氮素形态和水分条件对水稻水分生理和氮素代谢影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素营养和水分是影响水稻生长的两个关键因素。为提高水分利用率,水稻节水栽培方式已成为目前的研究热点,在不同地区发展了覆草、覆膜等节水栽培方式。水稻旱作后,主要有两个环境条件的发生改变:田间水分状况由淹水转变为控制灌溉或相对轻度水分胁迫;土壤中氮素形态由铵态氮为主转变为以硝态氮为主或铵态氮和硝态氮混合。因此,研究不同水分条件和氮素形态对水稻生长发育、水分和光合生理、氮素吸收和代谢的影响具有重要的理论意义。
     本研究以不同基因型水稻品种(汕优63、扬稻6号、86优8和武运粳7号)为材料,采用营养液培养及聚乙二醇(PEG6000)模拟水分胁迫的方法,研究不同氮素形态和水分条件对不同基因型水稻生长发育、水分和光合生理、渗透调节以及氮素代谢的影响及其生理机制。阐明不同氮素形态和水分条件对不同基因型水稻在胁迫下的响应,为指导不同地区水稻节水栽培提供适宜品种参考。主要结果如下:
     1.与正常水分条件相比,水分胁迫对铵、硝营养水稻根系的生长均有促进效应,尤其在硝营养水稻中表现显著。就地上部生长而言,水分胁迫对铵营养处理籼稻的地上部干重和分蘖数无影响,但显著降低了硝营养籼稻品种;而粳稻品种铵、硝营养地上部干重均显著变化,但水分胁迫条件下铵营养粳稻的地上部干重显著高于硝营养粳稻。在两种水分条件下,供应铵营养水稻整株生物量均显著高于硝营养水稻,在水分胁迫条件下表现出较强的抗旱性。
     2.与硝营养相比,水分胁迫条件下,铵营养水稻的根系具有较高的根系活力、吸收面积和水分吸收能力。无论是在正常水分还是在胁迫水分条件下,铵营养水稻根系水分吸收和运输的途径以水通道蛋白为主的细胞-细胞途径;而硝营养水稻根系在正常水分条件下以细胞-细胞途径占优势;水分胁迫后水分运输途径转为质外体途径为主。
     3.与正常水分条件相比,水分胁迫条件下,铵、硝营养水稻根系通气组织(根系孔隙度)均有所增加,在硝营养根系增加尤为显著。水分胁迫显著降低了硝营养水稻根系水流导度和伤流液流速,而对铵营养水稻无影响。硝营养水稻根皮层通气组织的发育阻碍了水分的从根表面到根系中柱内的径向运输,从而降低了硝营养水稻的水分吸收。铵营养的水稻由于主要通过水通道蛋白进行水分运输,受根系通气组织的影响很小。
     4.在两种水分条件下,铵营养水稻的净光合速率均显著高于硝营养水稻。水分胁迫显著降低了硝营养水稻的总叶面积和新完全展开叶的叶面积和叶绿素含量(SPAD值),而对铵营养水稻无影响,说明铵营养水稻在水分胁迫条件下能够维持较高的光合特性,从而为水稻的生长提供更多的同化产物。
     5.正常水分条件下,硝营养水稻叶片中硝酸还原酶活性显著高于铵营养水稻;水分胁迫条件下,硝营养水稻硝酸还原酶显著降低,铵营养水稻基本不受水分胁迫影响。与正常条件下相比,水分胁迫条件下,硝营养水稻叶片对硝态氮的同化能力显著下降,铵营养水稻各部位对氮素的同化能力基本不受影响,从而保证了逆境下植物生长所需的充足氮源。
     6.在不同水分和氮素形态条件下,水稻各部位有机渗透调节物质(脯氨酸、游离氨基酸和可溶性糖)的含量均为叶片>茎秆>根系。水分胁迫条件下,铵营养水稻各部位有机渗透调节物质含量均显著高于硝营养水稻;而铵、硝营养水稻各部位无机离子(K+、Ca2+和Mg2+)的含量无变化,说明本研究条件下无机离子(K+、Ca2+和Mg2+)参与水稻的渗透调节不显著。有机渗透调节物质是水稻的主要渗透调节物质。
     7.分根实验结果表明,供应硝营养一侧根系水分胁迫显著降低水稻地上部的生长和干物质的积累,尤以两侧根系同时供应硝营养的水稻中表现明显。在两侧根系分别供应两种氮素形态营养(铵营养和硝营养)时,无论在正常还是水分胁迫条件下,单侧根系供应铵营养均有利于稳定和提高水稻叶片中叶绿素含量和光合速率。水分胁迫下供应硝营养一侧根系的通气组织与水分吸收呈显著负相关,而对供应铵营养的一侧无相关性。说明水分胁迫所造成的铵、硝营养水稻根系水分吸收的差异可能主要是由于根系自身对环境的响应。
Water supply and nitrogen nutrition are the two major restrictions for plant growth and development. At present, developing water-saving.rice cultivations, such as covering with plastic film and straw mulching, is becoming a hot topic of agricultural production research. There are two major differences between traditional cultivation and non-flooded conditions:(1) rice plants are frequently suffered from water stress in non-flooded condition;(2) nitrogen form is transferred from ammonium to nitrate or the mixture of ammonium and nitrate. Therefore, it is important to study the influence of water stress and nitrogen forms on plant growth, water relations, photosynthesis, nitrogen abosorption and metabolization.
     In order to study the effects of different nitrogen forms and water stress on plant growth, water relations, photosynthesis, nitrogen absorption and utilization, hydroponic experiments supplied with different N forms and water stress simulated by adding10%(M/V) polyethylene glycol6000were conducted, four rice genotypic varieties (Shanyou63, Yangdao6,86you8and Wuyunjing7) were utilized in the experiments, which can illustrate the response of different genotypic rice plants under the water stress condition, and pro vied varietal reference for conductions in different region with rice water-saving cultivation. The results obtained are as follows:
     1. Compared with non-water stress condition, water stress significantly stimulated root growth in both N forms, and the stimulation was higher in nitrate nutrition. Of indica rice plants, water stress had no negative effects on shoot biomass and tillers in ammonium nutrition, while significantly decreased them in nitrate nutrition. Of japonica rice plants, water stress significantly decreased shoot biomass and tillers in both N forms. Under water stress, shoot biomass of japonica rice plants was higher in ammonium nutrition than in nitrate nutrition. Regardless of water stress, whole plant biomass was higher in ammonium nutrition than in nitrate nutrition.
     2. Under water stress, root activity, absorption area and water uptake ability were higher in ammonium nutrition than in nitrate nutrition. Regardless of water status, water uptake and transport in ammonium nutrition were mainly through cell-cell passway; in nitrate nutrition, they were mainly through cell-cell pathway under non-water stress and throught apoplastic pathway under water stress condition.
     3. Water stress increased root aerenchyma formation, especially in nitrate nutrition. Water stress decreased root root hydraulic conductivity and xylem sap flow rate in nitrate nutrition, while had no negative effects in ammonium nutrition. The formation of aerenchyma in nitrate nutrition restrained radial water transport in the root cylinder and, as a result, decreased water uptake ability. Water transport occurred mainly through Hg-sensitive water channels in ammonium-supplied rice roots.
     4. Regardless of water status, net photosynthetic rate (Pn) was higher in ammonium nutrition than in nitrate nutrition. Water stress significantly decreased total leaf areas, new expanded leaf area and chlorophy content (SPAD value) in nitrate nutrition, while had no negative effects in ammonium nutrition. Maintenance of relative high photosynthesis will benefit in supplying more assimilates.
     5. Under non-water stress condition, leaf NR activity is significantly higher in nitrate nutrition than in ammonium nutrition. Water stress significantly decreased NR activity in nitrate nutrition, while had no negative effect in ammonium nutrition. Compared with non-water stress, nitrate assimilation ability was decreased in nitrate nutrition, while it was not decreased in ammonium nutrition.
     6. Water stress decreased leaf, stem and root water content in both N forms, especially in leaves which indicated that leaves were the most sensitive part to water stress. In all conditions, organic osmoticum (proline, free amino acid and soluble sugar) of different parts were leaves> shoot> root. Under water stress condition, the organic osmoticum contents were significantly higher in ammonium nutrition than in nitrate nutrition, whereas inorganic osmoticum contents (calcium ion and magnesium ion) have no abvious effect in nitrate and ammonium nutrition. It showed that organic osmoticums may participated in ammonium nutrition, while inorganic osmoticum contents may not participate in osmotic regulating of rice growth.
     7. Under water stress, the shoot biomass of rice plants were significantly decreased in nitrate supplied sections, especially in conditions where the two part of roots are both supplied with nitrate nutrition. Regardless of water stress, supplying ammonium nutrition in either or both parts is benefit for maintaining or increasing leaf chlorophy content and net photosynthetic rate. Water uptake ability was negative related to aerenchyma formation in nitrate supplied section, while there was no close relationship in ammonium supplied section. It showed that, differences in water uptake ability between the two N forms were may derived from response of root to environment.
引文
[1]Adler P R, Wilcox G E, Markhart A III. Ammonium decreases muskmelon root system hydraulic conductivity [J]. J Plant Nutri,1996,19 (10 & 11):1395-1403
    [2]Agre P, Bonhivers M, Borgnia M J. The aquaporins, blueprints for cellular plumbing systems [J]. Journal of Biological Chemistry,1998,273:14659-14662
    [3]Aharon R, Shahak Y, Wininger S, et al. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress [J]. The Plant Cell,2003,15:439-447
    [4]Bajji M, Lutts S, Kinet JM. Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in roots and leaves of durum wheat (Triticum durum Desf.) cultivars differing in drought resistance [J]. J Plant Physiol,2000,157:100-108
    [5]Barrieu F, Chaumont F, Chrispeels M J. High expression of the tonoplast aquaporin ZmTIPl in epidermal and conducting tissues of maize [J]. Plant Physiology,1998,117:1153-1163
    [6]Barrowclough D E, Peterson C A, Steudle E. Radial hydraulic conductivity along developing onion roots [J]. J Exp. Bot.2000,51(344):547-557
    [7]Biela A, Grote K, Otto B. The Nicotiana tabacum plasma membrane aquaporin NtAQPl is mercury-insensitive and permeable for glycerol [J]. Plant Journal,1999,18:565-570
    [8]Blum A. Osmotic adjustment and growth of barley genotypes under drought stress [J]. Crop Sci, 1989,29:230-233
    [9]Borgnia M, Nielsen S, Engel A, et al. Cellular and molecular biology of the aquaporin water channels [J]. Annu Rev Biochem,1999,68:425-458
    [10]Bowler J M, Press M C. Effects of elevated CO2, nitrogen form and concentration on growth and photosynthesis of a fast-and slow-growing grass. New Phytol,1996,132(3):391-401
    [11]Brown L R, Hilweil B. China's Water Shortage Could Shake World Food Security [J]. World Watch,1998 (7 & 8):10-18
    [12]Cabanero F J, Martinez-Ballesta M C, Teruel J A, et al. New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants [J]. Plant Cell Physiol,2006,47(2):224-233
    [13]Chaumont F, Barrieu F, Herman E M, et al. Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation [J]. Plant Physiology,1998,117(4):1143-1152
    [14]Chen G P, Wilson I D, Kim S H, et al. Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit [J]. Planta,2001,212: 799-807
    [15]Chou C L, Ma T, Yang B, et al. Fourfold reduction of water permeability in inner medullary collecting duct of aquaporin! 4 knockout mice [J]. Am J Physiol,1998,274:549-554
    [16]Chrispeels M J, Morillon R, Maurel C, et al. Aquaporins in plants:structure, function, regulation, and roles in plant water relations [J]. Current Topics in Membranes,2001,51:277-334
    [17]Claussen W, Lenz F. Effects of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant and Soil,1999,208:95-102
    [18]Daniels M J, Chaumont F, Mirkov T E, et al. Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site [J]. Plant Cell,1996,8:587-599
    [19]Denker B M, Smith B L, Kuhajdr F P, et al. Identifi-cation, purification, and partial characterization of a novel Mr 28000 integral membrane protein from erythrocytes and renal tubules [J]. J Biol Chem,1988,263(30):15634-15642
    [20]FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations.2001: http://www.fao.org
    [21]Faruqhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Annual Review of plant physiology,1982,33:317-345
    [22]Feil B. Growth and ammonium:nitrate uptake ratio of spring wheat cultivars under a homogeneous and a spatially separated supply of ammonium and nitrate [J]. J Plant Nutri,1994, 17(5):717-728
    [23]Fotiadis D, Mini T. Structural Characterization of two aquaporins isolated from native spinach leaf plasma membranes [J]. J Biol Chem,2001,276(3):1707-1714
    [24]Francoise Q, Joshua M R, Yair S-H, et al. From genome to function:the Arabidopsis aquaporins [J]. Genome Biol,2002,3 (1):1-17
    [25]Frensch J, Hsiao T C. Hydraulic propagation of pressure along immature and mature xylem vessels of roots of Zea m ay s measures by pressure probe techniques [J]. Planta,1993,190:263-270
    [26]Gerendas J, Zhu Z, Bendixen R, et al. Physiological and biochemical processes related to ammonium toxicity in higher plants [J]. Zeitschrift flier Pflanzenernaehrung und Bodenkunde, 1997,160(2):239-251
    [27]Guo S, Bruck H, Sattelmacher B. Effect of nitrogen forms on the growth and water uptake of French bean (Phaseolus vulgaris L) plants [J]. Plant and Soil,2002,239:267-275
    [28]Guo S W, Zhou Y, Song N, et al. Some Physiological Processes Related to Water Use Efficiency of Higher Plants [J]. Agricultural Sciences in China,2006,5(6):403-411
    [29]Henzler T, Steudle E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina:model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels [J]. J. Exp. Bot.,2000,51(353):2053-2066
    [30]Hsiao T C, OToole J C, Yambao E B, et al. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L) [J]. Plant Physiol,1984,75:338
    [31]Hsiao T C, Xu L K. Sensitivity of growth of roots versus leaves to water stress [J]. J. Exp. Bot, 2000,51:1595-1616
    [32]Hogh-Jensen H, Schjoerring J K. Effects of drought and inorganic N form on nitrogen fixation and carbon isotope discrimination in Trifolium repens. Plant Physiol Biochem,1997,35 (1):55-62
    [33]Iyer S, Caplan A. Products of Proline Catabolism Can Induce Osmotically Regulated Genes in Rice [J]. Plant Physiology,1998,116 (1):203-211
    [34]Johnson K D, Herman E M, Chrispeels M J. An abundant highly conserved tonoplast protein in seeds [J]. Plant Physiol,1989,91:1006-1013
    [35]Kaldenhoff R, Eckert M. Features and function of plant a quaporins [J]. Journal of Photochemistry and Photobiology,1999,52:1-6
    [36]Kaldenhoff R, Kulling A, Meyer J, et al. The blue light responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasma membrane [J]. Plant Journal,1995,7:87-95
    [37]Kammerloher W, Fischer V, Piechotta G P, et al. Water channels in the plant plasma membrane cloned by immunoselection from an expression system [J]. Plant J,1994,6:187-199
    [38]Karlsson M, Johansson I, Bush M, et al. An abundant TIP expressed in mature highly vacuolated cells [J]. Plant J,2000,21:83-90
    [39]Krajinski F, Biela A, Schubert D, et al. Arbuscular mycorrhiza development regulates the mRNA abundance of mtaqpl encoding a mercury insensitive aquaporin of medicago truncatula [J]. Planta, 2000,211(1):85-90
    [40]Kronzucker H J, Siddiqi M Y, Glass A D M, et al. Nitrate-ammonium synergism in rice. A subcellular flux analysis [J]. Plant Physiol,1999,119:1041-1045
    [41]Loreto F, Marco G D, Tricoli D, et al. Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves [J]. Photosynthesis Research,1994,41(3):397-403
    [42]Ludevid D, Hofte H, Himmelblau E, et al. The expression pattern of the tonoplast intrinsic protein y-TIP in Arabidopsis thaliana is correlated with cell enlargement [J]. Plant Physiology,1992,100: 1633-1639
    [43]Makino A, Mae T. Photosynthesis and plant growth at elevated levels of CO2 [J]. Plant and Cell Physiology,1999,40(10):999-1006
    [44]Makino A, Nakano H, Mae T. Responses of Ribulose-1,5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis [J]. Plant Physiol,1994,105:173-179
    [45]Maurata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin [J]. Nature,2000,407:599-605
    [46]Maurel C. Aquaporins and water permeability of plant membranes [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:399-429
    [47]Maurel C, Reizer J, Schroeder J I, et al. The vacuolar membrance protein y-TIP creates water specific channels in Xenopus Oocytes [J]. Emboj,1993,12(6):2241-2247
    [48]Netting A G pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions:cellular responses to stress and their implication for plant water relations [J]. Journal of Experimental Botany,2000,51(343):147-158
    [49]Noctor G, Foyer C H. A re-evaluation of the ATP:NADPH budget during C3 photosynthesis:a contribution from nitrate assimilation and its associated respiratory activity? [J]. Journal of Experimental Botany,1998,49:1895-1908
    [50]Patakas A, Noitsakis B. Leaf age effects on solute accumulation in water stressed grapevines [J]. Journal of Plant Physiology,2001,158(1):63-69
    [51]Porter R, Evans D V. Rayleigh-Bloch surface waves along periodic gratings and their connection with trapped modes in waveguides [J]. Journal of Fluid Mechanics,1999,386:233-258
    [52]Prestor G. M, Carroll T P, Guggino W B, et al. Appearance of water channels in Xenopus oocytes expressing real cell CHIP28 protein [J]. Science,1992,28:385-387
    [53]Raven J A. Regulation of pH and generation of osmolarity in vascular plants:a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water [J]. New Phytol,1985,101: 25-77
    [54]Raven J A, Farquhar G D. The influence of N metabolism and organic acid synthesis on the natural abundance of isotopes of carbon in plants [J]. New Phytologist,1990,116(3):505-529
    [55]Rieger M, Klitvin P. Root system hydraulic conductivity in species with contrasting root anatomy [J]. J. Exp. Bot,1999,50:201-209
    [56]Santamaria J M, Ludlow M M, Fukgi S. Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water-limited conditions. I. Water stress before anthesis [J]. Australian Journal of Agricultural Research,1990,41(1):51-65
    [57]Shen B, Jensen R G, Bohnert H J. Mannitol protects against oxidation by hydroxyl radicals [J]. Plant Physiology,1997,115:527-532
    [58]Singh T N, Aspinall F, Paley L G. Proline accumulation and varietal adapt ability to drought in barley:a potential metabolic measure of drought resistance [J]. Nature, New Bio,1972,236:188-190
    [59]Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes [J]. Phytochemistry,1989,28(4):1057-1060
    [60]Steudle E. Water uptake by plant roots:an integration of views [J]. Plant and Soil,2000a,226(1): 45-56
    [61]Steudle E. Water uptake by roots:effects of water deficit [J]. Journal of Experimental Botany, 2000b,51(350):1531-1542
    [62]Steudle E, Frensch J. Water transport in plants:Role of the apoplast [J]. Plant and Soil,1996, 187(1):67-79
    [63]Steudle E, Henzler T. Water channels in plants:do basic concepts of water transport change? [J]. Journal of Experimental Botany,1995,46(9):1067-1076
    [64]Steudle E, Peterson C A. How does water get through roots? [J]. J. Exp. Bot.1998,49:775-788
    [65]Turner N C. Concurrent comparisons of stomatal behavior, water status, and evaporation of maize in soil at high or low water potential [J]. Plant Physiology,1975,55:932-936
    [66]Turner N C, Schulze E D and Gollan T. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content [J]. Oecologia,1985,65(3):348-355
    [67]Tyerman S D, Niemietz C M, Bramley H. Plant aquaporins:multifunctional water and solute channels with expanding roles [J]. Plant Cell Environ,2002,25:173-194
    [68]Villar R, Held A A, Merino J. Comparison of methods to estimate dark respiration in the light in leaves of two woody species [J]. Plant Physiol,1994,105(1):167-172
    [69]Walch-Liu P, Neumann G, Bangerth F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco [J]. J Exp Bot,2000,51(343):227-237
    [70]Wright G C, Smith R C G. Differences between two grain sorghum genotypes in adapt at ion to drought stress. I. Root water uptake and water use [J]. Aust J Agri Res,1983,34:615-651
    [71]Zhang H, Jennings A, Barlow PW, et al. Dual pathways for regulation of root branching by nitrate [J]. Plant Biol,1999,96(11):6529-6534
    [72]Zhang W H, Tyerman S D. Effect of low O2 concentration and azide on hydraulic conductivity and osmotic volume of the cortical cells of wheat roots [J]. Australian journal of plant physiology, 1991,18:603-613
    [73]Zimmermann H M, Steudle E. Apoplastic transport across young maize roots:effect of the exodermis [J]. Planta,1998,206(1):1-17
    [74]Zwieniecki M A, Melcher P J, Holbrook N M. Hydrogel control of xylem hydraulic resistance in plants. Science,2001,25
    [75]蔡昆争,吴学祝,骆世明.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J].植物生态学报,2008,32(2):491-500
    [76]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1998,27(4):96-101
    [77]曹志方,赵南明,刘强.植物膜水通道蛋白[J].生命的化学,2000,20(1):13-16
    [78]陈静,万佳,高晓玲,等.水稻抗旱生理及抗旱相关基因的研究进展[J].中国农学通报,2006,2:56-57
    [79]陈锦强,李明启.不同氮素营养对黄麻叶片的光合作用、光呼吸的影响及光呼吸与硝酸还原的关系[J].植物生理学报,1983,3:251-259
    [80]崔国贤,沈其荣,崔国清,等.水稻旱作及对旱作环境的适应性研究进展[J].作物研究,2001,3:70-76
    [81]崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报,2007,27(8):3500-3512
    [82]邓世媛,陈建军.干旱胁迫下氮素营养对烤烟光合特性的影响[J].中国农学通报,2005,21(9):209-210
    [83]董海荣,李存东,李金才.不同形态氮素比例对棉花苗期生长及物质积累的影响[J].河北农业大学学报,2003,26:9-12
    [84]韩瑞宏,卢欣石,高桂娟,等.紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应[J].生态学报,2007,27(12):5229-5237
    [85]范雪梅,姜东,戴廷波,等.不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响[J].生态学杂志,2006,25(2):149-154
    [86]郝树荣,郭相平,王为木,等.胁迫后复水对水稻叶面积的补偿效应[J].灌溉排水学报,2005,24(4):19-32
    [87]黄新宇,徐阳春,沈其荣,等.水作与地表覆盖旱作水稻的生长和水分利用效率[J].南京农业大学学报,2004,27(1):32-35
    [88]侯海军,何云,胡新文,等.植物旱害及抵御植物旱害途径的研究进展[J].作物杂志,2005,5:36-40
    [89]姬兰柱,肖冬梅,王淼,等.模拟水分胁迫对水曲柳光合速率及水分利用效率的影响[J].应用生态学,2005,16(3):408-412
    [90]嵇庆才,周明耀,张凤翔,等.水培条件下水肥耦合对水稻根系形态及其活力的影响[J].水利与建筑工程学报,2005,3(3):18-25
    [91]江力,张荣铣.不同氮钾水平对烤烟光合作用的影响[J].安徽农业大学学报,2000,27(4):328-331
    [92]蒋立平.氮素形态对柑桔根系生长的影响[J].中国柑桔,1990,19(3):14-16
    [93]蒋明义.水分胁迫下植物体内OH-的产生与细胞的氧化损伤[J].植物学报,1999,41(3):229-234
    [94]姜孝成,周广洽,陈良碧,等.开花灌浆期干旱胁迫对水、陆稻细胞膜透性和产量性状的影响[J].中国水稻科学,1998,12(增刊):34-38
    [95]李宝珍,王松伟,等.氮素供应形态对水稻根系形态和磷吸收的影响[J].中国水稻科学,2008,22.556-559
    [96]李春香,李德全,王玮.不同抗旱性玉米、小麦根叶对水分胁迫的生理反应及渗透调节的研究[A].中国植物生理学会植物环境生理学术讨论会论文汇编[C].昆明,1999,92-96
    [97]李德全,邹琦,程炳嵩.植物在逆境下的渗透调节[J].山东农业大学学报,1989,2:75-80
    [98]李丽芳,吴晓敏,王立峰.植物光合生理生态学研究进展[J].山西师范大学学报,2007,1(3):71-75
    [99]李勇,周毅,尹晓明,等.不同形态氮素对水稻和旱稻响应水分胁迫的影响[J].西北农林科技大学学报,2006,34(5):97-102
    [100]梁建生,张建华,曹显祖.根系环境温度变化对根系吸水和叶片蒸腾的影响[J].植物学报,1998,40(12):1152-1158
    [101]刘弋菊,孔箐锌,苏胜宝.玉米氮素代谢机制的研究进展[J].玉米科学,2009,17(1):135-138
    [102]骆爱玲.甜菜碱脱氢酶在菠菜叶中的定位[J].植物生理学报,1995,21(2):117-122
    [103]罗明珠,梁计南.苗期甘蔗对干旱胁迫的反应[J].热带作物学报,2005,26(4):38-41
    [104]彭立新,李德全,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业科学,2002,8(1):40-43
    [105]钱晓晴,沈其荣,徐国华.配合施用NH4+-N和NO3--N对旱作水稻生长与水分利用效率的影响[J].土壤学报,2003a,40:894-899
    [106]钱晓晴,沈其荣,徐勇,等.不同水分管理方式下水稻的水分利用效率与产量[J].应用生态学报,2003b,14(3):399-404
    [107]邱慧珍,张福锁.氮素形态对不同磷效率基因型小麦生长和氮素吸收及基因型差异的影响[J].土壤通报,2003,34(6):533-538
    [108]上官周平,陈培元.小麦叶片光合作用与其渗透调节能力的关[J].植物生理学报,1990,16(4):347-354
    [109]邵艳军,山仑,李广敏.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究[J].中国生态农业学报,2006,14(1):68-70
    [110]史吉平,董永华.水分胁迫对小麦光合作用的影响[J].国外农学一麦类作物,1995,5:49-51
    [111]石英,沈其荣,茆泽圣,等.旱作条件下水稻的生物效应及表层覆盖的影响[J].植物营养与肥料学报,2001,7(3):271-277
    [112]史正军,樊小林.水稻根系生长及根构型对氮素供应的适应性变化[J].西北农林科技大学学报:自然科学版,2002,30(6):1-6
    [113]宋纯鹏,梅慧生,储钏稀,等.Ca2+对叶绿体中超氧化自由基产生以及由ACC形成乙烯的影响[J].植物生理学报,1992,18(1):55-62
    [114]宋凤斌,戴俊英.玉米茎叶和根系的生长对干旱胁迫的反应和适应性[J].土壤学报,2004,41(6):918-923
    [115]苏金乐.园林苗圃学[M].北京:中国农业出版社,2003
    [116]孙华.土壤质量对植物光合生理生态功能的影响研究进展[J].中国生态农业学报,2005, 13(1):116-118
    [117]谭万能,李秧秧.不同氮素形态对向日葵生长和光合功能的影响[J].西北植物学报,2005,25(6):1191-1194
    [118]王生毅,邓西平,薛崧,等.干旱胁迫对西红柿根系水导的影响研究[J].西北农林科技大学学报(自然科学版),2003,4(2):105-108
    [119]王玉国,荆家海,王韶唐,等.水分胁迫下高梁叶片的渗透调节与延伸生长的关系[J].植物生理学报,1991,17(1):37-43
    [120]王云龙,许振柱,周广胜.水分胁迫对羊草光合产物分配及其气体交换特征的影响[J].植物生态学报,2004,28(6):803-809
    [121]王霞,董玉芝,王梅,等.渗透胁迫对树莓离体叶片可溶性物质及相对含水量的影响[J].新疆农业大学学报,2002,25(2):14-17
    [122]王晓琴,袁继超,柯永培,等.水分胁迫对玉米幼苗氮素代谢的影响[J].四川农业大学学报,2004,22(1):23-25
    [123]魏永胜,梁宗锁.干旱条件下不同施钾水平对烟草水分关系的影响[J].西北农业学报,2001b,10(4):90-94
    [124]魏永胜,梁宗锁.钾与提高作物抗旱性的关系[J].植物生理学通讯,2001a 37(6):576-585
    [125]魏永胜,梁宗锁,张福锁.干旱胁迫及不同钾水平下烟草叶肉细胞中钾的再分布[J].植物营养与肥料学报,2002,8(4):447-451
    [126]吴楚,何开平.植物水孔蛋白的生理功能及其基因表达调控的研究进展[J].湖北农学院学报,2001,4:376-381
    [127]吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响[J].中国农业科学,1995,28(增刊):104-107
    [128]武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响[J].华北农学报,2001,16(2):87-93
    [129]肖冬梅,王森,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响[J].生态学杂志,2004,23(5):93-97
    [130]肖凯,张树华,皱定辉,等.不同形态氮素营养对小麦光合特性的影响[J].作物学报,2000,26(1):53-58
    [131]徐济春,林钊沐,罗微,等.矿质营养对光合作用影响的研究进展[J].安徽农学通报,2007,13(7):23-25
    [132]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516
    [133]许振柱,周广胜.全球变化下植物的碳氮关系及其环境调节研究进展——从分子到生态系统[J].植物生态学报,2007,31(4):738-747
    [134]薛青武,陈培元.灌浆期土壤干旱条件下氮素营养对小麦旗叶光合作用的影响[J].干旱地区农业研究,1989,3:86-93
    [135]杨惠敏,张晓艳,王根轩.植物水通道的生理生态特性及其参与气孔运动的研究进展[J].植物学通报,2005,22(3):276-283
    [136]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究[J].中国农业科学,1995,28(5):65-72
    [137]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的 研究[J].中国农业科学,1996,29(4):58-66
    [138]杨建昌,徐国伟,王志琴,等.旱种水稻结实期茎中碳同化物的运转及其生理机制[J].作物学报,2004,30(2):108-114
    [139]杨淑慎,山仑,郭蔼光,等.水通道蛋白与植物的抗旱性[J].干旱地区农业研究,2005,23(6):214-218
    [140]杨淑英,张建新,吕家珑,等.外源甜菜碱对冬小麦抗旱性生理指标的影响研究[J].西北植物学报,2000,20(6):1041-1045
    [141]于秋菊,林忠平,李景富.植物水孔蛋白研究进展[J].北京大学学报(自然科学版),2002,38(6):854-854
    [142]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33(7):1168-1176
    [143]张凤翔,周明耀,周春林,等.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,2006,22(5):197-200
    [144]张建新,刘拉平,彭玉奎,等.甜菜碱对小麦幼苗抗旱生理作用的研究[J].陕西农业科学,1997,4:21-22
    [145]张明炷,李远华,崔远来,等.非充分灌溉条件下水稻生长发育及生理机制研究[J].灌溉排水,1994,13(4):6-10
    [146]张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报,1999,16(4):429-432
    [147]张行南,耿庆斋,逢勇.水质模型与地理信息系统的集成研究[J].水利学报,2004,1:90-94
    [148]张绪成,上官周平.施氮对不同抗旱性冬小麦叶片光合与呼吸的调控[J].应用生态学报,2006,17(11):2064-2069
    [149]张玉屏,李金才,黄义德,等.水分胁迫对水稻根系生长和部分生理特性的影响[J].安徽农业科学,2001,29(1):58-59
    [150]赵博生,衣艳君,刘家尧.外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善[J].植物学通报,2001,18(3):378-380
    [151]赵步洪,杨建昌,朱庆森,等.水分胁迫对两系杂交稻籽粒充实的影响[J].扬州大学学报(农业与生命科学版),2004,25(2):12-16
    [152]赵丽英,邓西平,山仑.水分亏缺下作物补偿效应类型及机制研究概述[J].应用生态学报,2004,15(3):523-526
    [153]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42
    [154]郑义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,4:293-297
    [155]周毅,郭世伟,陈贵,等.胁迫萌发与不同水分胁迫强度下水稻对供氮形态的响应[J].南京农业大学学报,2006a,29(1):57-62
    [156]周毅,郭世伟,宋娜,等.供氮形态和水分胁迫耦合作用下分蘖期水稻的光合、水分与氮素利用[J].中国水稻科学,2006b,20(3):313-318
    [157]周宜君,冯金朝,马文文,等.植物抗逆分子机制研究进展[J].中央民族大学学报(自然科学版),2006,5:169-170
    [158]朱德峰,严学强.提高水稻品种产量潜力的农艺学和生理学观点[J].西南农业学报,1998,11(增刊1):141-147
    [159]朱教君,康宏樟,李智辉,等.水分胁迫对不同年龄沙地樟子松幼苗存活与光合特性影响[J].生态学报,2005,25(10):2527-2533
    [160]朱美君,康蕴,陈珈,等.植物水通道蛋白及其活性调节[J].植物学通报,1999,16(1):44-50
    [161]朱维琴,吴良欢,陶勤南.干旱逆境下不同品质水稻叶片有机渗透调节物质变化研究[J].土壤通报,2003,34(1):25-28
    [1]Asch F, Dingkuhn M, Sow A, et al. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice [J]. Field Crop Research,2005,93:223-236.
    [2]Cabangon R J, To P T, Castillo E G, et al. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China [J]. Paddy Water Environment,2004,2:195-206
    [3]Guo S W, Briick H, Sattelmacher B. Effects of supplied nitrogen form on growth and water uptakes of French bean (Phaseolusv ulgaris L.) plants [J]. Plant and Soil,2002,239:267-275
    [4]Guo S W, Chen G, Zhou Y, et al. Ammonium nutrition increased photosynthesis rate under water stress at early tilling stage of rice (Oryza sativa L.) [J]. Plant and Soil,2007b,296:115-124
    [5]Guo S W, Kaldenhoff R, Uehlein N, et al. Relationship between water and nitrogen uptake in nitrate-and ammonium-supplied Phaseolus vulgaris L. plants [J]. Journal of Plant Nutrition and Soil Science,2007a,170:73-80
    [6]Maggio A, Joly R J. Effects of mercuric chloride on the hydraulic conductivity of tomato root systems. Evidence for a channel-mediated water pathway [J]. Plant Physiology,1995,109: 331-335
    [7]Ranathunge K, Kotula L, Steudle E, et al. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores [J]. Journal of Experiment Botany,2004,55:433-447
    [8]Schutz K, Tyerman S D. Water channels in Chara coralline [J]. Journal of Experimental Botany, 1997,48(313):1511-1518
    [9]Smith J A C, Nobel P S. Water movement and storage in a desert succulent:anatomy and rehydration kinetics for leaves of Agave deserti [J]. Journal of Experiment Botany,1986,37: 1044-1053
    [10]Steudle E, Henzler T. Water channels in plants:do basic concepts of water transport change? [J]. Journal of Experimental Botany,1995,46:1067-1076
    [11]Steudle E, Peterson C E. How does water get through roots? [J]. Journal of Experiment Botany, 1998,49:775-788
    [12]Turner N C. Adaption to water deficits:a changeing perspective [J]. J Aust Plant Physiol,1986, 13:175-190
    [13]Tyerman S D, Bohnert H J, Maurel C, et al. Plant aquaporins:the molecular biology, biophysics and significance for plant water relations [J]. Journal of Experimental Botany,1999,50: 1055-1071
    [14]Walch L P, Neumann G, Bangerth F, et al. Rapid effects of nitrogen form on leaf morphogenesis in tobacco [J]. Journal of Experimental Botany,2000,51:221-231
    [15]程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响[J].应用生态学报,2006,17(10):1859-865
    [16]程建平,曹凑贵,蔡明历,等.水分胁迫与氮素营养对水稻生理特性的影响[C].中国作物学会2007年学术年会论文集
    [17]黄新宇,徐阳春,沈其荣,等.不同地表覆盖旱作水稻和水作水稻水分利用效率的研究[J].水土保持学报,2003,17(3):140-143
    [18]黄毅,于萍萍.我国水资源现状分析及其保护对策[J].科学咨询,2009,2:22
    [19]景蕊莲.作物抗旱研究的现状与思考[J].干旱地区农业研究,1999,17(2):79-85
    [20]李文娆.紫花苜蓿水分生理生态特性及耐旱性研究[J].西北农林科技大学:陕西杨凌, 2007
    [21]李勇,周毅,尹晓明,等.不同形态氮素对水稻和旱稻响应水分胁迫的影响[J].西北农林科技大学学报,2006,34(5):97-102
    [22]林贤清,周伟军,朱德峰,等.稻田水分管理方式对水稻光合速率和水分利用效率的影响[J].中国水稻科学,2004,18(4):33-338
    [23]宋凤斌,戴俊英.玉米茎叶和根系的生长对干旱胁迫的反应和适应性[J].土壤学报,2004,41(6):918-923
    [24]孙国钧,张荣,李凤民,等.作物抗旱性、水分利用与籽粒产量的形成[J].资源科学,1999,21(5):31-36.
    [25]王甲辰,刘学军,张福锁,等.不同土壤覆盖物对旱作水稻生长和产量的影响[J].生态学报,2002,22(6):922-929
    [26]王晓琴,袁继超,柯永培,等.水分胁迫对玉米幼苗氮素代谢的影响[J].四川农业大学学报,2004,1:23-25
    [27]徐泽珍.我国水资源现状与节水技术[J].现代农业科技,2008,16:337-341
    [28]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66
    [29]章光新,邓伟,王志春.中国21世纪水资源与农业可持续发展[J].农业现代化研究,2000,21(6):321-324
    [30]张岁歧,山仑.氮素营养对春小麦抗旱适应及水分利用的影响[J].水土保持研究,1995,2(1):31-35
    [31]张雄.用TTC(红四氮唑)法测定小麦根和花粉活力及其应用[J].植物生理学通讯,1982,(3):48-50
    [32]周利民,罗怀彬,古璇清.水稻节水灌溉机理研究[J].广东水利水电,2003,2,22-24
    [33]周毅,郭世伟,陈贵,等.胁迫萌发与不同水分胁迫强度下水稻对供氮形态的响应[J].南京农业大学学报,2006,29(1):57-62
    [1]Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants [J]. Oecologia,1989,78: 9-19
    [2]Geiger M, Haake V, Ludewig F, et al. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco[J]. Plant Cell Environment,1999,22:1177-1199
    [3]Guo S, Brueck H, Sattelmacher B. Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants [J]. Plant and Soil,2002,239:267-275
    [4]Lawlordw D W, Comic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants [J]. Plant Cell Environment,2002,25:275-294
    [5]Majerowicz N, Kerbau G B, Nievola C C, et al. Growth and nitrogen metabolism of Catasetum fimbriatum (Orchidaceae) grown with different nitrogen sources [J]. Environ.& Exp. Bot.,2000,44: 195-206
    [6]Shangguan Z, Shao O M, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat [J]. Jounral of Plant Physiology, 2000,156:46-51
    [7]陈贵,周毅,郭世伟,等.水分胁迫下不同形态氮素营养调节水稻叶片光合效率机理研究[J].中国农业科学,2007,40(10):2162-2168
    [8]崔晓阳.植物对有机氮源的利用及其在自然生态系统中的意义[J].生态学报,2007,27(8):3500-3512
    [9]樊金拴,陈原国,赵鹏祥.不同土壤水分条件下核桃的生理生态特性研究[J].应用生态学报,2006,17(2):171-176
    [10]关义新,戴俊英,林艳.水分胁迫下植物叶片光合作用的气孔限制和非气孔限制[J].植物生理学通讯,1995,31(4):293-297
    [11]姬兰柱,肖冬梅,王淼.模拟水分胁迫对水曲柳光合速率及水分利用效率的影响[J].应用生态学报,2005,16(3):408-412.
    [12]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理[J].作物学报,1994,20(5):601-606
    [13]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004,17-23
    [14]史吉平,董永华.水分胁迫对小麦光合作用的影响[J].国外农学一麦类作物,1995,19(5):49-51
    [15]王志琴,杨建昌,朱庆森.土壤水分对水稻光合速率与物质运转的影响[J].中国水稻科学,1996,10(4):235-240
    [16]魏爱丽,王志敏,翟志席,等.土壤干旱对小麦旗叶和穗器官C4光合酶活性的影响[J].中 国农业科学,2003,36(5):508-512
    [17]武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响[J].华北农学报,2001,16(2):87-93
    [18]邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述[J].应用生态学报,2000,11(5):785-790
    [19]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516.
    [20]张淑勇,周泽福,夏江宝.不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应[J].西北植物学报,2007,27(12):2514-2521
    [21]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42
    [1]Britto D T, Siddiqi M Y, Glass A D M, et al. Futile transmembrane NH4+ cycling:a cellular hypothesis to explain ammonium toxicity in plants [J]. PNAS,2001,98,4255-4258
    [2]Cabuslay G S, Ito O, Alejar A A. Physiological evaluation of responses of rice (Oryza.sativa L.) to water deficit [J]. Plant Science,2002,163,815-827
    [3]Chrispeels M J, Maurel C. Aquaporins:the molecular basis of facilitated water movement through living plant cells? [J]. Plant Physiology,1994,105,9-13
    [4]Clarkson D T, Carvajal M, Henzler T, et al. Root hydraulic conductance:Diurnal aquaporin expression and the effects of nutrient stress [J]. Journal of Experimental Botany,2000,51,61-70
    [5]Cramer M D, Lewis O A M. The influence of nitrate and ammonium nutrition on the growth of wheat (Triticum aestivum) and maize (Zea mays) plants [J]. Annals of Botany,1993,72,359-365
    [6]Drew M C, He C J, Morgan P W. Decreased ethylene biosynthesis and induction of aerenchyma by nitrogen-starvation or phosphate-starvation in adventitious roots of Zea mays L [J]. Plant Physiology,1989,91,266-271
    [7]Eshel A, Nielsen K, Lynch J. Response of bean root systems to low level of P. In Plant Roots-From Cells to Systems.14th Long Ashton International Symposium [J]. IACR-Long Ashton Res. St. Bristol, England, Bristol, England,1995,63
    [8]Fan M S, Bai R Q, Zhao X F, et al. Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots [J]. Journal of Integrative Plant Biology, 2007,49,598-604
    [9]Frensch J, Steudle E. Axial and radial hydraulic resistance to roots of maze (Zea mays L.) [J]. Plant Physiology,1989,91,719-726
    [10]Gao Y X, Li Y, Yang X X, et al. Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress [J]. Plant Soil,2010,331,193-201
    [11]Guo S W, Bruck H, Sattelmacher B. Effect of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) [J]. plants. Plant Soil,2002,239,267-275
    [12]Guo S W, Chen G, Zhou Y, et al. Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.) [J]. Plant Soil,2007a,296,115-124
    [13]Guo S W, Kaldenhoff R, Uehlein N, et al. Relationship between water and nitrogen uptake in nitrate-and ammonium-supplied Phaseolus vulgaris L. plants [J]. Journal of Plant Nutrition and Soil Science,2007b,170,73-80
    [14]Guo S W, Shen Q R, Brueck H. Effects of local nitrogen supply on water uptake of bean plants in a split root system [J]. Journal of Integrative Plant Biology,2007c,49,472-480
    [15]Guo S W, Zhou Y, Li Y, et al. Effects of different nitrogen form and water stress on water use efficiency of rice plants [J]. Annals of Applied Biology,2008,153,127-134
    [16]Guo S W, Zhou Y, Shen Q R, et al. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations [J]. Plant Biology,2007d,9,21-29
    [17]He C J, Morgan P W, Drew M C. Enhanced sensitivity to ethylene in nitrogen-or phosphate-starved roots of Zea mays L. during aerenchyma formation [J]. Plant Physiology,1992,98:137-142
    [18]Hose E, Clarkson D T, Steudle E, et al. The exodermis:A variable apoplastic barrier [J]. Journal of Experimental Botany,2001,52,2245-2264
    [19]Jackson M B, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence [J]. Plant Biology,1999,1,274-287
    [20]Javot H, Maurel C. The role of aquaporins in root water uptake [J]. Annals of Botany,2002,90, 301-303
    [21]Khan A R. Root porosity of peanut under varying soil-water regimes [J]. J Agron &Crop Sci, 1983,152-219.
    [22]Kramer P J, Boyer J S. Water relations of plants and soil [J]. Orlando:Academic Press,1995
    [23]Lawlor D W. Limitation to photosynthesis in water stressed leaves:stomata vs. metabolism and the role of ATP [J]. Annals of Botany,2002,89,1-15
    [24]Li Y, Gao Y X, Ding L, et al. Ammonium enhances the tolerance of rice seedlings (Oryza sativa L.) to drought condition [J]. Agricultural Water Management,2009,96,1746-1750
    [25]Lu Y, Wassmann R, Neue H U, et al. Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants [J]. Biogeochemistry,1999,47,203-218
    [26]Lu Z J, Neumann P M. Water stress inhibits hydraulic conductance and leaf growth in rice seedlings but not the transport of water via mercury-sensitive water channels in the root [J]. Plant Physiology, 1999,120,143-151
    [27]Maurel C. Aquaporins and water permeability of plant membranes [J]. Annual Review of Plant Physiology Plant Molecular Biology,1997,48,399-429
    [28]Melchior W, Steudle E. Water transport in onion Allium cepa L. roots:Changes of axial and radial hydraulic conductivity during development [J]. Plant Physiology,1993,101,1305-1315
    [29]Miyamoto N, Steudle E, Hirasawa T, et al. Hydraulic conductivity of rice roots [J]. Journal of Experimental Botany,2001,52,1835-1846
    [30]Mu Z, Zhang S, Zhang L, et al. Hydraulic conductivity of whole root system is better than hydraulic conductivity of single root in correlation with the leaf water status of maize [J]. Botanical Studies, 2006,47,145-151
    [31]North G B, Nobel P S. Heterogeneity in water availability alters cellular development and hydraulic conductivity along roots of Desert Succulent [J]. Annals of Botany,2000,85,247-255
    [32]Ranathunge K, Kotula L, Steudle E, et al. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores [J]. Journal of Experimental Botany,2004,396,433-447
    [33]Ranathunge K, Steudle E, Lafitte R. Control of water uptake by rice (Oryza sativa L.):role of the outer part of the root [J]. Planta,2003,217,193-205
    [34]Rieger M, Litvin P. Root system hydraulic conductivity in species with contrasting root anatomy [J]. Journal of Experimental Botany,1999,50(331),201-209
    [35]Saneoka H, Moghaieb R E A, Premachandra G S, et al. Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds [J]. Environmental Experimental Botany,2004,52,131-138
    [36]Shangguan Z P, Shao M A, Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat [J]. Environmental Experimental Botany,2000,44,141-149
    [37]Steudle E, Henzler T. Water channels in plants:do basic concepts of water transport change? [J]. Journal of Experimental Botany,1995,46,1067-1076
    [38]Steudle E, Peterson C A. How does water get through roots? [J]. Journal of Experimental Botany, 1998,49,775-778
    [39]Steudle E. The cohesion-tension mechanism and the acquisition of water by plant roots [J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52,847-875
    [40]Steudle E. Water uptake by roots:an integration of views [J]. Plant Soil,2000b,226,45-56
    [41]Steudle E. Water uptake by roots:effects of water deficit [J]. Journal of Experimental Botany, 2000a,51,.1531-1542
    [42]Tuberosa R, Salvi S, Giuliani S, et al. Genome-wide approaches to investigate and improve maize response to drought [J]. Crop Science,2007,47,120-141
    [43]Walch-Liu P, Neumann G, Bangerth F, Engels C.2000. Rapid effects of nitrogen form on leaf morphogenesis in tobacco [J]. Journal of Experimental Botany,2000,51,227-237
    [44]Wan X C, Steudle E, Hartung W. Gating of water channels (aquaporins) in cortical cells of young corn roots by mechanical stimuli (pressure pulses):effects of ABA and of HgCl2 [J]. Journal of Experimental Botany,2004,55,411-422
    [45]Weatherley P E. Water uptake and flow into roots. In:Lange O L, Nobel P S, Osmond C B, Zeigler. H, eds [J]. Encyclopedia of plant physiology,1982,12,79-109
    [46]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001
    [1]Ashraf M, Iram A. Drought stress induced changes in someorganic substances in nodules and other plant parts of two potential legumes differing in salt tolerance [J]. Flora,2005,200:535-546
    [2]Cabuslay G S, Ito O, Alejar A A. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit [J]. Plant Science,2002,163:815-827
    [3]Chaves M M, Oliveira M M. Mechanisms underlying plantresilience to water deficits:prospects for watersaving agriculture [J]. Journal of Experimental Botany,2005,55:2365-2384
    [4]Gao Y X, L1 Y, Yang X X, et al. Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress [J]. Plant Soil,2010,331:193-201
    [5]Hsiao T C. Physiological effects of plant in response to water stress [J]. Annual Reviews in Plant Physiology,1973,24(1):519-570
    [6]Iyer S, Caplan A. Products of proline catabolism can induce osmotically regulated genes in rice [J]. Plant Physiology,1998,116(1):203-211
    [7]Khalil A A M, Grace J. Acclimation to drought in Acer pseudoplatanus L. (Sycamore) Seedlings. Journal of ExperimentalBotany,1992,43:1591-1602
    [8]Martino C D, Delfine S, Pizzuto R, et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress [J]. New Phytologist,2003,158: 455-463
    [9]Morgan J M. Osmoregulation and water stress in higher plants [J]. Annual Review of Plant Physiology,1984,35:299-319
    [10]Oosterhuis, D M, Wullschleger S D, osmotic adjustment in cotton (Gossyp ium h irsu tum L.) leaves and root in response to water stress[J]. Plant Physiol.,1987,84:1154-1157.
    [11]Patakas A, Nikolaou N, Zioziou E, et al. The role of organic solute and ion accumulation in osmotic adjustment in drought stressed grapevines [J]. Plant Science,2002,163:361-367
    [12]Pinheiro C, Chaves M M, Ricardo C P. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L [J]. Journal of Experimental Botany,2001, 52:1063-1070
    [13]Turner N C, Stern W R, Evans P. Water relations and osmotic adjustment of leaves and roots of lupins in response to waterdeficits [J]. Crop Science,1987,27:977-983
    [14]Weimberg R. Growth and solute accumulation in 3-week-oldseedlings of Agropyron elongatum stressed with sodium and potassium salts [J]. Physiologia Plantarum,1986,67,129-135
    [15]Zholkevich V N, Zubkova N K, Maevskaya S N, Intercation between heat shock and water stress in plants:2. Osmorogulation in the leaves of cotton plants successively treated with short-term hyperthermia and soil drought [J]. Russian Journal of plant fuysiology,1997,44(4):533-542
    [16]陈新红,王志琴,杨建昌.不同氮素水平与水分胁迫对水稻秧苗素质的影响[J].干旱地区 农业研究,2007,25:78-93
    [17]蔡昆争,吴学祝,骆世明.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J].植物生态学报,2008,32(2):491-500
    [18]崔艳红,李晶.金丝桃属植物研究进展及黑龙江省的资源概况[J].东北农业大学学报,2006,37(1):105-110
    [19]李德全,邹琦,程炳嵩.抗旱性不同的冬小麦品种渗透调节能力的研究[J].山东农业大学学报,1991,22(4):377-383
    [20]李春香,王玮,李德全.长期水分胁迫对小麦生育后期根叶渗透调节能力、渗透调节物质的影响[J].西北植物学报,2001,21(5):924-930.
    [21]李合生.现代植物生理学[M].北京:高等教育出版社,2001
    [22]栗海俊,李勇,杨秀霞,等.不同形态氮素营养和水分条件对苗期水稻生长及渗透调节能力的影响[J].中国水稻科学,2010,24(4):403-409
    [23]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983,4:1-7
    [24]陶汉之,黄文江,张玉屏,等.水稻对旱作环境的响应和适应性研究[J].干旱地区农业研究,2002,20(2):42-48
    [25]王霞,侯平,伊林克.植物对干旱胁迫的适应机理[J].干旱区研究,2001,18(2):42-46
    [26]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究[J].中国农业科学,1995,28(5): 65-72
    [27]赵丽英,邓西平,山仑.持续干旱及复水对玉米幼苗生理生化指标的影响研究[J].中国生态农业学报,2004,12(3):59-61
    [28]朱维琴,吴良欢,陶勤南.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究[J].土壤通报,2003,34:25-28
    [1]Abel S, Ticconi CA, Delatorre CA. Phosphate sensing in higher plant [J]. Physiologia Plantarum, 2002,115:1-8
    [2]Anderson D S, Teyker R H. Nitrogen form effects on early corn root morphological and anatomical development [J]. Plant Nutrition,1991,14 (11):1255-1266
    [3]Fredeen A L, Raab T K, Rao I M, et al. Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr [J]. Planta,1990,181:399-405
    [4]Haefele S M, Jabbar S M A, Siopongco J D L C, et al. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels [J]. Field Crops Research,2008,107(2):137-146
    [5]Lea P L. Alternative route for nitrogen in higher plants [J]. Nature,1974,25:614-616
    [6]Makino A, Mac T, Chira K. Variations in the contents and kinetic properties'of ribulose-1, 5-bisphosphate carboxylase among rice species [J]. Plant Cell Physiology,1987,28:799-804
    [7]Sawada S, Inarashi T, Mipachi S. Effects of phosphate nutrition on photosynthesis, starch and total phosphorus levels in single rooted leaf of dwarf bean [J]. Photosyn thetica,1983,17:484-490
    [8]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    [9]蔡昆争,吴学祝,骆世明.不同生育期水分胁迫对水稻根叶渗透调节物质变化的影响[J].植物生态学报,2008,32(2):491-500
    [10]曹云,范晓荣,贾莉君,等.不同水稻品种对N03-同化差异的比较[J].南京农业大学,2005,28(1):52-56
    [11]邓世媛,陈建军.干旱胁迫下氮素营养对烤烟光合特性的影响[J].中国农学通报,2005,21(9):209-212
    [12]段英华,张亚丽,沈其荣.增硝营养对不同基因型水稻苗期吸铵和生长的影响[J].土壤学报,2005,42(2):260-265
    [13]古谢夫.植物水分状况的若干规律[M].北京:科学出版社,1962,42-102
    [14]郭朝晖,李合松,张杨株,等.磷素水平对杂交水稻生长发育和磷素运移的影响[J].中国水稻科学,2002,16:151-156
    [15]范雪梅,戴廷波,姜东,等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67
    [16]范雪梅,姜东,戴廷波,等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141
    [17]何文寿,李生秀,李煇桃.水稻对铵态氮和硝态吸收特性的研究[J].中国水稻科学,1998,12(4):249-252
    [18]李宝珍,王松伟,等.氮素供应形态对水稻根系形态和磷吸收的影响[J].中国水稻科学,2008,22.556-559
    [19]李豪喆.大豆叶片硝酸还原酶活力的研究[J].植物生理学通讯,1986,4:30-32
    [20]李合生.现代植物生理学[M].北京:高等教育出版社,2001
    [21]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000,134-137
    [22]李军民,唐浩,等.氮素供应形态对水稻根系形态和磷吸收的影响[J].中国水稻科学,2008,22:665-669
    [23]李勇,周毅,郭世伟,等.铵态氮和硝态氮营养对水、旱稻根系形态及水分吸收的影响[J].中国水稻科学,2007,21(3):294-298
    [24]李泽松,林清华,张楚富,等.不同氮源对水稻幼苗根氨同化酶的影响[J].武汉大学学报,2000,46(6):729-732
    [25]陆建飞,黄丕生,丁艳峰,等.持续土壤水分胁迫对水稻物质积累和运转的影响[J].江苏农业学报,1998,14(3):135-140
    [26]陆景陵.植物营养学[M].中国农业大学出版社,2002.23-34
    [27]倪晋山.离子转运及其调节作用研究[J].植物学通报,2002,18(1):115-119
    [28]宋娜,郭世伟,沈其荣.不同氮素形态营养及水分胁迫对分蘖期水稻水分吸收及光合特性的影响[J].南京农业大学学报,2006,29(4):64-69
    [29]孙祥武,于福庆,张家成.氮磷钾养分对水稻分蘖的影响[J].农业与技术,2006,62-65
    [30]田纪春,王学臣,刘广田.植物的光合作用与光合氮、碳代谢的偶联及调节[J].生命科学,2001,13:1454-1461
    [31]王娟,李德全.逆境条件下植物体内渗透调节物质的积累和活性氧代谢[J].植物学通报,2001,18(4):459-465
    [32]王俊儒,龚月桦,翟丙年,等.生育后期干旱对冬小麦产量和生理特性的影响[J].土壤通报,2005,36(6):908-912
    [33]向明惠,余叔文.以保卫细胞原生质体为实验系统的气孔生理研究进展[J].生理植物生理学通讯,1991,27(1):1-6
    [34]杨晴,韩金玲,李雁鸣.不同施磷量对小麦旗叶光合性能和产量性状的影响[J].植物营养与肥料学报,2006,12(6):816-821
    [35]杨肖娥,孙羲.杂交稻和常规稻生育后期追施NO3--N和NH4+-N的生理效应[J].土壤通报,1991,5:222-224
    [36]余让才,李明启,范燕萍.高等植物硝酸还原酶的光调控[J].植物生理学通讯,1997,33(1)):61-65
    [37]曾建敏,崔克辉,黄见良,等.水稻生理生化特性对氮肥的反应及与氮利用效率的关系[J].作物学报,2007,33:1168-1176
    [38]张亚丽,沈其荣,段英华.不同氮素营养对水稻的生理效应[J].南京农业大学学报,2004,27(2):130-135
    [39]周卫,马敬坤,王志强,等.等渗水分和盐胁迫对水稻幼苗叶片氨同化的影响[J].武汉大学学报,2005,51(4):521-524
    [40]周毅,郭世伟,宋娜,等.供氮形态和水分胁迫耦合作用下分蘖期水稻的光合、水分与氮素 利用[J].中国水稻科学,2006,20(3):313-318
    [41]朱维琴,吴良欢,陶勤南.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究[J].土壤通报,2003,34:25-28
    [1]Chaves M. Water stress in the regulation of photosynthesis in the field [J]. Annals of Botany, 2002,89:907-916
    [2]Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants [J]. Oecologia,1989, 78:9-19
    [3]Fan M S, Bai R Q, Zhao X F, et al. Aerenchyma Formed Under Phosphorus Deficiency Contributes to the Reduced Root Hydraulic Conductivity in Maize Roots [J]. Journal of Integrative Plant Biology,2007,49(5):598-604
    [4]Frensch J, Steudle E. Axial and radial hydraulic resistance to roots of maze (Zea mays L.) [J]. Plant Physiology,1989,91:719-726
    [5]Jackson M B, Fenning T M, Drew M C, et al. Stimulation of ethylene production and gas-space (aerenchyma) formation in adventitious roots of Zea mays L. by small partial pressures of oxygen [J]. Planta,1985,165:486-492
    [6]Loomis R S, Connor D J. Crop ecology-Productivity and management in agricultural systems [M]. Cambridge, UK:Cambridge University Press,1996
    [7]Lu C M, Zhang J H. Effects of water stress on photosystem Ⅱ photochemistry and its thermostability in wheat plants [J]. Journal of Experimental Botany,1999,50:1199-1206
    [8]Lu Z J, Neumann P M. Water stress inhibits hydraulic conductance and leaf growth in rice seedlings but not the transport of water via mercury-sensitive water channels in the root [J]. Plant Physiology,1999,120:143-151
    [9]Makino A, Mac T, Chira K. Variations in the contents and kinetic properties of ribulose-1, 5-bisphosphate carboxylase among rice species [J]. Plant Cell Physiology,1987,28:799-804
    [10]Makino A, Nakano H, Mae T et al. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment [J]. Journal of Experimental Botany, 2000,51:383-389
    [11]Makino A, Shimamoto N, Takumi S, et al. Does decrease in Ribulose-1,5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficiency of photosynthesis under condition of saturating CO2 and light in rice plants? [J]. Plant Physiology,1999,114:483-491
    [12]Miyamoto N, Steudle E, Hirasawa T, et al. Hydraulic conductivity of rice roots [J]. Journal of Experimental Botany,2001,52:1835-1846
    [13]Pezeshki S R, Pardue J H, Delaune R D. The influence of soil oxygen deficiency on alcohol dehydrogenase activity, root porosity, ethylene production and photosynthesis in Spartina paten [J]. Environment Experiment Botany,1993,33:565-573
    [14]Shinozaki K, Yamaguchi-Shinozki K. Gene expression and signal transduction in water stress response [J]. Plant Physiology,1997,115:327-334
    [15]Steudle E, Peterson C A. How does water get through roots? [J]. Journal of Experimental Botany, 1998,49,775-778
    [16]Wiengweera A, Greenway H, Thomson C J. The use of agar nutrient solution to stimulate lack of convection in waterlogged soils [J]. Annals of Botany,1997,80:115-123
    [17]陈贵,周毅,郭世伟,等.水分胁迫下不同形态氮素营养水稻的光合特性初探[J].南京农业大学学报,2007,30(4):78-81
    [18]范雪梅,戴廷波,姜东,等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报,2004,18(6):63-67
    [19]高迎旭,周毅,郭世伟,等.不同形态氮素营养对水稻抗旱性影响的研究[J].干旱区研究,2006,23(4):598-602
    [20]关军锋,李广敏.Ca2+与植物抗旱性的关系[J].植物学通报,2001,18(4):473-478
    [21]石英,沈其荣,冉炜.半腐解秸秆覆盖下旱作水稻对15N的吸收和分配[J].中国水稻科学,2002,16(3):236-242
    [22]石英,松进,沈其荣,等.覆盖旱作水稻的生物效应及吸氮特征[J].农村生态环境,2001,17(2):22-25,44
    [23]宋娜,郭世伟,沈其荣.不同氮素形态及水分胁迫对水稻苗期水分吸收、光合作用及生长的影响[J].植物学通报,2007,24(4):477-483
    [24]王绍华,曹卫星,丁艳锋,等.水氮互作对水稻氮吸收与利用的影响[J].中国农业科学,2004,37(4):497-501
    [25]汪晓丽,司江英,陈冬梅,等.低pH条件下不同氮源对水稻根通气组织形成的影响[J].扬州大学学报(农业与生命科学版),2005,26(2):66-70
    [26]张其德,蒋高明,朱新广,等.12个不同基因型冬小麦的光合能力[J].植物生态学报,2001,25(5):532-536
    [27]张岁岐,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究,1995,2(1):31-36
    [28]张亚丽,董园园,沈其荣,等.不同水稻品种对铵态氮和硝态氮吸收特性的研究[J].土壤学报,2004,41:918-923
    [29]周毅,郭世伟,沈其荣.局部根系干旱条件下分蘖期水稻对供氮形态的生物学响应[J].水土保持学报,2005,19(6):169-173