电力系统数字仿真若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统数字仿真已成为电力系统规划、设计、运行、分析与控制的主要工具,通过数字仿真直接得出对规划方案、运行方式、控制策略、装置性能肯定或否定的评价。
     随着电力电子、微电子和微处理器等技术的发展,各种新型的一次和二次设备不断投入运行,电力工业体制的转变和系统控制理论的发展需要模拟新的调控策略;基于固定模型的传统仿真软件已不能适应新的要求,迫切需要提高仿真软件的开放性建模能力。大区域互联使电网的安全稳定裕度减小,系统的各种数学模型接近或处于病态,电力市场的形成和发展使系统的运行越来越接近极限条件,数字仿真结果对模型和参数更加敏感;从而迫切需要分析模型的准确性对大规模电力系统数字仿真结果的影响。本文围绕用户自定义建模技术(开放性建模)和发电机模型中转速简化处理对暂态稳定计算的影响(模型准确性)进行了研究。
     用户自定义建模技术在国内外大型电力系统数字仿真软件中已有所应用,实现方案各不相同。本文深入研究了用户自定义建模技术的基本原理、数学描述形式、求解算法以及潮流计算和暂态计算中主系统和用户系统迭代求解方法,以电力系统数字仿真商业软件为例,分析了不同建模技术的优缺点。
     用户模型模拟方法和接口处理是用户自定义建模技术中的两大关键环节,目前通常采取按物理属性分类模拟方法,导致接口处理复杂。本文提出一种基于主系统状态的用户系统等效模拟方法,将用户系统对网络的影响等效为串联电压源和阻抗、并联电压源和阻抗以及变压器/移相器变比变化,然后依据主系统状态将上述等效转换为相关节点注入量的改变,从而允许不修改主系统导纳阵的情况下考虑用户系统对主系统网络的影响,大大简化了主系统和用户系统的接口。提出一种通过6个字段表征接口变量的方法,进一步简化了人机界面的设置。本文在MATLAB环境下开发了具有用户自定义建模功能的电力系统数字仿真计算程序,包括潮流计算、暂态数字积分和暂态稳定量化分析;实例仿真表明了实现方案的有效性和可行性。
     FASTEST是一优秀的电力系统暂态安全量化分析软件,开放式建模是其发展的必然要求;MATLAB堪称数值计算、建模、仿真软件中的典范,应用越来越广。本文对MATLAB的开放性和其与FASTEST协同完成计算任务的可能性进行了研究,提出了FASTEST和MATLAB计算引擎链接的方案,从而部分实现了FASTEST的UDM功能,大大提高了FASTEST的建模灵活性。为丰富FASTEST建模方式,本文提出通过动态链接库实现FASTEST调用用户程序的方案,并研究了通过内存文件代替磁盘文件进行数据交换的处理方法。用户程序功能的实现提供给用户更多的选择,使FASTESTT成为一个更具灵活性、功能更加强大的开放性计算平台。仿真结果说明实现方案的可行性和有效性。
Power system digital simulation is believed as an indispensable tool for power system planning, design, operation, analysis, control etc. The simulation results are normally regarded as authoritative opinions, by which the planning schemes, dispatch plans, control strategies, and equipments performances are evaluated.With the development of power electronics, microprocessors, and microelectronics, new equipments are beginning to emerge. With the restructuring of the electric power industry, new regulating strategies come to front. All these have led to a sharp increase in the need for power system digital simulation software packages to count for these new models. With the development towards an open market and interconnection, the operating condition of transmission systems will be more uncertain, and the physical flows on the system will be harder to control. All these factors drive modern power transmission systems to operate closer and closer to their physical limits and increase the complexity of assessing and controlling the security. Under this circumstance, results of digital simulation are more sensitive to system models and parameters. It is an urgency matter to study the effects of models on simulation results. In this dissertation, studies on user-defined modeling(UDM) and effects of speed variations in generator model on power system transient stability are carried out.UDM has been adopted by several famous power system digital simulation software packages with different implementation methods, such as NETOMAC, TSAT, ETAP, PSASP, etc. In this dissertation, UDM's basic principle, mathematic model and solving method have been deeply studied, and iteration solving scheme of UDM in power flow calculation and transient calculation is also investigated. Take aforementioned software packages as an example, the differences, the advantages and disadvantages of different ones are studied.User system modeling method and interface between main system and user system are two key parts of UDM. At present, user systems are usually sorted to different classes according to their physical attributes, which leads to complex interface. In this dissertation, an equivalent modeling method based on main system status is presented, it treats the effects of UDM on main system network, including structure and parameters, as parallel voltage source and impendence, series voltage source and impendence, or variation of transformer ratio, then change the equivalent voltages, impendences and transformer's ratio variation to injections of corresponding nodes. It allows to calculate UDM without changing main system's Jacobian matrix, which can reduce the complexity of interface largely. A power system digital simulation program with UDM function is developed in MATLAB circumstance, including power flow calculation, transient digital integration and transient stability quantitative analysis.FASTEST is a unique and rigorously quantitative method for transient stability analysis. MATLAB, which is an excellent tool for numerical calculation, modeling and
引文
1 薛禹胜.运动稳定性量化理论.南京:江苏科学技术出版社,1999
    2 黄家裕,陈礼义.电力系统数字仿真.1995
    3 陈礼义,顾强.电力系统数字仿真及其发展.电力系统自动化,1999,23(23)
    4 Kosterev DN, Taylor C W, Mittelstadt W A. Model Validation for the August 10, 1996 WSCC System Outage. IEEE Trans on Power Systems, 1999, 14 (3)
    5 贺仁睦.电力系统动态仿真准确度的探究.电网技术,2002,24(12)
    6 薛禹胜.电力市场化和电网互联对稳定分析技术的挑战.面向21世纪的电力科学技术.北京:中国电力出版社,2001
    7 薛禹胜.电力系统暂态稳定快速分析和控制的现状和发展.电力系统自动化,1995,19(1)
    8 方勇杰,薛禹胜.现代电力系统控制的发展趋势.电力系统自动化,1997,21(10)
    9 薛禹胜.电力市场稳定性与电力系统稳定性的相互影响.电力系统自动化,2002,26(21):2002.26(22)
    10 Wellington S M, Fernando L A. Dynamic Coupling Between Power Markets And Power Systems. Revista Controle & Automac, 2001, 12 (1)
    11 Wellington S M, Femando L A. Eigenvalue Calculation of a Linearized Model of an Intercon-nected Power System including Market Dynamics. Technical Report, Pserc Research Report, The University of Wisconsin-Madison, 1997
    12 电力系统分析综合程序用户手册(6.0版).北京:电力科学研究院,2000
    13 Ibsais, Ajjarapu V. The Role of Automatic Differentiation in Power System Analysis. IEEE Trans on Power Systems, 1997, 12 (2)
    14 Mierendorff H, Schwamborn S. Automatic Model Generation for Performance Estimation of Parallel Programs. Arbeitspapiere 1030, St Augustin, Germany, November 1996
    15 Lei X, Lerch E, Povh D, et al. A Large Integrated Power System Software Package- NETOMAC. International Conference on Power System Technology, 1998 (1)
    16 Transient Security Assessment Tool Model manual (Version 1.2). Powertech Labs Inc, Canada, 2001
    17 Moshref A, Rodolakis A J, Barnes R, et al. Flexible Transient Stability Software Features User-defined models. IEEE Computer Applications in Power, 1993, 6(4)
    18 尹建华.电力系统中FACTS控制与仿真分析的研究.浙江大学博士学位论文,1997
    19 Fankhauser H R, Adielson M, Edris A A, et al. SIMPOW - A Digital Power System Simulator. ABB Review, 1990, 3(7)
    20 暂态安全定量分析工具用户手册2.0版.南瑞稳定所,2002
    21 薛禹胜.EEAC和FASTEST.电力系统自动化,1998,22(9)
    22 Kron G, Park R H. Two-Reaction Theory of synchronous Machines - Part Ⅱ. AIEE Trans, 1933, vol.52
    23 Ewart D N, Schulz R P. Face Multi-machine Power System Simulator Program. Proc PICA Conference, May 1969
    24 Kunder.电力系统稳定与控制(影印版).北京:中国电力出版社,2001
    25 薛禹胜.EEAC与直接法的机理比较(Ⅰ~Ⅳ).电力系统自动化,2001,25(11)~25(14)
    26 张鋆,陈怡,薛禹胜.电力系统暂态摇摆曲线的分群.电力系统自动化,1997,21(8)
    27 戴晨松,薛峰,薛禹胜.受扰轨迹分群研究.电力系统自动化,2000,24(1)
    28 Xue Y. Extended Equal Area Criterion: Foundations and Apllications(invited Paper) . In: 4th Symposium of Specialists in Electric Operational and Expansion Planning. Brazil: 1994
    29 薛禹胜.非自治非线性多刚体系统运动稳定性的定量分析(连载).电力系统自动化,1998,22(1)~1998,22(8)
    30 薛禹胜.DEEAC的理论证明——四论暂态能量函数直接法.电力系统自动化,1993,17(7)
    31 Xue Y, Van Cutsem Th, Pavella M. A Simple Direct Method for Fast Transient Stability Assessment of Large Power Systems. IEEE Trans on Power Systems, 1988, 3(2)
    32 Xue Y. Practically Negative Effects of Emergency Controls. In: IFAC/CIGRE Symposium on Control of Power Systems and Power Plants, Beijing: 1997
    33 Xue Y. Unstable Modes and the Critical Mode of Transient Stability — Mechanisms and Identification(Invited Paper). In: 5th Symposium of Specialists in Electric Operational and Expansion Planning, Brazil, 1996
    34 Xue Y. Transient Stability Controls. In: International Workshop on Power System Management. Beijing: 1997
    35 Rovnyak S M. Discussion of "A Unified Approach to Transient Stability Contingency Filtering, Ranking, and Assessment". IEEE Trans on Power Systems, 2002, 17(2)
    36 王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003
    37 薛禹胜.现代电网稳定理论和分析技术的研究方向.电力系统自动化,2000,24(7)
    38 周泽昕,吴中习.建立自定义模型时的初值平衡问题.电网技术,1996,20(1)
    39 Solodovnik E, Cokkinides G, Dougal R, et al. Nonlinear Power System Component Modeling Using Symbolically Assisted Computations. Power Engineering Society Summer Meeting, 2001, vol.3
    40 Perez L G, Flechsig AJ, Venkatasuramanian V. Modeling the Protective System for Power System Dynamic Analysis. IEEE Trans on Power Systems, 1994, 9 (4)
    41 Calovic M S. Modeling and Analysis of Under-load Tap-changing Transformer Control Systems. IEEE Trans on Power Apparatus and Systems, 1984, vol. PAS-103, no.7
    42 Dobson I. Stability of Ideal Thyristor and Diode Switching Circuits. IEEE Trans on Circuits and Systems Ⅰ, 1995, 42 (9)
    43 Lemmon M D, He K X, Markovsky I. Supervisory Hybrid Systems. IEEE Control Systems Magazine, 1999, 19 (4)
    44 Hiskens I A. Inverse Problems in Power Systems. Bulk Power System Dynamics and Control V, August26-31, 2001, Onomichi, Japan
    45 Otter M, Elmqvist H, Mattsson S E. Hybrid Modeling in Modelica Based on the Synchronous Data Flow Principle. IEEE International Symposium on Computer Aided Control System Design, 1999
    46 Hiskens I A, Pai M A. Trajectory Sensitivity Analysis of Hybrid Systems. IEEE Trans on Circuits and Systems -Part Ⅰ, 2000, 47(2)
    47 Hiskens I A, Sokolowski P J. Systematic Modeling and Symbolically Assisted Simulation of Power Systems. IEEE Trans on Power Systems, 2001, 16(2)
    48 薛禹胜.暂态稳定预防控制和紧急控制的协调.电力系统自动化,2002,26(4)
    49 Fankhauser H R, Aneros K, Edris A-A, et al. Advanced Simulation Techniques for the Analysis of Power System Dynamics. IEEE Computer Applications in Power, 1990, 3(4)
    50 Stubbe M, Bihaim A, Deuse J, et al. STAG - A New Unified Software Program for the Study of the Dynamic Behavior of Electrical Power Systems. IEEE Transactions on Power Systems, 1989, 4(1)
    51 de Mello F P, Feltes J W, Laskowski T F, et al. Simulating Fast and Slow Dynamic Effects in Power Systems. IEEE Computer Applications in Power, 1992, 5(3)
    52 Mathews J H, Kurtis D F. 数值方法(MATLAB版) (第三版).北京:电子工业出版社,2002
    53 Jerosolimski M, Levacher L. A New Method for Fast Calculation of Jacobian Matrices: Automatic Differentiation for Power System Simulation. IEEE Trans on Power Systems, 1994, 9(2)
    54 BischofC, Carle A, Khademi P, Maner A. ADIFOR 2.0: Automatic Differentiation of Fortran 77 Programs. IEEE Computational Science & Engineering, 1996, 3(3)
    55 Coleman T F, Jonsson G F. The Efficient Computation of Structured Gradients using Automatic Differentiation. Cornell Theory Center Technical Report CTC97TR272, April 28, 1997
    56 Bischof C, Griewank A. Tools for the Automatic Differentiation of Computer Programs. Technical Report Preprint ANL/MCS-P608-0896, Argonne National Laboratory, January 1997
    57 Campbell S L, Moore E, Zhong Y. Utilization of Automatic Differentiation in Control Algorithms. IEEE Trans on Automatic Control, 1994, 39(5)
    58 Rall L B. Automatic Differentiation: Techniques and Applications. Lecture Notes in Computer Science No. 120, Spinger, 1981
    59 Charles W, Brice, Levent U. The Virtual Test Bed: An Environment for Virtual Prototyping. Proceedings of International Conference on Electric Ship, Istanbul, Turkey, September, 2001
    60 Proulx R, Valette A, et al. User-oriented Simulation of HVDC Control in a Transient Stability Program. IEEE Trans on Power Apparatus and Systems, 1985, 104(7)
    61 Vuong G T, Paris G. Rule-Based Relay Modeling for Transient-Stability Studies. IEEE Trans on Power Systems, 1988, 3(3)
    62 Dynamic Simulation Language(DSL) User's Manual. ABB Power System Analysis Department, 1998
    63 Meliopoulos A, Cokkinides G, Beker B, et al. A New Tool for Visualization and Animation of Power Component and System Operation. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000
    64 Wu Zhongxi, Zhou Xiaoxin. Power System Analysis Software Package (PSASP) -An Integrated Power System Analysis Tool. International Conference on Power System Technology, 1998, vol.1
    65 韩祯祥,张琦,徐政.一个大型集成化的电力系统仿真计算软件——NETOMAC.电力系统自动化,1997,21(9)
    66 张志涌.精通MATLAB(5.3版).北京:北京航空航天大学出版社,2000
    67 王守相,刘玉田.电力系统潮流计算研究现状.山东电力技术,1995,5
    68 张伯明,陈寿孙.高等电力网络分析.北京:清华大学出版社,1996
    69 吴际舜,候志俭.电力系统潮流计算机方法.上海:上海交通大学出版社,2000
    70 倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002
    71 薛禹胜.滑步与发散,运动系统与一般动力系统.电力系统自动化,2003,27(7)
    72 Hingorani N G. High Power Electronics and Flexible ac Transmission Systems. IEEE Power Engineering Review, July 1988
    73 Gyugyj L. Unified Power-Flow Control Concept for Flexible ac Transmission systems. IEEE Proceedings-C, 1992, 139(4)
    74 徐琰,李乃湖,王海风,等.基于统一潮流控制器(UPFC)的电力系统稳态潮流控制的模型和算法.电力系统及其自动化学报,1996,8(3)
    75 葛敏辉,石松奇,周贵兴.UPFC控制器设计原理及方案.电网技术,2000,24(6)
    76 章良栋,岑文辉,刘为.UPFC的模型及控制器研究.电力系统自动化,1998,22(1)
    77 Nabavi N A, Iravani M R. Steady-state and dynamic models of unified power flow controller(UPFC) for power system studies, IEEE Trans on Power Systems, 1996, 11(4)
    78 Noroozian M, Angquist L, Ghandhari M, et al. Use of UPFC for optimal power flow control[J] . IEEE Trans PWRD, 1997, 12 (4)
    79 颜伟,朱继忠,孙洪波,等.UPFC的潮流控制与暂态稳定性研究.中国电机工程学报,2000,20(12)
    80 李岩松,郭家骥,刘君.应用UPFC控制电力网络潮流的研究.电力系统及其自动化学报,2000,12(4)