4)2SO_45,K2HPO_4·3H_2O2.5, MgSO_4·7H_2O2, ZnSO_4·7H_2O0.04, FeSO_4·7H_2O0.03. Under thiscondition, ε-PL production was improved from1.73g/L to2.32g/L in shake-flask and32.25g/L in fed-batch fermentation; Base on the effect of pH on ε-PL production, we verified thatthe higher pH was beneficial to growth of biomass and lower pH was favorable to synthesis ofε-PL. A two-stage pH control strategy (pH3.8-4.0) was suggested by the highest specificε-PL production rate and ε-PL production was obtained as36.79g/L in fed-batch fermentationunder this process; On this basis, a fed-batch fermentation was carried out by adding yeast extract and the resulting biomass was as high as49.7g/L, meanwhile the ε-PL production wasachieved as41.24g/L, which was the highest yield reported in China.
引文
[1] Shima S, Sakai H. Polylysine produced by Streptomyces [J]. Agric Biol Chem,1977,41:1807-1809.
    [2] Shima S, Sakai H. Poly-L-lysine produced by Streptomyces.Part III [J]. Chemical studies. Agric BiolChem,1981,45:2497–2502.
    [3] Shima S, Sakai H. Poly-L-lysine produced by Streptomyces.Part II [J]. Taxonomy and fermentationstudies. Agric Biol Chem,1981,45:2503–2508.
    [4] Hiraki J, Ichikawa T, Ninomiya S, et al. Use of ADME studies to confirm the safety of ε-polylysine as apreservative in food [J]. Regul Toxicol Pharm,2003,37:328-340.
    [5] Hirohara H, Munenori T, Masayuki S. Biosynthesis of poly(ε-L-lysine)s in two newly isolated strains ofStreptomyces sp [J]. Appl Microbiol Biotechnol,2006,73:321–331.
    [6] Nishikawa M, Ogawa K. Distribution of microbes producing antimicrobial-ε-poly-L-lysine polymers insoil microflora determined by a novel method [J]. Appl Environ Microbiol,2002,68:3575-3581.
    [7]朱宏阳,徐虹,吴群等. ε-聚赖氨酸生产菌株的筛选和鉴定[J].微生物学通报,2005,32:127-130.
    [8]杨玉红.多聚赖氨酸产生菌的筛选与理化性质研究[J].北方园艺,2007,8:15-17.
    [9]张超,张东荣,贺魏等.一种简便的ε-聚赖氨酸生产菌的筛选方法[J].山东大学学报,2006,11:1104-1107.
    [10]段杉,朱伟珊. ε-聚赖氨酸产生菌的筛选[J].食品与发酵工业,2007,8:14-17.
    [11]贾士儒,许春英,谭之磊等. ε-聚赖氨酸产生菌TUST-2的分离鉴定[J].微生物学报,2010,50:191–196.
    [12] Nermeen A, Sersyl E, Abeer E. Antibacterial and Anticancer activity of ε-poly-L-lysine (ε-PL)produced by a marine Bacillus subtilis sp [J]. Journal of Basic Microbiology,2012,52:1-10.
    [13] Masayuki S, Munenori T, Shinya M. Biosynthesis of nearly monodispersed poly(ε-L-lysine) inStreptomyces species [J]. Biotechnol Lett,2008,30:377-385.
    [14] Hiraki J, Hatakeyama M, Morita H. Improved ε-poly-L-lysine production of anS-(2-aminoethyl)-L-cysteine resistant mutant of Streptomyces albulus [J]. Seibutu Kougaku Kaishi,1998,76:487-493.
    [15] Hamano Y, Nicchu I. ε-Poly-L-lysine producer, Streptomyces albulus, has feedback inhibition resistantaspartokinase [J]. Appl Microbiol Biotechnol,2007,76:873-882.
    [16] Kahar P, Iwata T, Hiraki J. Enhancement of ε-polylysine production by Streptomyces albulus strain410using pH control [J]. J Biosci Bioeng,2001,91:190-194.
    [17]陈玮玮,朱宏阳,徐虹. ε-聚赖氨酸高产菌株选育及分批发酵的研究[J].工业微生物,2007,37:28-30.
    [18]余明洁,田丰伟,范大明.高产ε-聚赖氨酸白色链霉菌的复合诱变选育研究[J].食品工业科技,2008,29:99-103.
    [19]张超,王正刚,毛忠贵.大剂量紫外诱变选育ε-聚赖氨酸高产菌[J].生物加工过程,2007,5:64-68.
    [20]贾士儒,董惠钧,姜俊云. ε-聚赖氨酸高产菌株的选育[J].食品与发酵工业,2004,30:14-17.
    [21]于雪骊,刘长江,种婷. ε-PL聚赖氨酸产生菌原生质体的制备与再生[J].食品科学,2008,29:277-280.
    [22]杨玉红,于雪骊,刘长江.紫外诱变选育多聚赖氨酸高产菌株的研究[J].北方园艺,2007,9:45-46.
    [23]张海涛,李燕,蔡冰莹.诱变选育ε-聚赖氨酸产生菌突变株[J].食品科学,2007,28:398-401.
    [24]廖莉娟,赵福林,陈旭升.氨基酸对禾粟链霉菌生物合成ε-聚赖氨酸的影响[J].工业微生物,2011,41:43-46.
    [25] Shih IL, Shen MH. Application of response surface methodology to optimize production ofpoly-ε-lysine by Streptomyces albulus IFO14147[J]. Enzyme Microb Technol,2006,39:15-21.
    [26] Bankar SB, Singhal RS. Optimization of poly-ε-lysine production by Streptomyces noursei NRRL5126[J]. Bioresour Technol,2010,101:8370-8375.
    [27] Xusheng Chen, Lei Tang, Shu Li. Optimization of medium for enhancement of ε-Poly-L-Lysineproduction by Streptomyces sp. M-Z18with glycerol as carbon source [J]. Bioresour Technol,2010,102:1727-1732.
    [28] Saimura M, Takehara M, Mizukami S. Biosynthesis of nearly monodispersed poly(ε-L-lysine) inStreptomyces species [J]. Biotechnol Lett,2008,30:377-385.
    [29] Kobayashi K, Nishikawa M. Promotion of ε-poly-L-lysine production by iron in KitasatosporaKifunense [J]. World J Microbiol Biotechnol,2007,23:1033-1036.
    [30] Wang GL, Jia SR, Wang T. Effect of ferrous ion on ε-poly-L-lysine biosynthesis by Streptomycesdiastatochromogenes CGMCC3145[J]. Curr Microbiol,2011,62:1062-1067.
    [31]朱宏阳,陈玮玮,徐虹.产ε-聚赖氨酸菌株生物合成条件研究[J].生物加工过程,2005,2:15-18.
    [32] Xu-Sheng Chen, Shu Li, Li-Juan Liao. Production of ε-poly-L-lysine using a novel two-stage pHcontrol strategy by Streptomyces sp. M-Z18from glycerol [J]. Bioprocess Biosyst Eng,2011,34:561-567.
    [33] Xu-Sheng Chen, Xi-Dong Ren, Nan Dong. Culture medium containing glucose and glycerol as amixed carbon source improves ε-poly-L-lysine production by Streptomyces sp. M-Z18[J]. BioprocessBiosyst Eng,2012,32:511-517.
    [34] Kahar P, Kobayashi K, Iwata T. Production of ε-polylysine in an airlift bioreactor (ABR)[J]. J BiosciBioeng,2002,93:274-280.
    [35] Zhang Y, Feng XH, Xu H. ε-poly-L-lysine production by immobilized cells of Kitasatospora sp. MY5-36in repeated fed-batch cultures [J]. Bioresour Technol,2010,101:5523-5527.
    [36]徐虹,张扬,冯小海等.一种吸附固定化发酵生产ε-聚赖氨酸的工艺[P].中国专利, CN101509021A,2009-08-19.
    [37] Liu SG, Wu QP, Zhang JM. Production of ε-poly-L-lysine by Streptomyces sp. using resin-based, insitu product removal [J]. Biotechnol Lett,2011,33:1581-1585.
    [38] Itzhaki RF. Colorimetric method for estimating poly-lysine and polyarginine [J]. Anal Biochem,1972,50:569-574.
    [39] Shima S, Oshima S, Sakai H. Biosynthesis of ε-poly-L-lysine by washed mycelium of Streptomycesalbulus No.346[J]. Nippon Nogeikagaku Kaishi,1983,57:221-226(in Japanese).
    [40] Kawai T, Kubota T, Hiraki J. Biosynthesis of ε-poly-L-lysine in a cell-free system of Streptomycesalbulus [J]. Biochem Biophys Res Commun,2003,311:635-640.
    [41] Kito M, Takimoto R, Yoshida T. Purification and characterization of an ε-poly-L-lysine-degradingenzyme from an ε-poly-L-lysine-producing strain of Streptomyces albulus [J]. Arch Microbiol,2002,178:325-330.
    [42] Yamanaka K, Maruyama C, Takagi H. epsilon-poly-l-lysine dispersity is controlled by a highlyunusual nonribosomal peptide synthetase [J]. Nat Chem Biol,2008,4:766-772.
    [43] Hamano Y, Yoshida T, Kito M. Biological function of the pld gene product that degradesε-poly-L-lysine in Streptomyces albulus [J].Appl Microbiol Biotechnol,2006,72:173-181.
    [44] Kazuya Yamanaka, Naoko Kito, Yuuki Imokawa. Mechanism of ε-poly-L-lysine production andaccumulation revealed by identification and aAnalysis of an ε-poly-L-lysine-degrading enzyme [J].Appl Environ Microbiol,2010,68:5669-5675.
    [45] Kito M, Onji Y, Yoshida T. Occurrence of ε-poly-L-lysine-degrading enzyme in ε-poly-L-lysine-tolerant Sphingobacterium multivorum OJ10: purification and characterization [J].FEMS Microbiol Lett,2002,207:147-151.
    [46] Takimoto R, Kito M, Yoshda T. Characterization of microbial enzymes catalyzing the degradation ofε-poly-L-lysine [J]. Proceedings ofAnnual Meeting of the Society for Bioscience Biotechnology andBiochemistry. Osaka, Japan,2002,297-301.
    [47] Shima S, Matsuoka H, Iwamoto T. Antimicrobial action of epsilon-poly-l-lysine [J]. J Antibiot,1984,37:1449-1455.
    [48] Takehara M, Aihara Y, Kawai S. Strain producing low molecular weight ε-poly-l-lysine andproduction of low molecular weight ε-poly-l-lysine using the strain [P]. Japan patent,017159,2001.
    [49] Nishikawa M, Ogawa K. Distribution of microbes producing antimicrobial-ε-poly-L-lysine polymersin soil microflora determined by a novel method [J]. Appl Environ Microbiol,2002,68:3575-3581.
    [50] Nishikawa M, Ogawa K. Inhibition of ε-poly-l-lysine biosynthesis in Streptomyctaceae bacteria byshort-chain polyols [J]. Appl Environ Microbiol,2006,72:2306-2312.
    [51] Nishikawa M. Molecular mass control using polyanionic cyclodextrin derivatives for theepsilon-poly-l-lysine biosynthesis by Streptomyces [J]. Enzyme and Microbial Technology,2009,45:295-298.
    [52] Takehara M, Hibino A, Saimura M. High-yield production of short chain length poly(ε-L-lysine)consisting of5-20residues by Streptomyces aureofaciens, and its antimicrobial activity [J]. BiotechnolLett,2010,32:1299-1303.
    [53]向智男,宁正祥.植物性天然防腐剂及其在食品中的应用[J].中国食品添加剂,2004,3:79-82.
    [54]李红.乳酸链球菌素的研究进展[J].食品科技,2006,31:75-78.
    [55]朱慧.纳他霉素产生菌的基因组重拍育种[J].中国抗生素杂志,2006,12:739-742.
    [56] Shih IL, Shen MH. Microbial synthesis of poly (ε-lysine) and its various applications. BioresourTechnol,2006,97:1148-1159.
    [57]朱宏阳,徐虹.水杨醛保护法鉴定生物合成聚赖氨酸的单体连接方式[J].生物加工过程,2004,2:41-43.
    [58]东秀珠,蔡妙英编著.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [59]布坎南R E,吉本斯N E编.伯杰氏细菌系统鉴定手册(第九版)[M].北京:北京科学出版社,1984.
    [60]萨姆布鲁克J,拉塞尔DW著,黄培堂译.分子克隆实验指南[M].北京:科学出版社,2002.
    [61]史学群,宋海超,刘柱.海南省土壤拮抗放线菌分离方法初探[J].中国农学通报,2006,22:431-434.
    [62]杨宇荣,宁新哲,韩瑞红.茵类抑制剂在茵根际土壤真菌与放线菌分离中的应用研究[J].内蒙古农业大学学报,2008,29:39-42.
    [63]安德荣,慕小倩,赵文军.土壤放线菌分离中抑制剂的应用研究[J].西北农业学报,2002,11:106-108.
    [64]安德荣,慕小倩,赵文军.土壤拮抗放线茵的分离和筛选[J].微生物学杂志,2002,22:1-4.
    [65]司美茹,薛泉宏,来航线.放线菌分离培养基筛选及杂菌抑制方法研究[J].微生物学通报,2004,31:61-63.
    [66]陈旭升,李树,张超.微生物合成ε-聚赖氨酸的结构鉴定及其抑菌活性的研究[J]。食品与发酵工业,2008,34:54-57.
    [67]沈萍.微生物学[M].北京:高等教育出版社,2000,231.
    [68]王烈.抗菌肽的作用机制及其应用的研究进展[J].食品工程,2008,2:31-33.
    [69] Arkady Krasovskiy, Paul Knochel. A LiCl-mediated Be/Mg exchange reaction for the preparation offunctionalized aryl-and heteroarylmagnesium compounds from organic bromides [J]. Angew Chem IntEd,2004,43:3333-3336.
    [70]虞龙,张宇,龚文静.氯化锂-紫外-离子束复合诱变红霉素高产菌株研究[J].原子能科学技术,2011,45:62-65.
    [71] Sun Wei, Liu Ai ying, Liang Zongqi. Breeding for the high-yield monacolin K strains of monascus sp.by the mutagensis of UV and LiCl [J]. Journal of Huazhong Agricultural University,2004,23:168-170.
    [72]陈志高,沈建新,胡叶碧.紫外线和氯化锂对核糖苷链霉菌原生质体诱变作用的探讨[J].中国医药工业杂志,2001,32:56-59.
    [73]余永红,罗瑞明,刘晓连.透明质酸发酵过程中底物抑制及解除抑制的方法研究[J].安徽农业科学,2011,39:10104-10107.
    [74]赵红英,张健,刘宏娟.1,3-丙二醇发酵过程中底物抑制及其对策的研究[J].现代化工,2002,22:34-37.
    [75]方晓江,李建,郑晓宇. Actinobacillus succinogenes产丁二酸过程中的底物抑制[J].过程工程学报,2010,10:976-980.
    [76]赵静波,吴兆亮,陈新征. D-核糖发酵过程中底物抑制及补料的研究[J].氨基酸与生物资源,2004,26:47-49.
    [77] Akerberg C, Hofvendahl K, Zacchi G. Modeling the influence of pH, temperature, glucose, and lacticacid concentrations on the kinetics of lactic acid production by Lactococcus lactis sp. ATCC19435inwhole-wheat flour [J]. Appl Microbiol Biotechnol,1998,49:682-690.
    [78] Lei Yu, Xiaolin Pei, Ting Lei. Genome shuffling enhanced l-lactic acid production by improvingglucose tolerance of Lactobacillus rhamnosus [J]. Journal of Biotechnology,2008,134:154-159.
    [79]孙家凯,吴晓娇,王晶.磷酸盐对大肠杆菌发酵异亮氨酸的影响[J].食品与发酵工业,2012,38:20-23.
    [80]余永红,罗瑞明,刘晓连.透明质酸发酵过程中产物抑制研究[J].安徽农业科学,2011,39:8215-8218.
    [81] Hassan I, Philippe B, Evelyne G. Kenetic anslysis of red pigment and citrinin production by Monascusrubber as a fenction of organic acid accumulation [J]. Enzyme and Microbial technology,2000,27:619-625.
    [82] Junehaw S, ChulSoo S. Physicgical analysis an novel coculture of Mocaseus sp. J101withinSacchromyces cerevisiae [J]. Appl Microbiol Biotechnol,2000,190:241-245.
    [83]杨冰,许颖,张维.琥珀酸发酵过程中的产物抑制特征及树脂吸附原位分离的研究[J].食品与发酵工业,2011,37:37-40.
    [84] Doelle HW. Bacterial metabolism. Academic Press, New York,1969.
    [85]张伟国,顾正华. L-赖氨酸高产菌选育的研究[J].食品与发酵工业,2001,27:17-20.
    [86]郭刚,楚杰,王君高.产角蛋白酶菌株的筛选、鉴定和发酵特性的初步研究[J].中国畜牧兽医,2012,39:125-128.
    [87]徐琛.产淀粉酶芽孢杆菌的筛选和分离[J].齐鲁师范学院学报,2011,26:144-146.
    [88]廖莉娟. ε-聚赖氨酸的菌种选育及合成过程强化[D]:[硕士论文].无锡:江南大学,2010.
    [89] Stemmer W. DNA shuffling by random fragmentation and reassembly: in vitro recombination formolecular evolution [J]. Proa Natlacad Scl,1998,10:10747-10751.
    [90] Zhang YX, Perry K, Vincy A. Genome shuffling leads to rapid phenotypic improvement in bacteria.Nat Lett,2002,415:644-646.
    [91] Hida H, Yamada T, Yamada Y. Genome shuffling of Streptomyces sp. U121for improved production ofhydroxycitric acid [J]. Appl Microbiol Biotechnol,2007,73:1387-1393.
    [92] Xu B, Jin ZH, Wang HZ. Evolution of Streptomyces pristinaespiralis for resistance and production ofpristinamycin by genome shuffling [J]. Appl Microbiol Biotechnol,2008,80:261-267.
    [93] Dai MH, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticidepentachlorophenol by Sphingobium chlorophenolicum ATCC39723[J]. Appl Environ Microbiol,2004,70:2391-2397.
    [94] Patnaik R, Louie S, Gavrilovic V. Genome shuffling of Lactobacillus for improved acid tolerance [J].Nat Biotechnol,2002,20:707-712.
    [95] Yuhua Wang, Yan Li, Xiaolin Pei. Genome-shuffling improved acid tolerance and l-lactic acidvolumetric productivity in Lactobacillus rhamnosus [J]. Journal of Biotechnology,2007,129:510-515.
    [96] Jin ZH, Xu B, Lin SZ. Enhanced production of spinosad in Saccharopolyspora spinosa by genomeshuffling [J]. Appl Biochem Biotechnol,2009,159:655-662.
    [97] Zhao Kai, Ping WenXiang, Zhang LiNa. Screening and breeding of high taxol producing fungi bygenome shuffling [J]. Science in China Series C: Life Sciences,2008,51:222-231.
    [98] Lihua Hou. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae[J]. Appl Biochem Biotechnol,2010,160:1084-1093.
    [99] Dao-Qiong Zheng, Xue-Chang Wu, Pin-Mei Wang. Drug resistance marker-aided genome shuffling toimprove acetic acid tolerance in Saccharomyces cerevisiae [J]. J Ind Microbiol Biotechnol,2011,28:415-422.
    [100] Dong-jian Shi, Chang-lu Wang, Kui-ming Wang. Genome shuffling to improve thermotolerance,ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae [J]. J Ind MicrobiolBiotechnol,2009,36:139-147.
    [101] Tomasz G, Stefan R. Postmortem activity of lactate and malate dehydrogenase in human liver inrelation to time after death [J]. Int J Leg Med,1993,106:25-29.
    [102] Teichgraber P, Biesold A, Pigereva D. Subcellular localization of Hexokinase in the rat cortex [J].Biokhimiya,1972,37:748-756.
    [103] Claudia N, Stanley A, Julian K. The regulatory properties of yeast pyruvate kinase [J]. Biochem J,1984,217:641-647.
    [104] Jabalquinto A, Laivenieks M, Gregory Z. Characterization of the oxaloacetate decarboxylase andpyruvate kinase-like activities of Saccharomyces cerevisia and anaerobiospirillumsucciniciproducens phosphoenolpyruvate carboxykinases [J]. Journal of Protein Chemistry,1999,18:659-663.
    [105] Helena B, Hugh G, Nimmo L. Phosphoenolpyruvate carboxylase from Streptomyces coelicolor A3(2):purification of the enzyme, cloning of the ppc gene and over-expression of the protein in astreptomycete [J]. Biochem J,1993,293:131-136.
    [106] Jhadeswar M, William C, Plaxton D. Phosphoenolpyruvate carboxylase protein kinase fromdeveloping castor oil seeds: partial purification, characterization, and reversible control byphotosynthate supply [J]. Planta,2007,226:1299-1310.
    [107] James CK, Liang BB. Brain mitochondrial citrate synthase and glutamate dehydrogenase: differentialinhibition by fatty acyl coenzyme A derivatives [J]. Metabolic Brain Disease,1994,9:143-152.
    [108]包莹玲,潘力.茂原链霉菌原生质体制备条件的优化[J].现代食品科技,2008,24:138-141.
    [109]程骥,洪文荣,叶荔榕.黑暗链霉菌与卡那链霉菌原生质体融合研究程[J].福州大学学报(自然科学版),2003,31:111-115.
    [110]周礼红,李国琴,王正祥.红曲霉原生质体的制备、再生及其遗传转化系统[J].遗传,2005,27:423-428.
    [111]诸葛健,王正祥.工业微生物实验技术手册,北京[M]:中国轻工业出版社.
    [112] Katalin F, Elvira D, Alfoldi G. Polyethylene glycol-induced fusion of heat-inactivated and livingprotoplasts of Bacillus megaterium [J]. Journal of bacteriology,1978,31:68-70.
    [113] David A, Hopwood A, Helen M. Protoplast fusion in Streptomyces: fusions involvingultraviolet-irradiated protoplasts [J]. Journal of General Microbiology,198l,126:21-27.
    [114] Leonard E, Kumaran P, Thayer K. Combining metabolic and protein engineering of a terpenoidbiosynthetic pathway for overproduction and selectivity control [J]. PNAS,2010,107:13654-13659.
    [115]曲绍轩,高山,黄晨阳. SRAP、ISSR和RAPD分子标记技术在银耳菌株鉴别上的应用[J].食用菌学报,2007,14:1-5.
    [116] Claude F, Lheriyier M, Sanchez C. Electron microscopic study of Bacillus subtilis protoplast fusion[J]. Journal of bacteriology,1979,137:1354-1361.
    [117] Rastogi N, David H, Rafindrve E. Spheroplast fusion as a mode of genetic recombination inMycobacteria [J]. Journal of General Microbiology,1983,129:1227-1237.
    [118] Kohler J, Darland G. Protoplast fusion in Streptomyces avermitilis [J]. Journal of IndustrialMicrobiology,1988,3:11-320.
    [119] Coetzee JN, Sirgel FA, Lecatsas G. Genetic recombination in fused spheroplasts of Providencealcalifaciens [J]. Journal of General Microbiology,1979,114:313-322.
    [120] Milton A, Typas C. Heterokaryon incompatibility and interspecific hybridization between Verticilliumalbo-atrum and Verticillium uliae following protoplast fusion and microinjection [J]. Journal ofGeneral Microbiology,1983,129:3043-3056.
    [121] Kever F, Peberdy JF. Interspecific hybridization between Aspergillus nidulans andAspergillus rugulosus by fusion of somatic protoplasts [J]. Journal of General Microbiology,1977,102:255-262.
    [122] Zhao J, Chang ST. Interspecific hybridization between Volvariella volvacea and V. bombycina byPEG-induced protoplast fusion [J]. World Journal of Microbiology and Biotechnology,1997,13:145-151.
    [123] John F, Peberdy H, Hendrik E. Interspecific hybridization between Penicillium chlysogenum andPenicillium cyaneo-fulvum following protoplast fusion [J]. Molec Genet,1977,157:281-284.
    [124] Kiyohara H, Toshiro W, Junko I. Intergeneric hybridization between Monascus anka and Asperyillusoryzae by protoplast fusion [J]. Appl Microbiol Biotechnol,1990,33:671-676.
    [125] Rojan P, Gangadharan D, Madhavan K. Genome shuffling of Lactobacillus delbrueckii mutant andBacillus amyloliquefaciens through protoplasmic fusion for L-lactic acid production from starchywastes [J]. Bioresource Technology,2008,99:8008-8015.
    [126] Kennedy M, Krouse D. Strategies for improving fermentation medium performance: a review [J].Journal of Industrial Microbiology and Biotechnology,1999,23:456-475.
    [127] Prapulla SG, Jacob Z, Chand Nagin. Maximization of lipid production by Rhodotorula gracilrisCFR-1using response surface methodology [J]. Biotechnology and Bioengineering,1992,40:965-970.
    [128] Bajaj IB, Lele SS, Singhal RS. A statistical approach to optimization of fermentative production ofpoly(γ-glutamic acid) from Bacillus licheniformis NCIM2324[J]. Bioresour Technol,2008,100:826-832.
    [129] Majumder A, Singh A, Goyal A. Application of response surface methodology for glucan productionfrom leuconostoc dextranicum and its structural characterization [J]. Carbohy-drate Polymers,2009,75:150-156.
    [130] Yoshimitsu Hamano. Biochemistry and enzymology of poly-epsilon-L-lysine biosynthesis [J].Microbiology Monographs,2010,15:23-44.
    [131]焦瑞身.微生物工程[M].北京:化学工业出版社,2005,25.
    [132]陈坚,刘立明,堵国成.发酵过程优化原理与技术[M].北京:化学工业出版社,2009,3-7.
    [133] Technikova Z, Fabrizio D, Salvatore M. Design of medium for growth of Actinomadura sp.ATCC397727, producer of the glycopeptide A40926: effects of calcium ions and nitrogen sources [J].Appl Microbiol Biotechnol,2004,65:671-677.
    [134] Hujanen M, Linko Y. Effect of temperature and various nitrogen sources on L (+)-lactic acidproduction by Lactobacillus casei [J]. Appl Microbiol Biotechnol,1996,45:307-313.
    [135] Finlay RD, Frostegard A, Sonnerfeld T. Utilization of organic and inorganic nitrogen sources byectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud [J]. NewPhytol,1998,120:105-115.