高压断路器弧前微观机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧产生、发展、熄灭过程的深入研究是对其进行有效控制的前题,对电弧产生的前因及影响电弧生成因素的深入探索表明,弧前抑弧调控是提升开断能力的有效途径。弧前过程是电弧存在的基础,在弧前过程中形成的微观粒子空间分布、能量分布、空间电荷作用下的动态电场分布及鞘层分布对稳态电弧能量起到决定性作用。弧前过程是一个小时、空尺度下的非线性、时变、非平衡过程,基于此,本文从微观角度出发,探求液态金属桥断裂后稳态电弧生成前带电粒子群的产生、发展及演变规律及物理本质,分析不同灭弧介质弧前过程的形成机理,讨论宏观因素对微观形成机理的影响,具体内容为:
     (1)以非平衡态电离气体的基本方程玻尔兹曼方程为基础,创建弧前电子发展动态模型、带电离子运动模型、微观粒子碰撞模型,并提出基于粒子蒙特卡罗碰撞的求解方法。采用建立的数学模型,自编程仿真计算了单原子介质弧前过程,对比经典算例,验证算法准确性。通过对一维单原子介质的仿真计算,分析电子、离子运动对弧前过程的影响,研究鞘层和电离层形成过程。
     (2)建立了简化二维真空断路器大电流开断下弧前过程仿真模型。以金属电离化气为研究对象,自编程仿真分析真空金属电离化气电弧产生的微观物理本质。求得了电子崩在金属电离化气中的发展过程、空间电荷密度分布、鞘层形成过程及空间电荷作用下的动态电场变化。从微观角度出发,解释大电流开断下,金属电离化气电弧形成前期电子聚集的主要原因;分析了开距、二次电子发射系数、开断电流、近极区电子碰撞等宏观参数对微观弧前过程影响的物理本质。
     (3)根据场致电子发射理论和热电子发射理论,建立二维真空断路器小电流开断下弧前过程仿真模型。自编程仿真分析小电流开断过程中金属电离化气的产生及击穿过程,获得电极过程对小电流真空电弧产生的绝对影响。
     (4)建立SF6电弧的动态弧前过程仿真模型,在模型中充分考虑多原子组成的SF6分子在弧前过程中激发、吸附、解离电离、粒子重组等不同物理化学变化。自编程计算分析空间电荷时空变化及对微观动态电场的影响;定量计算SF6电弧弧前过程中电子崩产生、发展时间及电子能量变化;获得SF6电弧形成初期等离子体内部运动情况。
The further study on the process of arc production, development and extinction is theprecondition for arc effective control. The further study on the arcing cause and the effectfactors show that suppressing and controlling before arc generating process is the effectivemethod to improve the breaking ability. The before-arc process is the base of arc existingand the space distributions of microscopic particles, energy distribution, dynamic electicfield strength distrbuiton and sheathe distribution have the key effects on the energy ofsteady-state arc. The before-arc process is a non-linear, time variation and non-equilibriumprocess in tiny time domain and space domain. So the formation, development andevolution of charged particles swarms and the physical essence of arc after liquid metalbridge disrupting and before stable arc generation and origination are researched in thisdissertation based on microscopic angle to explore the formation mechanism of thebefore-arc process of different arc extinguishing dielectric and the different factors thataffect their formation mechanism and parameters are also discussed. The specific contentsare as followings:
     (1) A dynamic model consisiting of electron development, charged ion movement,microscopic particle collision is proposed based on the Boltzmann equation and the solvingmethod based on Particle in cell-Monte Carlo collision is utilized. Based on the equationsabove, the one-dimensional before-arc process of single-atomic structure dielectric issimulated by self-programmed codes. Compared with the classical example, the accuracyof the algorithm and self-programming is verified. By this model, the impacts of electronand ion motions on before-arc process are analyzed and the formation processes of sheatheand ionization layer are also acquired.
     (2) The model of before-arc process in a simplified two-dimensional vacuum circuitbreaker when high current interruption is established in this dissertation. Metal vapor ischosen as the research object, microscopic physical essence of vacuum metal vapor arcgeneration is analyzed by self-programmed codes. The electron avalanche developmentprocess in metal vapor, the distribution of space charges density, the sheath formation process and the change of dynamic electric field by the space charge are obtained. Fromthe micro point of view, the main reason for the contraction of electron during the metalvapor arc formation prophase is explained in this dissertation. The physical essences thatthe effects on the microscopic before-arc process produced by the macroscopic parameterssuch as the opening range, secondary electron emission coefficient, interruption currentand electron collision at proximal region are analyzed.
     (3) According to the field emission theory and the hot electron emission theory,According to the field emission theory and the hot electron emission theory, the model ofbefore-arc process in a simplified two-dimensional vacuum circuit breaker when smallcurrent interruption is established in this dissertation. The metal vapor generated in thesmall current breaking process and breakdown process are simulated by self-programmedcodes. The absolute effect of the electrode process on small current vacuum arc generatinghas already been obtained.
     (4) The simulation model of polymolecule SF6is established by considering the elasticmomentum transfer, vibrational excitation, electron attachment, ionization and otherdifferent physical and chemical changes in before-arc process. The effects of spatial andtemporal variation on micro dynamic electric field are studied further by self-programmedcodes. The avalanche producing and development time and changes in the electron energyof SF6fore-arc are quantitatively calculated in this dissertation and the plasma internalmovement of SF6arc formation stage has also been obtained.
引文
[1]中华人民共和国国家发展和改革委员会,国家中长期科学和技术发展规划纲要(2006-2020)-能源科技发展重点,http://www.sdpc.gov.cn/default.htm.
    [2] Mirsad Kapetanovic, Rene Peter Smeets. High Voltage Circuit Breaker [M]. KAMA,2011.
    [3]董华军,廖敏夫,邹积岩,武建文,李立维.基于CCD真空开关电弧等离子体参数诊断方法[J].电工技术学报,2007,22(6):65-68.
    [4] Wenkai Shang, Edgar Dullni, Harald Fink. Optical investigations of dynamic vacuum arc modechanges with different axial magnetic field contacts[J]. IEEE Trans. on Plasmas Science,2003,31(5):187-191.
    [5]邹积岩,董华军,丛吉远,向川.真空开关电弧电子温度诊断的实验研究[J].真空科学与技术学报,2008,28(6):531-536.
    [6]王景,武建文.中频真空电弧的等离子体特性[J].中频真空电弧的等离子体特性[J].中国电机工程学报,2011,31(36):145-151.
    [7]刘晓明,袁大勇,曹云东.SF6断路器磁流体二维电弧模型化与仿真.沈阳工业大学学报,2009,31(3):257-261.
    [8]杨飞,荣命哲,吴翊,史强.考虑栅片烧蚀金属电离化气的栅片切割空气电弧仿真与实验研究[J].物理学报.2011.60(5):05028-1-9.
    [9]吴诩,荣命哲,杨茜.低压空气电弧动态特性仿真及分析.中国电机工程学报,2005,25(21):143-148.
    [10]朱刚,沈孟育,王其平.SF6断路器灭弧室内电弧阻塞效应的有限元分析.应用基础与工程科学学报,1994,2(4):377-381.
    [11]李兴文,陈德桂.空气开关电弧的磁流体动力学建模及特性仿真.中国电机工程学报,2007,27(21):31-37.
    [12]曹云东.电器学.北京:机械工业出版社,2012.
    [13] Schade E, Ragaller K. Dielectric Recovery of an Axially Blown SF6Arc after Current Zero[J].IEEE Trans. on Plasma Science,1982,10(3):162-172.
    [14] Swierczynski B, Gonzalea J J, Teulet P, et al. Advance in low voltage circuit breaker modeling[J].J. Phys. D: Appl. Phys.2004,37(4):595-609.
    [15] Lindmayer M, Marzahn E, Mutzke A. The process of arc splitting between metal plates in lowvoltage arc chutes[C]. Proc. of the50th IEEE Holm Conf. on Electrical Contacts, Seattle,2004:28-34.
    [16]向川,廖敏夫,董华军,邹积岩.基于MHD的小间隙真空电弧仿真研究[J].真空科学与技术学报,2011,31(6):710-715.
    [17]朱立颖,武建文.横向磁场下中频真空电弧形态及电弧电压特性[J].中国电机工程学报,2011,31(1):131-137.
    [18]吴诩,荣命哲,杨茜.低压空气电弧动态特性仿真及分析[J].中国电机工程学报,2005,25(21):143-148.
    [19]李兴文,陈德桂.空气开关电弧的磁流体动力学建模及特性仿真[J].中国电机工程学报,2007,27(21):31-37.
    [20]刘晓明,王尔智,曹云东.高压SF6断路器电弧动态模型研究[J].中国电机工程学报,2004,24(2):102-106.
    [21]刘晓明,冷雪,曹云东.550kV SF6断路器气流与电弧相互作用混沌研究[J].电工技术学报,201——27(6):46-52.
    [22] Calixte. E, Yokomizu. Y. Evaluation of breaking capability of a hybrid fault current-limitingcircuit breaker based on Mayr-type arc model[J]. IEEE Transactions on Power and Energy,2004,124(6):843-850.
    [23] A Gleizes, JJ Gonzalez, and P Freton. Thermal Plasma modeling[J]. Phys D: Appl Phys,2005,38(9):153-183.
    [24] Jin Ling Zhang, Jiu Dun Yan. Computational investigation of arc behavior in an auto-expansioncircuit breaker contaminated by ablated nozzle vapor[J]. IEEE Transactions on Plasma Science,2002,30(2):706-719.
    [25]张俊民. SF6自能膨胀式断路器开断大电流过程的数值模拟与分析[J].电工技术学报,2004,19(9):6-17.
    [26] Li Xing-wen, Chen Degui. Simulation of the effects of several factors on arc plasma behavior inlow voltage circuit breaker[J]. Plasma Science and Technology,2005,7(5):3069-3072.
    [27] Li X, Chen D, Liu H. Imaging and spectrum diagnostics of air arc plasma characteristics[J]. IEEETrans. Plasma Sci,2004,32(6):2243-2249.
    [28] Jong-chul Lee, Youn J.Kim. The influence of metal vapors resulting from electrode evaporationin a thermal puffer-type circuit breaker[J]. Vacuum,2007,81(7):875-882.
    [29]马强,荣命哲,Anthony B. Murphy等.考虑电极烧蚀影响的低压断路器电弧运动特性仿真及实验[J].中国电机工程学报,2009,29(3):115-119.
    [30] Bizjak. G., Zunko. P. Combined model of SF6circuit breaker for use in digital simulationprograms[J]. IEEE Transactions on Power and Delivery,2004,19(1):174-180.
    [31]吴翊,荣命哲,王小华.触头打开过程中低压空气电弧等离子体的动态分析[J].电工技术学报,2008,23(5):12-17.
    [32]王立军,贾申利,史宗谦,荣命哲.真空电弧磁流体动力学模型与仿真研究[J].中国电机工程学报,2005,25(4):113-118.
    [33]杨飞,荣命哲,吴翊,史强.考虑栅片烧蚀金属电离化气的栅片切割空气电弧仿真与实验研究[J].物理学报,2011,60(5):05028-1-9.
    [34] Loeb, Leonard B., Meek, John M. Mechanism of spark discharge in air at atmospheric pressure.Appl. Phys,1940,11:438.
    [35] J.M.Meek. A theory of spark discharge. Phys. Rev.1940,57:722-728.
    [36] Charles G. Miller, Leonard B. Loeb. Spark breakdown at atmospheric pressure and above inrelation to Paschen’s law. Phys. Rev.1948,73:84-85.
    [37] Loeb, Leonard B. Recent developments in analysis of the mechanisms of positive and negativecoronas in air. Appl. Phys,1948,19:882.
    [38] I. Gallimberti, N Wiegart. Streamer and leader formation in SF6and SF6mixtures under positiveimpulse conditions: I. Corona development. Appl. Phys,1986,12:2351-2361.
    [39] I Gallimberti, N Wiegart. Streamer and leader formation in SF6and SF6mixtures under positiveimpulse conditions: II. Streamer to leader transition. Appl.Phys,1986,12:2363-2379.
    [40] I. Gallimberti. Impulse corona simulation for flue gas treatment. Pure&Appl. Chem,1988,60(5):663-674.
    [41] J.D.P.Passchier,W.J.Goedheer. Relaxation phenomena after laser-induced photodetachment inelectronegative rf discharges. Appl.Phys.,1993,73(3):1073-1079.
    [42] Vitello P A, Penetrante B M, Bardsley J N. Simulation of Negative-streamer Dynamics inNitrogen. Phys Rev A,1994,49(6):5547-5598.
    [43] Pfeiffer W, Tong L, Schoen D. Computer Simulation of Streamer Discharge Processes in SF6andSF6/N2Mixtures. XIV International Conference on Gas Discharges and their Applications,Liverpool,2002:227-230.
    [44] J.P. Boeuf,E.Marode. A Monte Carlo analysis of an electron swarm in a nonuniform field: thecathode region of a glow discharge in helium. Appl. Phys.,1982,15:2169-2187.
    [45] Boeuf J.P. Dynamics of a guided streamer ('plasma bullet') in a helium jet in air at atmosphericpressure. Journal of Physics D: Applied Physics2013,46(1).
    [46] Georghiou G E, Morrow R, Metaxas A C. Two-dimensional Simulation of Streamers Using theFE-FCT Algorithm. Appl. Phys,2000,30:27-32.
    [47]李德君.大气压射流的等离子体产生机理.大连理工大学,2004.
    [48]张红艳.同轴电极介质阻挡大气压辉光放电数值模拟.大连理工大学,2006.
    [49]邵瑰玮.两相体放电实验和仿真研究及其在环保中的应用初探.华中科技大学,2005.
    [50]周俐娜,王新兵.微空心阴极放电的流体模型模拟.物理学报,2004,53:3440-3444
    [51] R.J.Carman,A.Maitland. A simulation of electron motion in the cathode sheath region of a glowdischarge in helium.Appl.phy.,1987,20(8):1021-1030.
    [52] V.Guerraoureiro. Kinetic modeling of low-pressure nitrogen discharges and post-discharges. TheEuropean Physical Journal Applied Physics,2004,28(2):125-152.
    [53] B.F.Gordiets,C.M.Ferreira. Model of a low-pressure N2-O2flowing glow discharge. IEEETrans. Plasma Sci.,,1995,23(4):750-768.
    [54] Brid G A. Direct simulation of the Boltzmann equation. Phys. Fluids,1970,13:2676.
    [55] Wagner W. A convergence proof for Bird’s direct simulation Monte Carlo method for theBoltzmann equation. Stat. Phys.,1992,66,1011.
    [56] Nanbu K. Direct simulation scheme derived from the Boltzmann equation. Phys. Soc.,1980,45:2042-2049.
    [57] Babovsky H. A convergence proof for Nanbu’s Boltzmann simulation scheme. Euro. J. Mech.B:Fluids,1989,8(1):41-45.
    [58]尹增谦,管景峰,张晓宏,曹春梅.蒙特卡罗方法及应用.物理与工程,2002,12(3):45-49.
    [59] K. Kosaki and M. Hayashi, Electron argon atom collision cross section. Elect. Eng.,1992.
    [60] Y. Sakai. Database in low temperature plasma modeling. Applied Surface Science,2002,192:327-338.
    [61] J.P.Boeuf. A two-dimensional model of glow discharges. Appl.Phys.,1988,63(5):1342-1349.
    [62] Z. Wronski. Computer simulation of energy-angle distributions of ions generated in the cathodefull of a glow discharge. Vacuum,1991,42(10):635-644.
    [63] de Urquijo, J. Ion Mobilities and Transport Cross Sections of Daughter Negative ions in N2O and N2O-N2mixtures. Plasma Sources,2013,22(2).
    [64]吴变桃,肖登明.用改进的蒙特卡罗法模拟SF6和CO2混合气体电子崩参数.电工技术学报,2001,22(1):13-16.
    [65]张连珠,傅凤清,王增波.氮气空心阴极辉光放电等离子体离子的蒙特卡罗模拟研究.核聚变与等离子体物理,2006,26(2):135-139.
    [66]张连珠,于威.辉光放电阴极区氮离子(N+2)的蒙特卡罗模拟.河北师范大学学报,1999,23(1):62-66.
    [67] Buneman O, Dissipation of currents in ionized media. Physics Review,1959,(115):503–517.
    [68] Dawson J M. One-dimensional plasma model. Physics Fluids,1962,1(5):445-459.
    [69] C.K. Birdsall and A. B. Langdon, Plasma physics via computer simulation. New York:McGraw-Hill,1985.
    [70] J P Verboncoeur. Particle simulation of plasmas: review and advances. Plasma Physics andcontrolled fusion,2005,47:231-260.
    [71] P.A.Lindsay, J.Watkins, and X.Chen. Simulation of some Transient Effects In a MagnetronUsing the Magic Code. Mug Shots,1995,3,(1).
    [72]狄隽,祝大军,刘盛纲. CHIPIC软件的电磁场计算方法.电子科技大学学报,2005,34(4):485-488.
    [73]蒋伯诚等.计算物理中的谱方法.长沙:湖南科学技术出版社,1988.
    [74]常文蔚,张立夫.空心介质波导契伦可夫辐射器的粒子模拟.计算物理,1988,5(3):32-44.
    [75]王闽.等离子体物理及其计算机模拟.西安:陕西科学技术出版社,1993.
    [76]邵福球,常文蔚,张立夫.自由电子激光的粒子模拟.国防科技大学学报,1989,11(2):70-78.
    [77]张章.高功率微波源中脉冲缩短现象的粒子模拟与机理研究.电子科技大学,2004.
    [78]张兆吉.若干等离子体现象的粒子模拟.大连理工大学,2006.
    [79] C.K. Birdsall, E. Kawamura, and V. Vahedi. Progress in speeding up a PIC-MCC codes appliedto rf plasma discharges. Fluid Sci.,1997,10:39-47.
    [80] C.K. Birdsall. Particle in cell charged particle simulations plus Monte Carlo collisions withneutral atoms. IEEE Trans. Plasma Sci.,1991,19:65-85.
    [81] V.Vahedi, M. Surendra. A Monte Carlo collision model for the particle in cell method:applications to argon and oxygen discharges. Computer physics communications,1995,87:179-198.
    [82] S.M.Lee, Y.S.Seo, J.K.Lee. Paschen breakdown curve by one-dimensional PIC-MCC simulation.Computer physics communications,2007,177(132).
    [83]邵福球.等离子体粒子模拟.北京:科学出版社,2002.
    [84] Langdon A B, Birdsall C K. Theory of plasma simulation using Finite-size particles. Phys Fluids,1970,13(6):2115.
    [85] Chen L, Okuda H. Theory of Plasma Simulation Using Multipole-Expansion Scheme.ComputerPhys.19:339.
    [86] A.Ueda. Computer Simulation. Tokyo: Asakura Shoten,1991.
    [87] C.K.Birdsall, A.B. Langdon. Plasma Physics via computer simulation. New York: Adam Hilger,1991.
    [88]聂小波.等离子体粒子模拟双时标算法.计算物理,1991,8:230.
    [89] K. Nanbu. Simple method to determine collisional event in Monte Carlo simulation ofelectron-molecule collision. Appl.phy.,1994,33:4752-4753.
    [90] M. Surendra, D.B. Graves and G.M.Jellum. Self-consistent model of a direct current glowdischarge: Treatment of fast electrons. Phys. Rev. A,1990,41:1112-1125.
    [91] W G Vincenti and C H Kruger Jr. Introduction to physical gas dynamics. New York: Wiley,1967.
    [92] K. Nanbu and Y.Kitatani. An ion\neutral species collision model for particle simulation of glowdischarge. Appl.phy.,1995,28:324-330.
    [93] Bogaerts A, Mark Van Straaten. Monte Carlo simulation of an analytical glow discharge: motionof electrons, ions and fast neutrals in the cathode dark space. Spectrochimica Acta,1995,50(2):179.
    [94] Wang Dezhen, Teng Caima, Ye Zong. A Monte Carlo simulation model for plasma source ionimplantation. Appl.phy.,1993,73(9):4171.
    [95] V.Vahedi, M. Surendra. A Monte Carlo collision model for the particle in cell method:applications to argon discharges. Computer physics communications,1995,87:179-198.
    [96] Marisa Roberto, Helen B. Smith, John P.Verboncoeur. Influence of metastable atoms inradio-frequency argon discharges[J]. IEEE Transactions on plasma science,2003,31(6):1292-1298.
    [97]吴丹.氩离子等离子体源离子注入的数值模拟[J].湖南文理学院学报,2008,20(1):35-38.
    [98]卢志琼,杨中海,金晓林.直流辉光放电中电子分布特性的研究[J].真空电子技术,2008,(5):35-37.
    [99] Michael A. Lieberman, Allan J. Lichtenberg. Principles of Plasma Discharge for MaterialsProcessing. New York: A John Wiley&Sons Inc,2005.
    [100]杨津基.气体放电.北京:科学出版社,1983.
    [101] Y. Nakamura and M. Kurachi. Electron transport parameters in argon and its momentum transfercross section. Appl.phy.,1988,21:718-723.
    [102] M Hayashi and S. Ushiroda. Calculations of drift velocity of electrons in inert gases at low E/N. J.Chem. Phys.,1983,78:2621-2652.
    [103] A Chutjian, D. C. Cartwright. Low energy electron scattering cross section for the production ofCO within condensed acetone. Phys. Rev. A,1981,23:2178–2193.
    [104] D. Rapp and P. Englander-Golden. Total cross sections for ionization and attachment in gases byelectron impact. J. Chem. Phys.,1965,43:1464–1479.
    [105] De Zhen Wang. Energy and angle distributions of ion striking a spherical target in plasma sourcein ion implantation. Appl. Phy.,1994,75(3):1335-1339.
    [106]张冠生.电器理论基础.北京:机械工业出版社,1997.
    [107] S. Takahashi, K. Arai, O. Morimiya, K. Hayashi, and E. Noda. Laser Measurement of CopperVapor Density after a High Current Vacuum Arc Discharge in an Axial Magnetic Field. IEEETrans. on Plasma Sci.,2005,33(5):1519-1526.
    [108] D.D.Philips, R.W. Davis and E.R.Graves. Inelastic Collision Cross Sections for14-MeVNeutrons. Phys. Rev.,1952,88:600-602.
    [109] M.Hayashi. Recommended value of transport cross sections for elastic collision and totalcollision cross section for electrons in atomic and molecular gases. Nayoya Institute ofTechnology,1981.
    [110] Mitio Inokuti,Benjamin Bederson. Cross Section Data. California: Academic Press,1994.
    [111] K. F. Scheibner, A. U. Hazi, and R. J. W. Henry. Electron-impact excitation cross sections fortransitions in atomic copper.Phys. Rev.,1987,35:4869.
    [112] Shima K. Mn and Cu K-shell ionization cross sections by electron impact. Phys Lett,1980,77:237-239.
    [113]易有根,葛树明,江少恩,唐永建,郑志坚.电子碰撞原子电离截面的理论研究.湖南文理学院学报,2010,22(4):19-25.
    [114] Maller V N. Advances in high voltage insulation and arc interruption in SF6and vacuum. Oxford:Pergamon Press,1981.
    [115] Lafferty J M. Vacuum Arcs: Theory and application. New York: John wiley&sons,1980.
    [116] Latham R V. HV Vacuum Insulation: The physical Basis, London: Academic Press,1981.
    [117] Ziomek W, Moscicka-Grzesiak H. Relation of breakdown voltage and prebreakdownmicrodischarge parameters in vacuum. IEEE Trans on Electrical Insulation,1993,28(4):481.
    [118] Latham R V. High voltage vacuum insulation: The physical basis. Landon: Academic press,1981.
    [119]王季梅,马志瀛,郭文元.真空开关理论及其应用.西安:西安交通大学出版社,1986.
    [120] Yanabu, S.; Zaima, E.; Hasegawa, T. Recent development of high voltage circuit breaker for highvoltage power transmission and distribution system. Transmission and Distribution Conferenceand Exhibition2002, Yokohama,2002:51.
    [121] Itoh H, Miura Y, Nakao Y. Electron swarm development in SF6I. Boltamann equation analysis.J. Phys. D: Appl. Phys.1988,21:922-930.
    [122] Rejoub R, Sieglaff DR, Lindsay BG, Stebbings RF. J. Phys. B: Mol Opt Phys,2001,34:1289.
    [123] Mason EA, McDaniel EW. Transport of properties of ions in gases. New York: Wiley,1988.