染色体7q的10个基因与儿童孤独症及RELN与精神分裂症的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
儿童孤独症(Autism, MIM 209850)是一种以社会交往和语言沟通障碍、刻板行为及兴趣范围狭窄为主要特征的儿童广泛性发育障碍;也是最常见的儿童精神疾病之一,世界范围内的发病率约为1-6‰。近年来相关研究已揭示了若干孤独症的易感位点和基因,但其主要易感基因尚不明确。基于家系的连锁分析揭示了多个与孤独症相关的染色体区域,其中染色体7q是得到最多重复验证、并被荟萃分析证实的孤独症易感位点,称为AUST1。该区域内有一些基因被作为重要的孤独症候选基因开展相关性研究,如RELN、MET、FOXP2、CNTNAP2、EN2基因等;目前对于这些基因的研究结论并不一致,有待进一步阐明位于该区域内的重要孤独症易感基因。
     本研究以中国汉族儿童孤独症患者为研究对象(共455名患者,所有患者均根据DSM-IV标准作出诊断并签署知情同意书,同时选用1097名中国汉族正常人作为对照),用Illumina Human CNV-370基因芯片进行基因分型,对孤独症候选基因开展病例-对照关联研究。在本研究中,分析了位于染色体7q、通过连锁分析获得最高重复性的3个区域:7q22、7q31和7q35-qter;在以上区域中挑选了10个基因(NPTX2、LRRN3、GPR85、FOXP2、MET、ST7、WNT2、GRM8、EN2和CNPY1基因)作为孤独症候选基因进行分析。
     通过对中国汉族儿童孤独症患者的病例-对照研究发现4个基因存在与孤独症显著相关的位点,它们分别是MET基因(rs2237712,x2=5.845,p=0.0156;rs2237713,x2=6.1,p=0.0135),ST7基因(rs7788320,x22=5.037,p=0.0248;rs7785492,x22=4.341,p=0.0372),EN2基因(rs1861958,x22=4.341,p=0.0372)和GRM8基因(rs2108849,x2=4.92,p=0.0266;rsl419472,x2=4.12,p=0.0424;rsll563410,x2=6.573,p=0.0104;rsll56653,x2=4.181,p=0.0409;rs2283089,x2=4.377,p=0.0364)。此外,本课题组的前期研究还证实了位于染色体7q35-36的CNTNAP2基因也与中国汉族儿童孤独症显著相关。综上所述,MET、ST7、GRM8、EN2和CNTNAP2基因可能是位于染色体7q的重要孤独症易感基因。
     精神分裂症(Schizophrenia, MIM 181500)是一种最常见的精神疾病,以基本个性的改变,思维、情感、行为的分裂,精神活动与环境不协调为主要特征。全世界平均患病率约为1%。研究表明:精神分裂症属于多基因遗传病,1p、1 q、4p、6p、7q、8p、13q、22q等若干染色体区域可能存在精神分裂症易感位点(基因)。
     人类RELN(Reelin)基因位于染色体7q22,编码一个由3461个氨基酸组成的分泌型糖蛋白,在胚胎发育时期参与神经元迁移和大脑皮层、海马、小脑等高度层状结构形成的重要发育过程中,在成年人中枢神经系统调控突触可塑性。精神分裂症、双相情感障碍、孤独症和无脑回畸形等患者死后的尸检均发现脑部RELN基因表达量显著降低;有研究者提出该基因与多种精神疾病(如精神分裂症、抑郁症、双相情感障碍以及孤独症)的发病机制均相关。分子遗传学研究提供了RELN基因可能是精神分裂症易感基因的证据,但在中国人群中尚无相关报道。
     本研究以中国汉族精神分裂症家系为研究对象(包括44个家系,共计244名家系成员,其中104人被确诊为精神分裂症患者;所有诊断均由相关临床医师根据DSM-IV标准作出)。通过TaqMan-PCR法对位于RELN基因内部的2个SNPs位点(rs2229864和rs736707)进行基因分型,采用家系内传递不平衡检验开展RELN基因多态性与中国汉族人群精神分裂症的关联研究。结果显示:在精神分裂症家系中,SNP-rs2229864的C等位基因频率分布存在显著差异(χ2=7.049,p=0.0079),rs2229864-rs736707组成的单倍型“TT”传递与未传递的比例存在显著差异(x2=7.438,p=0.0064)。本研究表明:RELN基因可能与中国汉族人群精神分裂症发生相关,该基因可能是一个精神分裂症的易感基因。
Autism (MIM 209850) is characterized by delayed language development, trouble with social interactions, stereotyped behaviors and interested in a very narrow range of things, which categorize to pervasive developmental disorders. Autism is the most common childhood psychiatric disorders, and its worldwide prevenlance is about 1-6‰.
     In recent years, researchers has revealed a number of autism susceptibility loci and genes, but the major susceptibility gene is still unclearly. Family-based linkage analysis has revealed several regions associated with autism, of which the chromosome 7q, also known as AUST1, is the most replicated autism susceptibility locus and was also confirmed by meta-analysis. Some genes within this region, such as RELN, MET, FOXP2, CNTNAP2 and EN2 genes has been evident to be candidate genes of autism by association-study, though results of previously study is contradictory. In this study, we are intent to clarify which are the most importance autism susceptibility genes located in the chromosome 7q.
     In total of 455 Chinese Han patients with autism was employed in this study, all of which were diagnosed according to DSM-IV and signed informed consent. And we also recruited 1097 Chinese Han people as control. Illumina Human CNV-370 microarray was used to genotype all the candidate genes and case-control association study was performed. There are 3 regions in chromosome 7q gained highest repeatability by linkage analysis:7q22,7q31, and 7q35-qter; So we selected 10 candidate genes (NPTX2、LRRN3、GPR85、FOXP2、MET、ST7、WNT2、GRM8、EN2 and CNPY1gene) in the above regions for analysis.
     Our results indicated that 4 genes were significantly associated with autism, which are the MET gene (rs2237712,χ2=5.845, p=0.0156; rs2237713,χ2=6.1, p=0.0135), ST7 gene (rs7788320,χ2=5.037, p=0.0248; rs7785492,χ2=4.341, p=0.0372), EN2 gene (rs1861958, x2=4.341, p =0.0372) and GRM8 gene (rs2108849,χ2=4.92, p=0.0266; rs1419472, =4.12, p=0.0424; rs11563410,χ2=6.573, p=0.0104; rs1156653,χ2= p=0.0409; rs2283089,χ2=4.377, p=0.0364). In addition, previous studies in our lab has confirmed that CNTNAP2 gene,which located in 7q35-36 are also significantly associated with Chinese Han autistic children. In summary, MET, ST7, GRM8, EN2 and CNTNAP2 gene may be the important autism susceptibility genes which located on chromosome 7q.
     Schizophrenia (MIM 181500) is one of the most common mental illnesses. It is a severe psychiatric disorder characterized by loss of contact with reality (psychosis), hallucinations, delusions, distorted thinking, strange feelings, diminished motivation and various cognitive impairments that disturbed work and social functioning. Worldwidely, about 1%of the population is affected by schizophrenia. It is a complex, multifactorial disorder that occuring involved of multiple genes and environmental factors. Several schizophrenia susceptibility locus have been mapped to 1p, 1q,4p,6p,7q,8p,13q,22q and many other chromosomal regions, and it is supposed that many genes predisposing to schizophrenia.
     Human RELN (Reelin) gene located on chromosome 7q22, which encodes a 3461Aa secreted glycoprotein that is essential for neuronal ventrcular migration to form a highly laminated structures in the cerebral cortex, hippocampus and cerebellum during the embryonic CNS development, and it also play important roles in regulating synaptic plasticity throughout the adult CNS. In post-mortem study of schizophrenia, bipolar, autism and lissencephaly individuals showed a significantly decrease of RELN expression in the brain. Researchers raiesd the hypothesis that maybe RELN gene is involved in the pathogenesis of a variety of psychiatric disorders, such as schizophrenia, depression, bipolar disorders and autism. Previously association study indicated that RELN gene maybe one of the susceptibility genes of schizophrenia, but there is no evidences for the correlation of RELN gene and the Chinese Schizophrenia patients.
     In total of 44 Han Chinese Schizophrenia families was employed in this study, including 244 family members, of which 104 were diagnosed to be schizophrenia according to DSM-IV criteria. There are 2 SNPs within the RELN gene, rs2229864 and rs736707, was genotyping by TaqMan-PCR method and then analyzed by transmission disequilibrium test (TDT). Accroding to our results, the frequency of SNP-rs2229864 C-allele were significantly different between the schizophrenia pedigrees and normal control (x2=7.049, p=0.0079), so did the "TT" haplotype of rs2229864-rs736707 (x2=7.438, p=0.0064). This study shows that RELN gene maybe associated with schizophrenia in Chinese Han population and it is possible to be a schizophrenia susceptibility gene.
引文
[1]Levy, S.E., D.S. Mandell, and R.T. Schultz, Autism. Lancet,2009.374(9701):p. 1627-38.
    [2]Bertrand, J., et al., Prevalence of autism in a United States population:the Brick Township, New Jersey, investigation. Pediatrics,2001.108(5):p.1155-61.
    [3]Scott, F.J., et al., Brief report:prevalence of autism spectrum conditions in children aged 5-11 years in Cambridgeshire, UK. Autism,2002.6(3):p.231-7.
    [4]Philippe, A., et al., Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet,1999.8(5):p. 805-12.
    [5]Jamain, S., et al., [Genetics of autism:from genome scans to candidate genes]. Med Sci (Paris),2003.19(11):p.1081-90.
    [6]A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Hum Mol Genet,1998.7(3):p.571-8.
    [7]A genomewide screen for autism:strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet,2001.69(3):p.570-81.
    [8]静进,孤独症的发病机制与遗传基因的关系.中国儿童保健杂志,2009.17(5):p.555.
    [9]Trikalinos, T.A., et al., A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol Psychiatry,2006.11(1):p.29-36.
    [10]Fatemi, S.H., Reelin glycoprotein:structure, biology and roles in health and disease. Mol Psychiatry,2005.10(3):p.251-7.
    [11]Fatemi, S.H., et al., Reelin signaling is impaired in autism. Biol Psychiatry,2005. 57(7):p.777-87.
    [12]Zhang, H., et al., Reelin gene alleles and susceptibility to autism spectrum disorders. Mol Psychiatry,2002.7(9):p.1012-7.
    [13]Wedenoja, J., et al., Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol Psychiatry,2008.13(7):p.673-84.
    [14]Persico, A.M., et al., Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry,2001.6(2):p.150-9.
    [15]Bonora, E., et al., Analysis of reelin as a candidate gene for autism. Mol Psychiatry,2003.8(10):p.885-92.
    [16]Skaar, D.A., et al., Analysis of the RELN gene as a genetic risk factor for autism. Mol Psychiatry,2005.10(6):p.563-71.
    [17]Serajee, F.J., H. Zhong, and A.H. Mahbubul Huq, Association of Reelin gene polymorphisms with autism. Genomics,2006.87(1):p.75-83.
    [18]Dutta, S., et al., Genetic analysis of reelin gene (RELN) SNPs:no association with autism spectrum disorder in the Indian population. Neurosci Lett,2008.441(1):p. 56-60.
    [19]Tulasne, D. and B. Foveau, The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ,2008.15(3):p.427-34.
    [20]Powell, E.M., W.M. Mars, and P. Levitt, Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon. Neuron,2001.30(1):p.79-89.
    [21]Levitt, P., K.L. Eagleson, and E.M. Powell, Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci,2004.27(7):p.400-6.
    [22]Ieraci, A., P.E. Forni, and C. Ponzetto, Viable hypomorphic signaling mutant of the Met receptor reveals a role for hepatocyte growth factor in postnatal cerebellar development. Proc Natl Acad Sci U S A,2002.99(23):p.15200-5.
    [23]Campbell, D.B., et al., A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A,2006.103(45):p.16834-9.
    [24]Campbell, D.B., et al., Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol,2007.62(3):p.243-50.
    [25]Sousa, I., et al., MET and autism susceptibility:family and case-control studies. Eur J Hum Genet,2009.17(6):p.749-58.
    [26]Hurst, J.A., et al., An extended family with a dominantly inherited speech disorder. Dev Med Child Neurol,1990.32(4):p.352-5.
    [27]Lai, C.S., et al., The SPCH1 region on human 7q31:genomic characterization of the critical interval and localization of translocations associated with speech and language disorder. Am J Hum Genet,2000.67(2):p.357-68.
    [28]Lai, C.S., et al., A forkhead-domain gene is mutated in a severe speech and language disorder. Nature,2001.413(6855):p.519-23.
    [29]Gong, X., et al., Association between the FOXP2 gene and autistic disorder in Chinese population. Am J Med Genet B Neuropsychiatr Genet,2004.127B(1):p.
    113-6.
    [30]Marui, T., et al., No association of FOXP2 and PTPRZ1 on 7q31 with autism from the Japanese population. Neurosci Res,2005.53(1):p.91-4.
    [31]Li, H., et al., Absence of causative mutations and presence of autism-related allele in FOXP2 in Japanese autistic patients. Brain Dev,2005.27(3):p.207-10.
    [32]MacDermot, K.D., et al., Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet,2005.76(6):p. 1074-80.
    [33]Kaminen, N., et al., A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32. J Med Genet,2003.40(5):p. 340-5.
    [34]Lennon, P.A., et al., Deletion of 7q31.1 supports involvement of FOXP2 in language impairment:clinical report and review. Am J Med Genet A,2007. 143A(8):p.791-8.
    [35]Wassink, T.H., et al., Evaluation of FOXP2 as an autism susceptibility gene. Am J Med Genet,2002.114(5):p.566-9.
    [36]Gauthier, J., et al., Mutation screening of FOXP2 in individuals diagnosed with autistic disorder. Am J Med Genet A,2003.118A(2):p.172-5.
    [37]Newbury, D.F., et al., FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet,2002.70(5):p.1318-27.
    [38]Meaburn, E., et al., Language-impaired children:No sign of the FOXP2 mutation. Neuroreport,2002.13(8):p.1075-7.
    [39]Pillai, A.M., et al., No effect of genetic deletion of contactin-associated protein (CASPR) on axonal orientation and synaptic plasticity. J Neurosci Res,2007. 85(11):p.2318-31.
    [40]Alarcon, M., et al., Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet,2008.82(1):p. 150-9.
    [41]Poliak, S., et al., Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron,1999.24(4):p.1037-47.
    [42]Poliak, S., et al., Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol,2003.162(6):p. 1149-60.
    [43]Traka, M., et al., Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol,2003. 162(6):p.1161-72.
    [44]Rossi, E., et al., A 12Mb deletion at 7q33-q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet,2008.51(6):p.631-8.
    [45]Bakkaloglu, B., et al., Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet,2008.82(1):p.165-73.
    [46]Vernes, S.C., et al., A functional genetic link between distinct developmental language disorders. N Engl J Med,2008.359(22):p.2337-45.
    [47]Cheh, M.A., et al., En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res,2006. 1116(1):p.166-76.
    [48]Gharani, N., et al., Association of the homeobox transcription factor, ENGRAILED 2,3, with autism spectrum disorder. Mol Psychiatry,2004.9(5):p. 474-84.
    [49]Benayed, R., et al., Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet,2005.77(5):p.851-68.
    [50]Brune, C.W., et al., Heterogeneous association between engrailed-2 and autism in the CPEA network. Am J Med Genet B Neuropsychiatr Genet,2008.147B(2):p. 187-93.
    [51]Sen, B., et al., Family-based studies indicate association of Engrailed 2 gene with autism in an Indian population. Genes Brain Behav,2009.9(2):p.248-55.
    [52]Yang, P., et al., Association of the homeobox transcription factor gene ENGRAILED 2 with autistic disorder in Chinese children. Neuropsychobiology, 2008.57(1-2):p.3-8.
    [53]Wang, L., et al., Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet,2008. 147B(4):p.434-8.
    [54]Wu, S., et al., Group III human metabotropic glutamate receptors 4,7 and 8: molecular cloning, functional expression, and comparison of pharmacological properties in RGT cells. Brain Res Mol Brain Res,1998.53(1-2):p.88-97.
    [55]Li, H., et al., The association analysis of RELN and GRM8 genes with autistic spectrum disorder in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet,2008.147B(2):p.194-200.
    [56]Takaki, H., et al., Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet B Neuropsychiatr Genet,2004.128B(1):p.6-14.
    [57]Chen, A.C., et al., Association of single nucleotide polymorphisms in a glutamate receptor gene (GRM8) with theta power of event-related oscillations and alcohol dependence. Am J Med Genet B Neuropsychiatr Genet,2009.150B(3):p.359-68.
    [58]Vincent, J.B., et al., Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am J Hum Genet,2000.67(2):p.510-4.
    [59]Zenklusen, J.C., C.J. Conti, and E.D. Green, Mutational and functional analyses reveal that ST7 is a highly conserved tumor-suppressor gene on human chromosome 7q31. Nat Genet,2001.27(4):p.392-8.
    [60]Battle, M.A., V.M. Maher, and J.J. McCormick, ST7 is a novel low-density lipoprotein receptor-related protein (LRP) with a cytoplasmic tail that interacts with proteins related to signal transduction pathways. Biochemistry,2003.42(24): p.7270-82.
    [61]Dong, S.M. and D. Sidransky, Absence of ST7 gene alterations in human cancer. Clin Cancer Res,2002.8(9):p.2939-41.
    [62]Wang, S., et al., An LOH and mutational investigation of the ST7 gene locus in human esophageal carcinoma. Oncogene,2003.22(3):p.467-70.
    [63]Yoshimura, S., et al., Mutations in the ST7/RAY1/HELG locus rarely occur in primary colorectal, gastric, and hepatocellular carcinomas. Br J Cancer,2003. 88(12):p.1909-13.
    [64]Sivasundaram, K., et al., Mutational analysis of the ST7 gene in human myeloid tumor cell lines. Oncol Rep,2003.10(6):p.1737-9.
    [65]Lu, C., et al., Somatic mutation analysis of p53 and ST7 tumor suppressor genes in gastric carcinoma by DHPLC. World J Gastroenterol,2003.9(12):p.2662-5.
    [66]Haddad, R., et al., Chromosome 7q31 allelic imbalance and somatic mutations of RAY1/ST7 gene in colorectal cancer. Cancer Lett,2004.203(1):p.87-90.
    [67]De Ferrari, G.V. and R.T. Moon, The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene,2006.25(57):p.7545-53.
    [68]Katoh, M., WNT2B:comparative integromics and clinical applications (Review). Int J Mol Med,2005.16(6):p.1103-8.
    [69]Fukamachi, K., et al., Neuronal leucine-rich repeat protein-3 amplifies MAPK activation by epidermal growth factor through a carboxyl-terminal region
    containing endocytosis motifs. J Biol Chem,2002.277(46):p.43549-52.
    [70]Matsumoto, M., et al., The evolutionarily conserved G protein-coupled receptor SREB2/GPR85 influences brain size, behavior, and vulnerability to schizophrenia. Proc Natl Acad Sci U S A,2008.105(16):p.6133-8.
    [71]Hofmann, S., et al., Genome-wide association study identifies ANXA11 as a new susceptibility locus for sarcoidosis. Nat Genet,2008.
    [72]Illig, T., et al., A genome-wide perspective of genetic variation in human metabolism. Nat Genet.42(2):p.137-41.
    [73]Sabatti, C., et al., Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet,2009.41(1):p.35-46.
    [74]Satake, W., et al., Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet,2009.41(12):p. 1303-7.
    [75]Song, H., et al., A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet,2009.41(9):p.996-1000.
    [76]Thomas, G., et al., Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet,2008.40(3):p.310-5.
    [77]黄培堂译,分子克隆实验指南第三版.[美]J.莎姆布鲁克,2002年.
    [78]李照海,覃红,张洪,遗传学中的统计学方法.科学出版社,2006.
    [79]Jyonouchi, H., et al., Impact of innate immunity in a subset of children with autism spectrum disorders:a case control study. J Neuroinflammation,2008.5:p. 52.
    [80]Kim, H.G., et al., Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet,2008.82(1):p.199-207.
    [81]Levenson, J.M., S. Qiu, and E.J. Weeber, The role of reelin in adult synaptic function and the genetic and epigenetic regulation of the reelin gene. Biochim Biophys Acta,2008.1779(8):p.422-31.
    [82]Falconer, D., Two new mutants, Trembler and 'Reeler', with neurological actions in the house mouse. J Genetics,1951.50:p.182-201.
    [83]Goffinet, A.M., An early development defect in the cerebral cortex of the reeler mouse. A morphological study leading to a hypothesis concerning the action of the mutant gene. Anat Embryol (Berl),1979.157(2):p.205-16.
    [84]Goffinet, A.M., Events governing organization of postmigratory neurons:studies on brain development in normal and reeler mice. Brain Res,1984.319(3):p. 261-96.
    [85]Goffinet, A.M., The reeler gene:a clue to brain development and evolution. Int J Dev Biol,1992.36(1):p.101-7.
    [86]Ogawa, M., et al., The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron,1995. 14(5):p.899-912.
    [87]D'Arcangelo, G, et al., A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature,1995.374(6524):p.719-23.
    [88]DeSilva, U., et al., The human reelin gene:isolation, sequencing, and mapping on chromosome 7. Genome Res,1997.7(2):p.157-64.
    [89]D'Arcangelo, G, et al., Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci,1997.17(1):p.23-31.
    [90]Tissir, F. and A.M. Goffinet, Reelin and brain development. Nat Rev Neurosci, 2003.4(6):p.496-505.
    [91]Impagnatiello, F., et al., A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci U S A,1998.95(26):p.15718-23.
    [92]Costa, E., et al., Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis,2001.8(5):p. 723-42.
    [93]Guidotti, A., et al., Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder:a postmortem brain study. Arch Gen Psychiatry,2000.57(11):p.1061-9.
    [94]Fatemi, S.H., J.A. Earle, and T. McMenomy, Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry,2000.5(6):p.654-63,571.
    [95]Hong, S.E., et al., Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet,2000.26(1):p.93-6.
    [96]Ekelund, J., et al., Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet,2000.9(7):p.1049-57.
    [1]胡正茂,一个精神分裂症的新位点可能与12p12连锁.2007,中南大学:[博士学位论文].
    [2]Association., A.P., Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition(DSM-IV).1994, Washington DC:APA.
    [3]Gottesman, Ⅱ and A. Bertelsen, Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer's Danish identical and fraternal discordant twins. Arch Gen Psychiatry,1989.46(10):p.867-72.
    [4]Cardno, A.G. and Gottesman, Ⅱ, Twin studies of schizophrenia:from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet,2000.97(1):
    p.12-7.
    [5]Ingraham, L.J. and S.S. Kety, Adoption studies of schizophrenia. Am J Med Genet, 2000.97(1):p.18-22.
    [6]Risch, N. and M. Baron, Segregation analysis of schizophrenia and related disorders. Am J Hum Genet,1984.36(5):p.1039-59.
    [7]Paunio, T., et al., Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. Hum Mol Genet,2001.10(26):p.3037-48.
    [8]Sklar, P., et al., Genome-wide scan in Portuguese Island families identifies 5q31-5q35 as a susceptibility locus for schizophrenia and psychosis. Mol Psychiatry,2004.9(2):p. 213-8.
    [9]Lewis, C.M., et al., Genome scan meta-analysis of schizophrenia and bipolar disorder, part Ⅱ:Schizophrenia. Am J Hum Genet,2003.73(1):p.34-48.
    [10]Nanko, S., et al., Linkage study of schizophrenia with markers on chromosome 11 in two Japanese pedigrees. Jpn J Psychiatry Neurol,1992.46(1):p.155-9.
    [11]Maziade, M., et al., Linkage results on 11Q21-22 in Eastern Quebec pedigrees densely affected by schizophrenia. Am J Med Genet,1995.60(6):p.522-8.
    [12]Levinson, D.F., et al., Genome scan of schizophrenia. Am J Psychiatry,1998.155(6): p.741-50.
    [13]Yamada, K., et al., Family-based association study of schizophrenia with 444 markers and analysis of a new susceptibility locus mapped to 11q13.3. Am J Med Genet B Neuropsychiatr Genet,2004.127B(1):p.11-9.
    [14]Choudhury, K., et al., A genetic association study of chromosome 11q22-24 in two different samples implicates the FXYD6 gene, encoding phosphohippolin, in susceptibility to schizophrenia. Am J Hum Genet,2007.80(4):p.664-72.
    [15]Maziade, M., et al.,6p24-22 region and major psychoses in the Eastern Quebec population. Le Groupe IREP. Am J Med Genet,1997.74(3):p.311-8.
    [16]Kaufmann, C.A., et al., NIMH Genetics Initiative Millenium Schizophrenia Consortium:linkage analysis of African-American pedigrees. Am J Med Genet,1998. 81(4):p.282-9.
    [17]Straub, R.E., et al., Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry,2002.7(6):p.542-59.
    [18]Straub, R.E., et al., Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet,2002.
    71(2):p.337-48.
    [19]Pulver, A.E., et al., Sequential strategy to identify a susceptibility gene for schizophrenia:report of potential linkage on chromosome 22q12-q13.1:Part 1. Am J Med Genet,1994.54(1):p.36-43.
    [20]Pulver, A.E., et al., Follow-up of a report of a potential linkage for schizophrenia on chromosome 22q12-q13.1:Part 2. Am J Med Genet,1994.54(1):p.44-50.
    [21]Coon, H., et al., Genomic scan for genes predisposing to schizophrenia. Am J Med Genet,1994.54(1):p.59-71.
    [22]Coon, H., et al., Analysis of chromosome 22 markers in nine schizophrenia pedigrees. Am J Med Genet,1994.54(1):p.72-9.
    [23]Polymeropoulos, M.H., et al., Search for a schizophrenia susceptibility locus on human chromosome 22. Am J Med Genet,1994.54(2):p.93-9.
    [24]Lasseter, V.K., et al., Follow-up report of potential linkage for schizophrenia on chromosome 22q:Part 3. Am J Med Genet,1995.60(2):p.172-3.
    [25]Schwab, S.G., et al., A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings:support for loci on chromosome 10p and 6. Mol Psychiatry,2000.5(6):p.638-49.
    [26]Vallada, H., et al., Chromosome 22 markers demonstrate transmission disequilibrium with schizophrenia. Psychiatr Genet,1995.5(3):p.127-30.
    [27]Moises, H.W., et al., Potential linkage disequilibrium between schizophrenia and locus D22S278 on the long arm of chromosome 22. Am J Med Genet,1995.60(5):p.465-7.
    [28]Liu, H., et al., Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci U S A,2002.99(26):p.16859-64.
    [29]Karayiorgou, M. and J.A.Gogos, The molecular genetics of the22q11-associated schizophrenia. Brain Res Mol Brain Res2,2004.132(2):p.95-104.
    [30]Cao, Q., et al., Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics, 1997.43(1):p.1-8.
    [31]Lindholm, E., et al., A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet,2001.69(1):p.96-105.
    [32]Lerer, B., et al., Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry,2003.8(5):p.488-98.
    [33]Levi, A., et al., Fine mapping of a schizophrenia susceptibility locus at chromosome 6q23:increased evidence for linkage and reduced linkage interval. Eur J Hum Genet,
    2005.13(6):p.763-71.
    [34]Kendler, K.S., et al., Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry,1996. 153(12):p.1534-40.
    [35]Blouin, J.L., et al., Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet,1998.20(1):p.70-3.
    [36]Stefansson, H., et al., Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet,2002.71(4):p.877-92.
    [37]Lin, M.W., et al., Suggestive evidence for linkage of schizophrenia to markers on chromosome 13q14.1-q32. Psychiatr Genet,1995.5(3):p.117-26.
    [38]Pulver, A.E., et al., The Johns Hopkins University Collaborative Schizophrenia Study: an epidemiologic-genetic approach to test the heterogeneity hypothesis and identify schizophrenia susceptibility genes. Cold Spring Harb Symp Quant Biol,1996.61:p. 797-814.
    [39]Shaw, S.H., et al., A genome-wide search for schizophrenia susceptibility genes. Am J Med Genet,1998.81(5):p.364-76.
    [40]Brzustowicz, L.M., et al., Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet,1999.65(4):p.1096-103.
    [41]Brzustowicz, L.M., et al., Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science,2000.288(5466):p.678-82.
    [42]Wildenauer, D.B., et al., Searching for susceptibility genes in schizophrenia by genetic linkage analysis. Cold Spring Harb Symp Quant Biol,1996.61:p.845-50.
    [43]Stine, O.C., et al., Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J Hum Genet,1995.57(6):p.1384-94.
    [44]Schwab, S.G., et al., Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis. Am J Hum Genet,1998.63(4):p.1139-52.
    [45]Corradi, J.P., et al., Alternative transcripts and evidence of imprinting of GNAL on 18p11.2. Mol Psychiatry,2005.10(11):p.1017-25.
    [46]Sakagami, H., Y. Sawamura, and H. Kondo, Synchronous patchy pattern of gene expression for adenylyl cyclase and phosphodiesterase but discrete expression for G-protein in developing rat striatum. Brain Res Mol Brain Res,1995.33(2):p.185-91.
    [47]Ekelund, J., et al., Chromosome 1 loci in Finnish schizophrenia families. Hum Mol Genet,2001.10(15):p.1611-7.
    [48]Levinson, D.F., et al., No major schizophrenia locus detected on chromosome 1q in a
    large multicenter sample. Science,2002.296(5568):p.739-41.
    [49]Stober, G., et al., Periodic catatonia:a schizophrenic subtype with major gene effect and anticipation. Eur Arch Psychiatry Clin Neurosci,1995.245(3):p.135-41.
    [50]Beckmann, H., E. Franzek, and G. Stober, Genetic heterogeneity in catatonic schizophrenia:a family study. Am J Med Genet,1996.67(3):p.289-300.
    [51]Stober, G., et al., Splitting schizophrenia:periodic catatonia-susceptibility locus on chromosome 15q15. Am J Hum Genet,2000.67(5):p.1201-7.
    [52]Leonard, S. and R. Freedman, Genetics of chromosome 15q13-ql4 in schizophrenia. Biol Psychiatry,2006.60(2):p.115-22.
    [53]Fallin, M.D., et al., Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. Am J Hum Genet,2003.73(3):p.601-11.
    [54]Abecasis, G.R., et al., Genomewide scan in families with schizophrenia from the founder population of Afrikaners reveals evidence for linkage and uniparental disomy on chromosome 1. Am J Hum Genet,2004.74(3):p.403-17.
    [55]O'Donovan, M.C., et al., Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet,2008.40(9):p.1053-5.
    [56]Crocq, M.A., et al., Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Genet,1992.29(12):p.858-60.
    [57]Spurlock, G., et al., European Multicentre Association Study of Schizophrenia:a study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. Am J Med Genet,1998. 81(1):p.24-8.
    [58]Ebstein, R.P., et al., Evidence for an association between the dopamine D3 receptor gene DRD3 and schizophrenia. Hum Hered,1997.47(1):p.6-16.
    [59]汤宜朗,et al.,多巴胺D_3受体基因多态性与精神分裂症及其亚型的关联分析.中华精神科杂志2002.35(01):p.11-14.
    [60]Ishiguro, H., et al., Mutation and association analysis of the 5'region of the dopamine D3 receptor gene in schizophrenia patients:identification of the Ala38Thr polymorphism and suggested association between DRD3 haplotypes and schizophrenia. Mol Psychiatry,2000.5(4):p.433-8.
    [61]Nothen, M.M., et al., Excess of homozygosity at the dopamine D3 receptor gene in schizophrenia not confirmed. J Med Genet,1993.30(8):p.708.
    [62]Rietschel, M., et al., Dopamine D3 receptor Gly9/Ser9 polymorphism and schizophrenia:no increased frequency of homozygosity in German familial cases. Schizophr Res,1996.20(1-2):p.181-6.
    [63]de Chaldee, M., et al., Linkage disequilibrium on the COMT gene in French schizophrenics and controls. Am J Med Genet,1999.88(5):p.452-7.
    [64]Riazuddin, S., et al., Dominant modifier DFNM1 suppresses recessive deafness DFNB26. Nat Genet,2000.26(4):p.431-4.
    [65]Liou, Y.J., et al., Association analysis of a functional catechol-o-methyltransferase gene polymorphism in schizophrenic patients in Taiwan. Neuropsychobiology,2001. 43(1):p.11-4.
    [66]Fan, J.B., et al., Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia:a large-scale association study plus meta-analysis. Biol Psychiatry,2005.57(2):p.139-44.
    [67]Shifman, S., et al., A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet,2002.71(6):p.1296-302.
    [68]Domschke, K., et al., Meta-analysis of COMT val158met in panic disorder:ethnic heterogeneity and gender specificity. Am J Med Genet B Neuropsychiatr Genet,2007. 144B(5):p.667-73.
    [69]Inayama, Y., et al., Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia. Am J Med Genet,1996.67(1):p. 103-5.
    [70]Williams, J., et al., Association between schizophrenia and T102C polymorphism of the 5-hydroxytryptamine type 2a-receptor gene. European Multicentre Association Study of Schizophrenia (EMASS) Group. Lancet,1996.347(9011):p.1294-6.
    [71]Beyer, C.E., et al., Regulators of G-protein signaling 4:modulation of 5-HT1A-mediated neurotransmitter release in vivo. Brain Res,2004.1022(1-2):p.214-20.
    [72]De Blasi, A., et al., Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol Sci,2001.22(3):p.114-20.
    [73]Taymans, J.M., et al., Dopamine receptor-mediated regulation of RGS2 and RGS4 mRNA differentially depends on ascending dopamine projections and time. Eur J Neurosci,2004.19(8):p.2249-60.
    [74]Mimics, K., et al., Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry,2001.6(3):p.293-301.
    [75]Chowdari, K.V., et al., Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet,2002.11(12):p.1373-80.
    [76]Sutherland, H.G., et al., Reactivation of heritably silenced gene expression in mice. Mamm Genome,2000.11(5):p.347-55.
    [77]Cordeiro, Q., et al., Association and linkage analysis of RGS4 polymorphisms with
    schizophrenia and bipolar disorder in Brazil. Genes Brain Behav,2005.4(1):p.45-50.
    [78]Sobell, J.L., et al., Failure to confirm association between RGS4 haplotypes and schizophrenia in Caucasians. Am J Med Genet B Neuropsychiatr Genet,2005.139(1): p.23-7.
    [79]Mohn, A.R., et al., Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell,1999.98(4):p.427-36.
    [80]Dracheva, S., et al., N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. Am J Psychiatry,2001.158(9): p.1400-10.
    [81]Ohtsuki, T., et al., Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia. Mol Psychiatry,2001.6(2):p.211-6.
    [82]Di Maria, E., et al., Variations in the NMDA receptor subunit 2B gene (GRIN2B) and schizophrenia:a case-control study. Am J Med Genet B Neuropsychiatr Genet,2004. 128(1):p.27-9.
    [83]Begni, S., et al., Association between the G1001C polymorphism in the GRIN1 gene promoter region and schizophrenia. Biol Psychiatry,2003.53(7):p.617-9.
    [84]Martucci, L., et al., N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) in schizophrenia:TDT and case-control analyses. Am J Med Genet B Neuropsychiatr Genet,2003.119(1):p.24-7.
    [85]Chumakov, I., et al., Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A,2002.99(21):p.13675-80.
    [86]Korostishevsky, M., et al., Is the G72/G30 locus associated with schizophrenia? single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry, 2004.56(3):p.169-76.
    [87]Zou, F., et al., A family-based study of the association between the G72/G30 genes and schizophrenia in the Chinese population. Schizophr Res,2005.73(2-3):p.257-61.
    [88]Hattori, E., et al., Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet,2003. 72(5):p.1131-40.
    [89]Schumacher, J., et al., Examination of G72 and D-amino-acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol Psychiatry,2004.9(2):p. 203-7.
    [90]Chandy, K.G., et al., Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat:a candidate for schizophrenia and bipolar disorder? Mol
    Psychiatry,1998.3(1):p.32-7.
    [91]Bo wen, T., et al., Further support for an association between a polymorphic CAG repeat in the hKCa3 gene and schizophrenia. Mol Psychiatry,1998.3(3):p.266-9.
    [92]Dror, V., et al., hKCa3/KCNN3 potassium channel gene:association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol Psychiatry,1999.4(3):p.254-60.
    [93]Cardno, A.G., et al., CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biol Psychiatry,1999.45(12):p.1592-6.
    [94]Li, T., et al., Transmission disequilibrium analysis of a triplet repeat within the hKCa3 gene using family trios with schizophrenia. Biochem Biophys Res Commun,1998. 251(2):p.662-5.
    [95]Austin, C.P., et al., Mapping of hKCa3 to chromosome 1q21 and investigation of linkage of CAG repeat polymorphism to schizophrenia. Mol Psychiatry,1999.4(3):p. 261-6.
    [96]Ujike, H., et al., Association study of CAG repeats in the KCNN3 gene in Japanese patients with schizophrenia, schizoaffective disorder and bipolar disorder. Psychiatry Res,2001.101(3):p.203-7.
    [97]Corfas, G., K. Roy, and J.D. Buxbaum, Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci,2004.7(6):p.575-80.
    [98]Tan, W., et al., Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J Biol Chem,2007.282(33):p.24343-51.
    [99]Cameron, J.S., L. Dryer, and S.E. Dryer, beta-Neuregulin-1 is required for the in vivo development of functional Ca2+ -activated K+ channels in parasympathetic neurons. Proc Natl Acad Sci U S A,2001.98(5):p.2832-6.
    [100]Garcia, R.A., K. Vasudevan, and A. Buonanno, The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses. Proc Natl Acad Sci U S A,2000.97(7):p.3596-601.
    [101]Rieff, H.I., et al., Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci,1999.19(24):p.10757-66.
    [102]Hashimoto, R., et al., Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry,2004.9(3):p.299-307.
    [103]Stefansson, H., et al., Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet,2003.72(1):p.83-7.
    [104]Williams, N.M., et al., A systematic genomewide linkage study in 353 sib pairs with
    schizophrenia. Am J Hum Genet,2003.73(6):p.1355-67.
    [105]唐君霞,DTNBP1和NRG1基因是中国汉族人群精神分裂症的易感基因.博士学位论文].上海:中国科学院上海生命科学院原生理所,2003
    [106]Iwata, N., et al., No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol Psychiatry,2004.9(2):p.126-7.
    [107]Seitz, H., et al., A large imprinted microRNA gene cluster at the mouse Dlkl-Gtl2 domain. Genome Res,2004.14(9):p.1741-8.
    [108]Corvin, A.P., et al., Confirmation and refinement of an 'at-risk' haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Mol Psychiatry,2004.9(2):p.208-13.
    [109]Tappia, P.S., M.R. Dent, and N.S. Dhalla, Oxidative stress and redox regulation of phospholipase D in myocardial disease. Free Radic Biol Med,2006.41(3):p.349-61.
    [110]Thiselton, D.L., et al., No evidence for linkage or association of neuregulin-1 (NRG1) with disease in the Irish study of high-density schizophrenia families (ISHDSF). Mol Psychiatry,2004.9(8):p.777-83; image 729.
    [111]Gardner, M., et al., Extreme population differences across Neuregulin 1 gene, with implications for association studies. Mol Psychiatry,2006.11(1):p.66-75.
    [112]van den Oord, E.J., et al., Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol Psychiatry,2003.8(5):p.499-510.
    [113]Schwab, S.G., et al., Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet,2003.72(1):p.185-90.
    [114]Williams, N.M., et al., Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry,2004.61(4):p.336-44.
    [115]Kirov, G., et al., Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatry,2004.55(10):p.971-5.
    [116]Betts, D.H., et al., Telomere length analysis in goat clones and their offspring. Mol Reprod Dev,2005.72(4):p.461-70.
    [117]Mutsuddi, M., et al., Analysis of high-resolution HapMap of DTNBP1 (Dysbindin) suggests no consistency between reported common variant associations and schizophrenia. Am J Hum Genet,2006.79(5):p.903-9.
    [118]Blackwood, D.H., et al., Schizophrenia and affective disorders-cosegregation with a
    translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet,2001.69(2):p.428-33.
    [119]Ekelund, J., et al., Replication of 1q42 linkage in Finnish schizophrenia pedigrees. Mol Psychiatry,2004.9(11):p.1037-41.
    [120]Hodgkinson, C.A., et al., Disrupted in schizophrenia 1 (DISCI):association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet,2004. 75(5):p.862-72.
    [121]Sachs, N.A., et al., A frameshift mutation in Disrupted in Schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry, 2005.10(8):p.758-64.
    [122]Mukai, J., et al., Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet,2004.36(7):p.725-31.
    [123]Chen, W.Y., et al., Case-control study and transmission disequilibrium test provide consistent evidence for association between schizophrenia and genetic variation in the 22q11 gene ZDHHC8. Hum Mol Genet,2004.13(23):p.2991-5.
    [124]Glaser, B., et al., No association between the putative functional ZDHHC8 single nucleotide polymorphism rs175174 and schizophrenia in large European samples. Biol Psychiatry,2005.58(1):p.78-80.
    [125]Wei, J. and G.P. Hemmings, The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat Genet,2000.25(4):p.376-7.
    [126]Fan, J.B., et al., A family-based and case-control association study of the NOTCH4 gene and schizophrenia. Mol Psychiatry,2002.7(1):p.100-3.
    [127]Ujike, H., et al., NOTCH4 gene polymorphism and susceptibility to schizophrenia and schizoaffective disorder. Neurosci Lett,2001.301(1):p.41-4.
    [128]Imai, K., et al., The (CTG)n polymorphism in the NOTCH4 gene is not associated with schizophrenia in Japanese individuals. BMC Psychiatry,2001.1:p.1.
    [129]Kaneko, N., et al., Transmission disequilibrium test and haplotype analysis of the NOTCH4 gene in Japanese patients with schizophrenia. Psychiatry Clin Neurosci, 2004.58(2):p.199-205.
    [1]Kanner, L., Autistic disturbances of affective contact The Nervous child,1943(2):p. 217-243.
    [2]陶国泰,婴儿孤独症的诊断和归属问题中华神经精神科杂志,1982.151(2):p.104-107.
    [3]陶国泰,儿童少年精神医学,1999,南京:江苏科学技术出版社.207-214.
    [4]延正红,儿童孤独症的分子遗传学研究(博士学位论文).2006,吉林大学.
    [5]Association., A.P., Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition(DSM-IV).1994, Washington DC:APA.
    [6]Bertrand, J., et al., Prevalence of autism in a United States population:the Brick Township, New Jersey, investigation. Pediatrics,2001.108(5):p.1155-61.
    [7]Scott, F.J., et al., Brief report:prevalence of autism spectrum conditions in children aged 5-11 years in Cambridgeshire, UK. Autism,2002.6(3):p.231-7.
    [8]Kuehn, B.M., CDC:autism spectrum disorders common. Jama,2007.297(9):p.940.
    [9]Baron-Cohen, S., et al., Prevalence of autism-spectrum conditions:UK school-based population study. Br J Psychiatry,2009.194(6):p.500-9.
    [10]罗维武,et al.,福建省儿童孤独症流行病学调查上海精神医学,2000.12(1):p.3-5.
    [11]蒋陆平,et al.,洛阳地区儿童精神卫生调查健康心理学杂志,2000.8(1):p.27-28.
    [12]汪卫华,et al.,江苏省儿童孤独症的流行病学调查中国行为医学科学,2003.12(2):p.173-174.
    [13]郭荣,天津市5000名0-6岁儿童中儿童孤独症的流行病学调查中国临床康复,2004.6(6):p.1122—1123.
    [14]Bailey, A., et al., Autism as a strongly genetic disorder:evidence from a British twin study. Psychol Med,1995.25(1):p.63-77.
    [15]Le Couteur, A., et al., A broader phenotype of autism:the clinical spectrum in twins. J Child Psychol Psychiatry,1996.37(7):p.785-801.
    [16]Szatmari, P., et al., Genetics of autism:overview and new directions. J Autism Dev Disord,1998.28(5):p.351-68.
    [17]McDougle, C.J. and D. Posey, Genetics of childhood disorders:XLIV. autism, part 3:
    psychopharmacology of autism. J Am Acad Child Adolesc Psychiatry,2002.41(11):p. 1380-3.
    [18]Risch, N., et al., A genomic screen of autism:evidence for a multilocus etiology. Am J Hum Genet,1999.65(2):p.493-507.
    [19]Veenstra-VanderWeele, J., G.M. Anderson, and E.H. Cook, Jr., Pharmacogenetics and the serotonin system:initial studies and future directions. Eur J Pharmacol,2000. 410(2-3):p.165-181.
    [20]Leboyer, M., et al., Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol Psychiatry,1999.45(2):p.158-63.
    [21]Wassink, T.H., et al., Cerebral cortical gray matter overgrowth and functional variation of the serotonin transporter gene in autism. Arch Gen Psychiatry,2007.64(6): p.709-17.
    [22]Fiskerstrand, C.E., E.A. Lovejoy, and J.P. Quinn, An intronic polymorphic domain often associated with susceptibility to affective disorders has allele dependent differential enhancer activity in embryonic stem cells. FEBS Lett,1999.458(2):p. 171-4.
    [23]Heinz, A., et al., A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry,2000.47(7):p.643-9.
    [24]Cook, E.H., Jr., et al., Evidence of linkage between the serotonin transporter and autistic disorder. Mol Psychiatry,1997.2(3):p.247-50.
    [25]Klauck, S.M., et al., Serotonin transporter (5-HTT) gene variants associated with autism? Hum Mol Genet,1997.6(13):p.2233-8.
    [26]Yirmiya, N., et al., Evidence for an association with the serotonin transporter promoter region polymorphism and autism. Am J Med Genet,2001.105(4):p.381-6.
    [27]Maestrini, E., et al., Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. Am J Med Genet,1999.88(5):p.492-6.
    [28]Zhong, N., et al.,5-HTTLPR variants not associated with autistic spectrum disorders. Neurogenetics,1999.2(2):p.129-31.
    [29]Persico, A.M., et al., Lack of association between serotonin transporter gene promoter variants and autistic disorder in two ethnically distinct samples. Am J Med Genet, 2000.96(1):p.123-7.
    [30]Betancur, C., et al., Serotonin transporter gene polymorphisms and hyperserotonemia in autistic disorder. Mol Psychiatry,2002.7(1):p.67-71.
    [31]Kim, S.J., et al., Transmission disequilibrium mapping at the serotonin transporter gene (SLC6A4) region in autistic disorder. Mol Psychiatry,2002.7(3):p.278-88.
    [32]Guhathakurta, S., et al., Population-based association study and contrasting linkage disequilibrium pattern reveal genetic association of SLC6A4 with autism in the Indian population from West Bengal. Brain Res,2008.1240:p.12-21.
    [33]Tordjman, S., et al., Role of the serotonin transporter gene in the behavioral expression of autism. Mol Psychiatry,2001.6(4):p.434-9.
    [34]Cho, I.H., et al., Family-based association study of 5-HTTLPR and the 5-HT2A receptor gene polymorphisms with autism spectrum disorder in Korean trios. Brain Res,2007.1139:p.34-41.
    [35]Veenstra-VanderWeele, J., et al., Transmission disequilibrium studies of the serotonin 5-HT2A receptor gene (HTR2A) in autism. Am J Med Genet,2002.114(3):p.277-83.
    [36]Herault, J., et al., Serotonin and autism:biochemical and molecular biology features. Psychiatry Res,1996.65(1):p.33-43.
    [37]Guhathakurta, S., et al., Analysis of serotonin receptor 2A gene (HTR2A):association study with autism spectrum disorder in the Indian population and investigation of the gene expression in peripheral blood leukocytes. Neurochem Int,2009.55(8):p.754-9.
    [38]沈渔邨,精神病学,2003.(第4版):p.569-571.
    [39]Rubenstein, J.L. and M.M. Merzenich, Model of autism:increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav,2003.2(5):p.255-67.
    [40]Shao, Y., et al., Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. Am J Hum Genet,2003.72(3):p.539-48.
    [41]Philippe, A., et al., Genome-wide scan for autism susceptibility genes. Paris Autism Research International Sibpair Study. Hum Mol Genet,1999.8(5):p.805-12.
    [42]Bass, M.P., et al., Genetic studies in autistic disorder and chromosome 15. Neurogenetics,2000.2(4):p.219-26.
    [43]Cook, E.H., Jr., et al., Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet,1998.62(5):p.1077-83.
    [44]Martin, E.R., et al., Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. Am J Med Genet,2000.96(1):p.43-8.
    [45]Buxbaum, J.D., et al., Association between a GABRB3 polymorphism and autism. Mol Psychiatry,2002.7(3):p.311-6.
    [46]Kim, S.A., et al., Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology,2006.54(3):p.160-5.
    [47]Delahanty, R.J., et al., Maternal transmission of a rare GABRB3 signal peptide variant
    is associated with autism. Mol Psychiatry,2009.
    [48]Salmon, B., et al., Absence of linkage and linkage disequilibrium to chromosome 15q11-q13 markers in 139 multiplex families with autism. Am J Med Genet,1999. 88(5):p.551-6.
    [49]Carlsson, M.L., Hypothesis:is infantile autism a hypoglutamatergic disorder? Relevance of glutamate-serotonin interactions for pharmacotherapy. J Neural Transm, 1998.105(4-5):p.525-35.
    [50]Moreno-Fuenmayor, H., et al., Plasma excitatory amino acids in autism. Invest Clin, 1996.37(2):p.113-28.
    [51]Rolf, L.H., et al., Serotonin and amino acid content in platelets of autistic children. Acta Psychiatr Scand,1993.87(5):p.312-6.
    [52]Jamain, S., et al., Linkage and association of the glutamate receptor 6 gene with autism. Mol Psychiatry,2002.7(3):p.302-10.
    [53]Nelson, K.B., et al., Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol,2001.49(5):p.597-606.
    [54]Miyazaki, K., et al., Serum neurotrophin concentrations in autism and mental retardation:a pilot study. Brain Dev,2004.26(5):p.292-5.
    [55]Sodhi, M.S. and E. Sanders-Bush, Serotonin and brain development. Int Rev Neurobiol, 2004.59:p.111-74.
    [56]Philippe, A., et al., Analysis of ten candidate genes in autism by association and linkage. Am J Med Genet,2002.114(2):p.125-8.
    [57]Nishimura, K., et al., Genetic analyses of the brain-derived neurotrophic factor (BDNF) gene in autism. Biochem Biophys Res Commun,2007.356(1):p.200-6.
    [58]Tsai, S.J., Is autism caused by early hyperactivity of brain-derived neurotrophic factor? Med Hypotheses,2005.65(1):p.79-82.
    [59]Cheng, L., et al., Polyacrylamide gel-based microarray:a novel method applied to the association Study between the polymorphisms of BDNF gene and autism. J Biomed Nanotechnol,2009.5(5):p.542-50.
    [60]Schultz, R.T., Developmental deficits in social perception in autism:the role of the amygdala and fusiform face area. Int J Dev Neurosci,2005.23(2-3):p.125-41.
    [61]Dziobek, I., et al., The 'amygdala theory of autism'revisited:linking structure to behavior. Neuropsychologia,2006.44(10):p.1891-9.
    [62]Amaral, D.G., M.D. Bauman, and C.M. Schumann, The amygdala and autism: implications from non-human primate studies. Genes Brain Behav,2003.2(5):p. 295-302.
    [63]Carper, R.A., et al., Cerebral lobes in autism:early hyperplasia and abnormal age effects. Neuroimage,2002.16(4):p.1038-51.
    [64]Luna, B., et al., Neocortical system abnormalities in autism:an fMRI study of spatial working memory. Neurology,2002.59(6):p.834-40.
    [65]Fatemi, S.H., et al., Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol,2002.22(2):p.171-5.
    [66]Lewis, J.D. and J.L. Elman, Growth-related neural reorganization and the autism phenotype:a test of the hypothesis that altered brain growth leads to altered connectivity. Dev Sci,2008.11(1):p.135-55.
    [67]Mizuno, A., et al., Partially enhanced thalamocortical functional connectivity in autism. Brain Res,2006.1104(1):p.160-74.
    [68]Blatt, G.J., et al., Density and distribution of hippocampal neurotransmitter receptors in autism:an autoradiographic study. J Autism Dev Disord,2001.31(6):p.537-43.
    [69]Purcell, A.E., et al., Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology,2001.57(9):p.1618-28.
    [70]Fatemi, S.H., et al., Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry,2002.52(8):p.805-10.
    [71]Peral, M., M. Alcami, and I. Gilaberte, Fluoxetine in children with autism. J Am Acad Child Adolesc Psychiatry,1999.38(12):p.1472-3.
    [72]Ashwood, P. and J. Van de Water, A review of autism and the immune response. Clin Dev Immunol,2004.11(2):p.165-74.
    [73]Fitzpatrick, M., Autism and environmental toxicity. Lancet Neurol,2007.6(4):p.297.
    [74]Jyonouchi, H., et al., Impact of innate immunity in a subset of children with autism spectrum disorders:a case control study. J Neuroinflammation,2008.5:p.52.
    [75]Pardo, C.A., D.L. Vargas, and A.W. Zimmerman, Immunity, neuroglia and neuroinflammation in autism. Int Rev Psychiatry,2005.17(6):p.485-95.
    [76]Hultman, C.M., P. Sparen, and S. Cnattingius, Perinatal risk factors for infantile autism. Epidemiology,2002.13(4):p.417-23.
    [77]Glasson, E. J., et al., Perinatal factors and the development of autism:a population study. Arch Gen Psychiatry,2004.61(6):p.618-27.
    [78]Larsson, H.J., et al., Risk factors for autism:perinatal factors, parental psychiatric history, and socioeconomic status. Am J Epidemiol,2005.161(10):p.916-25; discussion 926-8.
    [79]Adams, J.B., et al., The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol,2009.2009:p.532640.