若干抗病毒活性化合物的成药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒性疾病对人类健康和生命造成了莫大威胁,新型抗病毒感染药物的研究一直是热点领域之一。本研究组在以Hsp90为靶点的抗病毒药物研究中,筛选得到了若干抗病毒活性强和抗病毒谱广的格尔德霉素(GM)衍生物GM-AMPL、LD01、 GM-GP和GM-TC等。另外,在进行新核苷衍生物的合成与筛选研究中,得到的替诺福韦长链烷基单酯衍生物ODE-TFV显示有进一步开发研究价值。在前期工作的基础上,为充分阐述抗病毒活性化合物GM-AMPL、LD01、GM-GP和GM-TC的开发应用前景,本论文对其前期成药性进行了综合评价研究。同时,为配合进一步研发工作的需要,对抗病毒候选药物ODE-TFV的分析检测及质量控制方法进行了研究。
     第一部分是格尔德霉素衍生物GM-AMPL、LD01、GM-GP和GM-TC的合成及成药性研究。在前期研究的基础上,对上述GM衍生物的合成制备、理化性质与稳定性、体内抗鸭肝炎病毒活性、口服吸收、小鼠急性毒性、对Beagle犬呼吸与心血管系统毒性等进行了前期综合评价研究。
     理化性质与稳定性:GM-AMPL、LD01、GM-GP和GM-TC在水及正辛醇中的溶解度分别为0.41及0.78、5.41及8.38、3.30及0.0082和2.62及0.22mg/ml,普遍较先导物GM(0.13及0.041mg/m1)明显提高;GM-AMPL的甲醇溶液经4500Lx光照1h降解不到3%,相同条件下,GM降解接近50%。
     体内抗DHBV效果:采用鸭肝炎模型动物,分别灌胃给予不同剂量(0.05、0.025和0.0125mmo1/kg)的GM-AMPL、LD01、 GM-GP和0.2mmol/kg的对照药拉米夫定(3TC),1天2次,连续10天。分别在给药前(T0)、给药后5天(T5)、给药后10天(T10)和停药后3天(P3),取血分离血清,测定药物对鸭血清乙型肝炎病毒DNA(DHBV-DNA)的影响。实验结果显示,与病毒对照组相比,不同实验剂量下,GM-AMPL、LDO1及GM-GP均显示显著的抑制鸭血清DHBV DNA的作用,在0.05mmol/kg剂量下的DHBV抑制活性强于/相当于对照药3TC,停药后3天鸭血清DHBV水平无反跳。测试的GM化合物中,GM-AMPL的体内抑制鸭血清DHBVDNA的效果最强。
     口服生物利用度:SD大鼠单次灌胃给药GM-AMPL(25mg/kg)、LD01(25mg/kg)和GM-GP(7.5mg/kg)的生物利用度分别为26.36%、1.72%和8.89%。
     小鼠单次给药的急性毒性:对比研究了小鼠静脉和腹腔注射给药GM-AMPL、LD01、GM-GP的急性毒性。GM-AMPL、LD01、GM-GP单次静脉注射给予小鼠的LDso分别为152.6、82.01和19.2mg/kg,单次腹腔注射的LDso分别为295.4、203.8和35.5mg/kg。
     对Beagle犬呼吸和心血管系统的毒性:用累计给药方法进行不同剂量试验,给药后5-180min期间连续采集Beagle犬血压、心电、呼吸等各项指标的数据,在药后不同时间点对动物血压、心电、呼吸指标进行了测量、分析和评估。结果显示,GM-AMPL:单次静脉注射剂量分别为5、10、15、20μg/kg和10mg/kg。注射15μg/kg在给药后2min内可引起Beagle犬血压明显下降,呼吸频率加快;注射20μg/kg后,可引起心率减慢,血压明显下降,呼吸频率加快;注射10mg/kg后可引起动物死亡。对Beagle犬呼吸和心血管系统无明显影响的安全剂量小于15.0μg/kg;LD01:单次静脉注射药1.0μg/kg和0.5、2.0、8.0mg/kg,在给药后均可引起Beagle犬心率减慢,血压明显下降,呼吸频率加快;对Beagle犬呼吸和心血管系统无明显影响的安全剂量小于1.0μg/kg;GM-GP:单次静脉注射给予Beagle犬10、11、16、21和25μg/kg,在给药后2min内即可引起心率减慢,血压明显下降,呼吸频率加快;单次静脉注射对Beagle犬呼吸和心血管系统无明显影响的安全剂量小于10μg/kg。
     第二部分是非环核苷衍生物ODE-TFV分析检测方法的摸索。为配合进一步研究开发工作需要,论文对抗病毒侯选药物ODE-TFV的纯度及主要有关杂质分析检测方法进行了探索研究,研究内容主要包括:ODE-TFV的理化性质与稳定性、主要有关物质分离分析与纯度检测方法、光学异构体的拆分等。研究结果显示:
     ODE-TFV在中性水中难溶,但由于其分子结构中有一游离磷酸羟基呈现较强酸性,因此,其在水中的溶解性与pH有关,随着碱性升高其溶解性增大。ODE-TFV在单一溶剂乙醇或氯仿中加热都可溶解、易溶于乙醇和氯仿(20/80)的混合溶液。
     ODE-TFV制备过程中涉及到的中间体及可能副产物的理化性质差别很大,而且,产品具有光学活性,因此,目标药物的纯度检测及主要有关杂质分析方法比较复杂。采用HPLC梯度洗脱法,成功实现了对具有紫外吸收的主要有关物质的分离分析检测。确定了关键中间体TFV的光学拆分条件,用于对目标药物光学纯度的暂时控制测定法。考察了ODE-TFV在加速条件下(高温、高湿)的稳定性,以及在强酸、强碱、强氧化剂和光照条件下的降解情况。研究结果显示,ODE-TFV在60℃高温、相对湿度90%及0.1mol稀盐酸、0.1mol稀NaOH条件下比较稳定,在浓盐酸(0.5mol以上)、浓NaOH(0.5mol以上)和氧化剂(H2O2)中有一定降解,降解方式主要为酯基的水解。ODE-TFV对光照不稳定,降解产物有待鉴定。
     论文两部分研究工作均取得明显进展和结果,格尔德霉素衍生物的综合评价研究结果提示,GM-AMPL、LD01和GM-GP等的抗病毒效果确切,但对Beagle犬的心脏毒性很强,具有较高的毒性风险。ODE-TFV的分析检测方法及质量研究结果,初步阐述了侯选化合物ODE-TFV的性质、对ODE-TFV主要有关物质及纯度检测中的关键技术进行了有益探索,为目标药物的进一步研发奠定良好基础。
The study of antiviral study has become a hotspot because viral diseases give a great threat on human health and lives. During the screening of antiviral drug acting on Hsp90as a target in our group, we obtained a number of geldanamycin (GM) derivatives exhibiting stronger and broad spectrum antiviral activities, typical representative derivatives were GM-AMPL, LD01, GM-GP and GM-TC. In addition, in the process of synthesis and screening of new nucleoside derivatives, the obtained ODE-TFV, a tenofovir (TFV) derivative with a long chain alky mono-ester, exhibited a good value for further research and development. On the base of previous studies, we conducted a comprehensive evaluation on their pre-druggability to predict the development and application prospects of the four compounds with antiviral activities:GM-AMPL, LD01, GM-GP and GM-TC. Meanwhile, the analysis method and qualitative research of antiviral candidate, ODE-TFV, were carried out to meet the needs of further research and development.
     The first part is the synthesis and druggability evaluation of GM derivatives (GM-AMPL, LD01, GM-GP and GM-TC):on the basis of preliminary studies in our laboratory, the above GM derivatives were synthesized and their physical and chemical properties, the stability, the activities against duck Hepatitis B Virus in vivo, oral absorption, acute toxicity in mice, the toxicities of cardiovascular and respiratory systems in beagle dogs, etc., were comprehensively evaluated.
     The physical and chemical properties and stability:the solubility of GM-AMPL, LD01, GM-GP and GM-TC in the water and n-octanol were0.41and0.78,5.41and8.38,3.30and0.0082,2.62and0.22mg/ml, respectively, which significantly increased compared with that of lead compound GM (0.13and0.041mg/ml); The light stability of GM-AMPL has significantly improved, the degradation of GM-AMPL in methanol was less than3%when exposed the light of4500Lx for1hour, but the degradation of GM was about50%under the same conditions.
     Anti-DHBV-DNA activity in vivo:three different dosages (0.05,0.025and0.0125mmol/kg, respectively) of GM-AMPL, LD01and GM-GP, and one dosage of the positive control Lamivudine (3TC,0.2mmol/kg) were given per ora (p.o.) twice daily for10consecutive days. Blood samples were taken on the before-treatment day (TO), the fifth day (T5), the tenth day (T10) during treatment, and the third day (P3) after the cessation of treatment and serum was prepared for the analysis of DHBV-DNA levels to monitor the effects of the compounds on infected ducks. The results showed that GM-AMPL, LD01and GM-GP, at all different treatment regimens, exhibited the inhibition of the DHBV-DNA level in infected duckling serum compared with that of the virus control group. The activity of three compounds at0.05mmol/kg was similar or better than that of3TC, and there was not rebound at day P3. The effect of GM-AMPL on DHBV-DNA was the strongest in three compounds.
     The oral bioavailability:After a single intragastric (i.g.) administration to rats, the oral bioavailability of GM-AMPL (25mg/kg), LD01(25mg/kg) and GM-GP (7.5mg/kg) was26.36%,1.72%and8.89%, respectively.
     Acute toxicity in mice after single dose:The acute toxicities of GM-AMPL, LD01and GM-GP in mice were investigated after single intravenous (i.v.) injection and intraperitoneal (i.p.) injection, respectively. The median lethal dose (LD50) values of GM-AMPL, LD01and GM-GP after i.v. administration were152.6,82.0and19.2mg/kg, and the LD50values of them after single i.p. administration were295.4,203.8and35.5mg/kg, respectively.
     The toxicities of cardiovascular and respiratory systems in beagle dogs:The tests were carried out by the cumulative administration at different dosages. The cardiac index, blood pressure index and respiratory index were continuously recorded5-180min after dosing, and were measured, analysed and evaluated at various time points. The results were showed as following.
     GM-AMPL:single dosage by i.v. administration,5,10,15,20μg/kg and10mg/kg of it was given to beagle dogs, respectively. Given15μg/kg, dogs caused a significant decrease in blood pressure and an accelerated rate of respiration within2min; if20μg/kg was given, the symptom of slow heart rate, drop in blood pressure and acceleration of the respiratory rate appeared. Giving10mg/kg to dogs could cause animal death. The safety dose of GM-AMPL which had no effect on the cardiovascular and respiratory systems of beagle dogs was<15μg/kg. LD01:after a single dosage of it at1.0ug/kg and0.5,2.0and8.0mg/kg to beagle dogs by i.v. administration, respectively, the symptoms of drop in blood pressure, acceleration of respiratory rate and slow heart rate occurred, and the safety dose of LD01was<1.0μg/kg. GM-GP:the symptoms of drop in blood pressure, acceleration of respiratory rate and slow heart rate appeared after a single dosage of it at10,11,16,21and25μ g/kg to beagle dogs by i.v. administration, respectively. The safety dose of it was<10μg/kg.
     The second part is the analytical method and quality research of acyclic nucleoside derivative ODE-TFV. The analytical and detection methods of content and related substances were explored and studied to assist the further research and development in this paper, the studies included its physical and chemical properties, the stability, the separation and analysis of related substances and detemination methods, the separation of enantiomers, etc. The results were showed as following.
     It is difficult for ODE-TFV to dissolve in water. As its free hydroxyl group of phosphate in molecular structure was existing in the form of acid, its solubility was associated with pH values of water and increased with the increase of pH value. ODE-TFV could dissolve in ethanol or chloroform when heated, easily dissolve in the mixed solvent of ethanol/chloroform (20/80v/v).
     The physical and chemical properties of intermediates and possible by-product deriving from the synthesis process of ODE-TFV varies considerably, and the target product showed the optical activity. Therefore, the determination of targets compound's content and the analysis methods of relative impurities were complicated. The separation, analysis and detection of relative substances with UV absorption were achieved by the gradient elution of HPLC method. The separation of optical isomers of TFV, a key intermediate, was achieved to control and monitored effectively the optical purity of target product on temporary.
     The stabilities of ODE-TFV under the accelerated conditions (high temperature and humidity) were examined, and the degradation under the acid, alkalis and oxidant were also examined. The results showed that ODE-TFV was relatively stable on the condition of the temperature of60℃, the humidity of90%,0.1mol/L hydrochloric acid and0.1mol/L sodium hydroxide, however, some degradations were observed in hydrochloric acid (>0.5mol/L), sodium hydroxide (>0.5mol/L) and oxidant (H2O2), the main form of degradation was esterolysis. ODE-TFV was instability when exposed to the light, and the degradation products need to be identified.
     Both parts of the paper make great progress. The comprehensive evaluation of GM derivatives suggest that GM-AMPL, LD01and GM-GP, etc., exhibited exact antiviral activities, but there was the high toxicity on cardiovascular and respiratory systems of beagle with high-risk. The analytical and detection methods of ODE-TFV and quality research illustrate preliminarily the properties of ODE-TFV, and the key technologies of the content of ODE-TFV and impurities are explored usefully to establish a good foundation for further research and development.
引文
[1]Young JC, Moarefi I, Hartl FU. Hsp90:a specialized but essential protein-folding tool. J Cell Biol.2001, Jul 23; 154 (2):267-273.
    [2]Caplan AJ, Jackson S, Smith D. Hsp90 reaches new heights. Conference on the Hsp90 chaperone machine. EMBO Rep.2003,4 (2):126-130.
    [3]Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood).2003,228 (2) 111-113.
    [4]Scheibel T, Buchner J. The Hsp90 complex-a super-chaperone machine as a novel drug target. Biochem harmacol.1998,56 (6):675-682.
    [5]郝美容,杨铭.蛋白质分子伴侣和以其为靶的药物作用机制.国外医学药学分册.2001,28:129-132.
    [6]Whitesell L, Mimnaugh EG, De Costa B. Inhibitionof heat shock protein Hsp90-pp60 v-src heteroprotein complex formation by benzoquinone ansamycins:essential rolefor stress proteins in oncogenic transformation. Proc Natl Acad Sci USA.1994,91 (18):8324-8328.
    [7]Prodromou C, Roe SM. Identification and structural characterization of the ATP/ADP binding site in the Hsp90 molecular chaperone. Cell.1997,90 (1):65-75
    [8]翟中和主编,细胞生物学,北京,高等教育出版社.1995:112-113
    [9]Adeela Kamal, Lia Thao, John Sensintaffar. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature.2003,425 (25):407-410
    [10]Ferrarini M, Heltai S, Zocchi MR. Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer.1992, Jun 19; 51 (4):613-619.
    [11]刘宪玲,肖冰,俞召才.Hsp90反义RNA真核表达载体pcDNA-Hsp90的构建与鉴定.细胞与分子免疫学杂志.1999年第03期.
    [12]Sreedhar AS, So"ti C, Csermely P. Inhibition of Hsp90:a new strategy for inhibiting protein kinases. Bioc Biop Acta.2004,1697:233-242.
    [13]Pearl LH, Prodromou C. Structure and in vivo function of Hsp90. Curr Opin Stru Biol.2000, 10:46-51.
    [14]Shim HY, Quan X, Yi YS. Heat shock protein 90 facilitates formation of the HBV capsid via interacting with the HBV core protein dimers. Virology.2011,410:161-169
    [15]Hu J, Seeger C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. Proc Natl Acad Sci U S A.1996,93:1060-1064
    [16]Powers MV, Workman P. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors. Endocr-Relat Cancer.2006,13:125-135.
    [17]Mark RS, Chrisostomos P, Ronan O. Structural Sasis for Inhibition of the Hsp90 Molecular Chaperone by the Antitumor Antibiotics Radicicol and Geldanamycin. J. Med. Chem.1999, 42 (2):260-266.
    [18]Li YH, Tao PZ, Liu YZ. Geldanamycin, a ligand of Heat Shock Protein 90, inhibits replication of herpes simplex virus type 1 in vitro. Antimicrobial Agents and Chemotherapy. 2004,48 (3):867-872.
    [19]Hung JJ, Chung CS, Chang W. Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol.2002,76 (3):1379-1390.
    [20]Murphy P; Sharp A. Suppressive effects of ansamycins on inducible nitric oxide synthase expression and the development of experimental autoimmune encephalomyelitis. Journal of Neuroscience Research.2002,67 (4):461-470
    [21]王志宣,姜典卓,张晓鹏.格尔德霉素滴眼液在离体兔眼角膜的吸收与扩散.沈阳药科大学学报.2003,20(3):160
    [22]Rastelli G, Tian ZQ, Wang Z. Structure-based design of 7-carbamate analogs of geldanamycin. Bioorganic & Medicinal Chemistry Letters.2005,15:5016-5021
    [23]Tian ZQ, Wang Z, MacMillan KS. Potent cytotoxic C-11 modified geldanamycin analogues. J Med Chem.2009,52 (10):3265-3273.
    [24]Ge J, Normant E, Porter JR. Design, Synthesis, and Biological Evaluation of Hydroquinone Derivatives of 17-Amino-17-demethoxygeldanamycin as Potent, Water-Soluble Inhibitors of Hsp90. J. Med. Chem.2006,49:4606-4615
    [25]Tian, ZQ, Liu YQ, Zhang D. Synthesis and biological activities of novel 17-amino geldanamycin derivatives. Bioorganic & Medicinal Chemistry.2004,12:5317-5329
    [26]Li YP, Shan GZ, Peng ZG. Synthesis and biological evaluation of heat-shock protein 90 inhibitors:geldanamycin derivatives with broad antiviral activity. Antivir Chem Chemother. 2010,20:259-268.
    [27]Vieth M, Siegel MG, Higgs RE, et al. Characteristic physical properties and structural fragments of marketed oral drugs. J Med Chem,2004,47:224-228.
    [28]周建军,谭贤英.高效液相色谱法测定替莫唑胺溶解度及油水分配系数.食品与药品.2006(06)
    [29]丁维明.格尔德霉素阴道泡腾片的研制及光解动力学、光解产物的研究.北京,中国协和医科大学中国医学科学院硕士研究生论文,2005:48-52
    [30]吕东,黄文龙;浅谈中国药品质量控制模式的变迁;中国医药工业杂志;2008年07卷18期
    [31]马磊;化学原料药制备工艺研究;中国新药杂志;2008年第17卷第18期。
    [32]化学药物原料药制备和结构确证研究的技术指导原则[S],2005
    [33]化学药物质量标准建立的堆满化过程技术指导原则[S],2005
    [34]陈鸿珊,张兴权主编,抗病毒药物及其研究方法,北京,化学工业出版社,2006:4-27
    [35]Koczor CA, Lewis W. Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert Opin Drug Metab Toxicol.2010 Dec;6 (12):1493-504.
    [36]De Clercq E. Anti-HIV drugs:25 compounds approved within 25 years after the discovery of HIV.Int J Antimicrob Agents.2009 Apr;33 (4):307-20.
    [37]Clercq, D.; Holy, E. Acyclic nucleoside phosphonates:a key class of antiviral drugs. Nat Rev:Drug Discov 2005,4,928-940.
    [38]Novoa SR, Iabarga P, Soriano V. Pharmacogenetics of tenofovir treatment[J], Pharmacogenomics,2009,10 (10).1675-1685.
    [39]Paredes R, Clotet B. Clinical management of HIV-1 resistance[J]. Antiviral Res,2010,85 (1):245-265.
    [40]Barditch-Crovo, P.; Deeks, S.G.; Collier, A. Phase i/ii trial of the pharmacokinetics, safety, and antiretroviral activity of tenofovir disoproxil fumarate in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 2001,45,2733-2739.
    [41]Delaney WE 4th, Ray AS, Yang H. Intracellular metabolism and in vitro activity of tenofovir against hepatitis B virus. Antimicrob Agents Chemother.2006 Jul;50 (7):2471-7.
    [42]Perry, C.M.; Simpson, D. Tenofovir disoproxil fumarate:in chronic hepatitis B. Drugs 2009, 69,2245-2256.
    [43]Tadasuke Naito, Fumitaka Momose, Atsushi Kawaguchi, et al.. Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 2007.81 (3): 1339-49.
    [44]DeBoer C, Meulman PA, Wnuk RJ, et al. Geldanamycin,a new antibiotic. J Antibiot (Tokyo),1970,23 (9):442-447
    [45]山广志,李卓荣.格尔德霉素衍生物研究进展.国外医药抗生素分册,2004,25(6)274-277.
    [46]孟帅,蔡步林,陶佩珍等.十八烷氧乙基替诺福韦酯的合成及抗病毒活性研究.中国抗生素杂志,2011,36(3):201-204.
    [47]Millot, M.C. Separation of drug enantiomers by liquid chromatography and capillary electrophoresis, using immobilized proteins as chiral selectors. J Chromatogr B Analyt Technol Biomed Life Sci 2003,797,131-159.
    [48]Kiesewetter DO, Knudson K, Collins M; Enantiomeric radiochemical synthesis of R and S (1-(6-amino-9H-purin-9-yl)-3-fluoropropan-2-yloxy) methylphosphonic acid (FTFV) [J].J Labelled Comp Radiopharm; 200851 (4):187-194
    [49]Edward J, Pack J R, Bonnie B, et al. An HPLC procedure for the enantiomeric purity of an optically active cytosine analogue using ligand exchange[J]. Chirality; 19902(4):275-279
    [50]李冬,李卓荣.西多福韦对映体的拆分及异构体含量分析方法研究[J].中国抗生素杂志;200934(4):238-240
    [51]Sentenac S, Fernandez C, Thuillier A. Sensitive determination of tenofovir in human plasma samples using reversed-phase liquid chromatography. J. Chromatogr. B 2003,793:317-324.
    [52]Rezk NL, Crutchley RD, Kashuba AD. Simultaneous quantification of emtricitabine and tenofovir in human plasma using high-performance liquid chromatography after solid phase extraction. J. Chromatogr. B.2005,822:201-208.
    [53]Vincent J, Jean-Marc T, Gerard P. Determination of tenofovir in human plasma by high-performance liquid chromatography with spectrofluorimetric detection. J. Chromatogr. B. 2003,785:377-381.
    [54]Vincent B, Philippe M, Philippe C. Simultaneous analysis of several antiretroviral nucleosides in rat-plasma by high-performance liquid chromatography with UV using acetic acid/hydroxylamine buffer. J. Chromatogr. B.2005,821:132-143.
    [55]Delahunty T, Bushman L, Fletcher CV. Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS. J. Chromatogr. B.2006,830:6-12.
    [56]Solinova V, Kasicka V, Sazelova P. Chiral analysis of anti-acquired immunodeficiency syndrome drug,9-(R)-[2-(phosphonomethoxy) propyl]adenine (tenofovir), and related antiviral acyclic nucleoside phosphonates by CE using beta-CD as chiral selector. Electrophoresis.2009,30 (12):2245-2254
    [1]魏刚,徐辉,郑俊民.原位凝胶的形成机制及在药物控制释放领域的应用[J].中国药学杂志,2003,38(8):564~568
    [2]张翠霞,张文涛,王东凯等.新型的药物传递系统—原位凝胶的研究进展[J].中国医院药学杂志,2006,26(4):459~461
    [3]Wang Y, Chen M, Li X, et al. A hybrid thermo-sensitive chitosan gel for sustained release of Meloxicam [J]. J biomater Sci Polym Ed,2008,19(9):1239~1247
    [4]Karolewicz B, Pluta J. Thermosensitive polymers in drug form technology. Ⅱ. Possibilities of use of thermosensitive polymers as active substance carriers [J]. Polim med,2008,38(1):15~26
    [5]Cao S L, Zhang Q Z, Jiang X G. Preparation of ion-activated in situ gel systems of scopolamine hydrobromide and evaluation of its antimotion sickness efficacy [J]. Acta Pharmacologica Sinica, 2007,28(4):584~590
    [6]He C, Kim S W, Lee D S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery[J].J Control Release,2008,127(3):189~207
    [7]Jeong B,Kim S W, Bae Y H. Thermosensitive sol-gel reversible hydrogels[J].Advanced Drug Derlilvery Reviews,2002,54(1):37~51
    [8]魏刚,陆伟跃,郑俊民.温度敏感原位凝胶中药物的扩散行为[J].药学学报,2004,39(3):232-235
    [9]Mansour M, Mansour S, Mortada N, et al. Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels[J]. Drug Dev Ind Pharm,2008,34(7):744~752
    [10]魏刚,陆丽芳,钟高仁.温度敏感型原位凝胶用于蛋白质类药物缓释注射给药系统的初步研究[J].中国医药工业杂志,2006,37(9):597~601
    [11]Qi H Y, Chen W W, Huang C Y, et al. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin[J]. International Journal of Pharmaceutic,2007,337(1~2):178~187
    [12]徐玉红,李东,王蔓琳等.壳聚糖对温敏性原位凝胶基质体外流变学性质的影响[J].中国药业,2007,16(13):4~5
    [13]Mayol L, Quaglia F, Borzacchiello A, et al. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery. Rheological, mucoadhesiveand in vitro release properties[J]. European Journal of Pharmaceutics and Biopharmaceutics,2008,70(1):199~206
    [14]Krauland A H, Hoffer M H, Bernkop-Schnurch A.Viscoelastic properties of a new in situ gelling thiolated chitosan conjugate [J]. Drug Dev Ind Pharm,2005,(9):885~893
    [15]Cao Y, Zhang C, Shen W, et al. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery[J].J Control Release,2007,120(3):186~194
    [16]Okumu F W, Dao L N, Fielder P J, et al. Sustained delivery of human growth hormone from a novel gel system:SABER [J].Biomaterials,2002,23(22):4353~4358
    [17]Lee J, Jallo G I, Penno M B, et al.Intracranial drug delivery scaffolds:biocompatibility evaluation of sucrose acetate isobutyrate gels[J]. Toxicology and Appllied Pharmacology,2006,215(1):64~70
    [18]Senior J H.Sustained-release Injectable Products [M].Colorado:interpharm Press,2000:257
    [19]卢亚欣,何海冰,崔越等.乙酸异丁酸蔗糖酯原位凝胶流变学性质的研究[J].药学学报,2007,42(4):445-449
    [20]Miyazaki S, Suzuki S, Kawasaki N, et al. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride[J].International Journal of Pharmaceutics,2001,229(1~2):29~36
    [21]Ma W D,Xu H, Wang C. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system[J].International Journal of Pharmaceutics,2008,350(1~2):247~ 256
    [22]Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes[J]. J Biomed Mater Res A,2006,79(3):650~664
    [23]Hyun H. Kim Y H, Song I B, et al. In vitro and in vivo release of albumin using a biodegradable MPEG/PCL diblock copolymer as an in situ gel-forming carrier[J]. Biomacromolecules,2007,8(4): 1093-1100
    [24]汪荣军.左氧氟沙星眼用凝胶的制备[J].安徽医药,2006,10(2):141~142
    [25]Liu Z, Li J, Nie S, et al. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system forgatifloxacin[J].Int J Pharm,2006,315(1~2):12~17
    [26]张俊杰,谢雷克,赵宁民等.氟康唑原位凝胶化滴眼液眼内药代动力学研究[J].药学学报,2000,35(11):835~838
    [27]Li G L, Li M. Preparation and evaluation of ophthalmic thermosensitive in situ gels of penciclovir[J].
    Journal of Chinese Pharmaceutical Sciences,2007,2(16):90~95
    [28]曹维,童春晖,胡一桥.利巴韦林眼凝胶的研制及质量控制[J].中国新药杂志,2006,15(10):793-796
    [29]Qi H Y, Li L, Huang C H, et al. Optimization and physicochemical characterization of thermosensitive poloxamer gel contaning puerarin for ophthalmic use[J]. Chem. pharm.Bull, 2006,54(11):1500~1507
    [30]El-Kamel A H.In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate[J], Int J Pharm,2002,24l(1):47~55
    [31]Wei G, Xu H, Ding P T, et al.Thermosetting gels with modulated gelation temperature for ophthalmic use:rheologiccal and gamma scintigraphic studies[J]. J Controlled Release,2002, 83(1):65-74
    [32]Fu J, Feng X M, Yuan H H, et al. Study of ocular pharmacokinetics of in situ gel system for S(-)-satropane evaluated by microdialysis[J]. Journal of Pharmaceutical Biomedical Analysis 2008, doi:10.1016/j.jpba.2008.06.001
    [33]赵绪元,李焕德,刘艺平.阿托品原位凝胶的稳定性研究[J].中国医院药学杂志,2006,26(6):767~768
    [34]Ruel-Gariepy E, Leroux J C. In situ-forming hydrogels - review of temperature-sensitive system[J].European Journal of Pharmaceutics andBiopharmaceutics,2004,58(2):409~426
    [35]Bilensoy E, Rouf M A, Vural I, et al. Mucoadhesive, Thermosensitive, Prolonged-Release Vaginal Gel for Clotrimazole:bata-Cyclodextrin Complex[J]. AAPS PharmSciTech,2006,7(2):E54~E60
    [36]Spyridon M, Styliani F, Stela D, et al. Liposomal drugs dispersed in hydrogels Effect of liposome, drug and gel properties on drug release kinetics[J]. Colloids and Surfaces B.Biointerfaces, 2007,55(2):212~221
    [37]Kim E Y, Gao Z G, Park J S, et al. RhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery [J].Int J Pharm,2002,233(1-2):159~167
    [38]Qiu Y,Park K. Environment-sensitive hydrogels for drug delivery[J]. Advanced Drug Delivery Reviews,2001,53(3):321~339
    [39]Gupta H, Jain S, Mathur R. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system [J]. Deliv,2007,14(8):507~515