炭黑填充橡胶黏超弹性力学行为的宏细观研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭黑填充橡胶是一种黏超弹性复合材料,其力学行为与炭黑粒子的分布、粒径大小以及炭黑含量相关,并强烈依赖于温度、应变率、加载时间等。此外,由于橡胶材料具有黏弹特性,变形中的黏滞损耗导致材料温度上升,动态变形过程的温升尤为显著。本文研究炭黑填充橡胶材料的超弹性、黏弹性和黏超弹性本构模型,分析材料的热流变特性、考察动态力学性能与能量耗散的关系,探讨炭黑含量对填充橡胶力学性能的影响,并建立黏超弹性力学行为的细观力学分析方法。主要研究工作与结果概述如下。
     1.对天然橡胶原材料性能、炭黑增强机理、炭黑填充橡胶主要力学性能、炭黑填充橡胶本构模型以及炭黑填充橡胶黏弹性的影响因素进行了简要概述。
     2.概述了橡胶超弹性本构理论,对常用的超弹性本构模型进行了详细分析,探讨了各模型在单轴拉伸(ST)、等双轴拉伸(ET)和平面拉伸(PT)三类基本变形试验数据齐全时对试验数据的拟合能力,以及基本变形试验数据不齐全时各模型的预测能力,提出了超弹性本构模型的选取策略:(1)在ST、PT和ET试验数据齐全的情况下,最优先选用Ogden (N=3)模型,其次选用Yeoh模型和Arruda-Boyce模型;(2)通过两类基本变形试验来确定模型参数时,建议进行ET试验并选用Ogden (N=3)模型;(3)若仅有ST试验数据,小变形下可选用Neo-Hooke模型,大变形情况下,Arruda-Boyce模型为最佳选择。
     3.通过试验研究了炭黑含量对填充橡胶材料Mullins效应、拉伸断裂强度、蠕变和松弛以及动态力学行为的影响,给出了炭黑粒子对橡胶材料增强效应的一般规律:(1)Mullins效应加剧;(2)显著提高材料的初始刚度和拉伸强度;(3)提高材料的蠕变抗力,降低松弛速率;(4)Payne效应和频率依赖性加剧;(5)玻璃化转变温度降低。
     4.对炭黑填充橡胶进行不同频率下的动态力学温度扫描和不同温度下的频率扫描测试,研究材料的热流变特性。结果表明,填充橡胶不同温度下的动态模量和损耗因子曲线可沿着频率轴平移构建成一条光滑主曲线,说明材料为热流变简单材料,并由van Gurp-Palmen图和Cole-Cole图得到验证。此外,通过WLF方程和Arrhenius方程给出了温度移位因子。
     5.对经典整数阶微分线黏弹性模型和分数阶微分线黏弹性模型进行了分析和对比,给出各模型的优缺点和适用范围。分数阶微分黏弹性模型具有参数少、适用性强的优势。分数阶微分Zener模型只需四个参数就可以描述填充橡胶的大部分力学行为,但不能描述其动态特性的非对称性。提出了一种修正的分数阶微分Zener模型来描述这种非对称性,模型与实验吻合良好。
     6.研究了不同载荷频率,预应变和温度对炭黑填充橡胶Payne效应的影响。研究表明,动态模量随载荷频率的增高会增大;预应变在超过50%时才会对材料动态力学性能产生明显影响;Payne效应受温度影响很大,随着温度向玻璃化转变温度趋近,Payne效应越来越显著。此外,采用Kraus模型描述动态力学性能的频率与动态应变幅值相关性,给出了模型参数的新的确定方法。
     7.对炭黑填充橡胶进行动态拉伸和压缩试验,研究了材料黏滞损耗的动态应变幅值和频率相关性。结果表明,动态加载过程中,黏滞损耗随动态应变幅值和频率的增大而增大。通过线黏弹性理论分析,给出了循环加载能量损耗密度的理论表达式,理论与实验吻合良好。黏滞损耗引起材料温度上升,通过红外热像仪测得圆柱橡胶试件动态压缩过程的表面温度场,试件表面温升显著。将黏弹性能量损耗视为材料内部热源,给出圆柱橡胶试件动态压缩的瞬态温度场控制方程,计算得到试件表面温度场的演化规律,计算与实验吻合良好。
     8.采用随机序列吸附算法,发展了一种炭黑填充橡胶细观代表性体元(RVE)的建模方法,对材料的黏超弹性力学行为进行多尺度模拟。模拟结果表明,炭黑的加入提高了填充橡胶的模量和强度,这是由于随机分布的炭黑粒子引起了填充橡胶的细观应力集中,且应力集中程度随炭黑含量和加载应变率的提高而增大。此外,填充橡胶的刚度随应变率增大而增大,滞后损耗则随应变率增大先增后减。
Carbon black filled rubber is a typical visco-hyperelastic composite, its mechanicalbehaviors are affected by the dispersion, dimension and content of the filled particles, andremarkably influenced by temperature, strain rate and loading time. Furthermore, due tothe viscoelastic properties of the rubber material, hysteresis loss results in temperaturerise in rubber material during deformation, especially loaded with cyclic deformation. Inthis thesis, we studied the hyperelasticity, viscoelasticity and visco-hyperelasticalconsititutive models of the filled rubber, and the thermorheological characteristics andrelationship between hysteresis loss and dynamical properties were also investigated.Moreover, the effect of carbon black content on the mechanical behaviors of filled rubberwas explored, and a micro-mechanical analysis method was developed. The main worksand achievements are listed as follows.
     1. Properties of nature rubber, mechanism of carbon black enhancement, mainmechanical properties of filled rubber, and the recent advanced constitutive models forrubber material and the influence factors of the viscoelastic behaviors of filled rubberswere briefly reviewed.
     2. Accurate material parameters of hyperelastic constitutive models are critical forstructural finite element calculation of rubber components. The prediction performancesof six often used hyperelastic models and the model selection strategies were explored inthe case of incompletion of the three basic types of mechanical tests, and finally a modelselection strategy was developed. That is, in the case of complete data under ST, PT andET tests, Ogden model (N=3) is the first choice, and the Yeoh and Arruda-Boyce modelare the substitutive ones. If there are only two types of basic tests available, ET test ispreferred, and the Ogden model (N=3) is the best model that can precisely predict thethird deformation mode. The Arruda-Boyce model provides most excellent prediction forPT and ET deformation based on the ST test data only.
     3. The influence of carbon black content on the Mullins effect, break strength, creep,stress relaxation and dynamical behavior of filled rubbers were experimentally studied. Itis shown that adding carbon black into rubber material can effectively improve its initialmodulus, break strength and exacerbate its stress softening and viscoelastic property.
     4. The thermorheological property of filled rubber was studied. Temperature sweep and frequency sweep DMA tests were performed to investigate the frequency dependentglass transition temperature and to identify the thermorheological nature of the material.The test data show that master curves of dynamical properties can be created byhorizontal shifts alone and cover a frequency range of21decades, verifying the material'sthermorheological simplicity. Such simplicity is also confirmed by the van Gurp-Palmenplot and the Cole-Cole plot. Moreover, the temperature dependence of the shift factors iswell modeled by both WLF equation and Arrhenius equation.
     5. Three classic viscoelastic constitutive models and their corresponding fractionalderivative models were theoretically derived. The results show that, the classic models areinaccurate to describe the viscoelastic behaviors in a wide range of time and frequency,while the fractional derivative models overcome these shortages. However, the fractionalderivative Maxwell and Kelvin-Vogit model can only usable to describe dynamicbehaviors at high and low frequency range, down and up to the loss peak. For thefractional derivative Zener model, it is enough to fit experimental curves in a widefrequency range with four parameters, but the loss modulus, loss factor for the fractionalZener model are symmetric which is not observed for real polymers. A modifiedfractional derivative Zener model was developed to capture the unsymmetric behaviors ofreal viscoelastic materials, and its capability was vertified by experimental data.
     6. The influence of loading frequency, pre-strain and temperature on the Payne effectof filled rubbers were experimentally studied. It is shown that the frequency has slightinfluence on the Payne effect of the filled rubbers, and the pre-strains over50%caninfluence the Payne effect, while the Payne effect is influenced remarkably bytemperature. Furthermore, the Kraus model was used to capture the Payne effect of thefilled rubbers, the model is in good agreement with experimental data.
     7. Cyclic compressive loadings and cyclic extension loadings were applied to filledrubbers, the strain and frequency dependence of the stress-strain behavior and hysteresisloss of the filled rubbers were experimentally investigated. The results show that, thestress-strain curves of filled rubber subjected to cyclic loading were hysteresis loops, andthe area of the loop increased with increasing frequency and strain amplitude. Accordingto the linear viscoelasticity, a model was developed to calculate the energy dissipatedduring testing. Due to the hysteresis loss, obvious temperature rise on the surface of thespecimen was observed. Take the energy loss as an internal heat source, a controlequation to calculate the transient temperature field of rubber cylinder under dynamicalcompression was given. The calculated temperature rises agree with the teste data.
     8. Three dimensional RVE models of filled rubber were developed based on therandom sequential absorption (RSA) algorithm, and the multiscale visco-hyperelasticmechanical behaviors of filled rubber were modeled. The simulation results show that thecarbon black improves the modulus and strength of the filled rubbers, which is due to themicromechanical stress concentration near the randomly distributed carbon blackparticles. The degree of stress concentration increases with the increase in carbon blackcontent and the strain rate. In addition, the stiffness of filled rubbers increases with strainrate, while the hysteresis loss increases first and then decreases with the increasing strainrate.
引文
[1]刘大华.橡胶工程手册[M].北京:中国石化出版社,2002.
    [2]曲秀芳,韩立平,张义贵.不同品种炭黑并用的补强效果浅议[J].炭黑工业,2001,3:36-38.
    [3]赵军.炭黑的表面化学改性及其在水介质中的分散性研究[J].南京理工大学学报,2006,(6):778-782.
    [4] Bhowmick A K. Current Topics in Elastomers Research[M]. Boca Raton: CRC press,2008.518-524.
    [5] Fukahori Y. New progress in the theory and model of carbon black reinforcement of elastomers[J].Journal of applied polymer science,2005,95(1):60-67.
    [6] Tomita Y, Lu W, Naito M, et al. Numerical evaluation of micro-to macroscopic mechanicalbehavior of carbon-black-filled rubber[J]. International journal of mechanical sciences,2006,48(2):108-116.
    [7]杨清芝.现代橡胶工艺学[M].北京:中国石化出版社,1997.218-219.
    [8]林镇材,陈舜儿.橡胶工艺原理[M].化学工业出版社,2005.
    [9]何平笙.高聚物的力学性能[M].中国科学技术大学出版社,2008.
    [10]杨挺青,罗文波,徐平,等.黏弹性理论与应用[M].科学出版社,2004.
    [11] Payne A R. Dynamic properties of filler-loaded rubbers, in Reinforcement of Elastomers[M].New York: interscience publishers,1965.69-123.
    [12] Sternstein S S, Zhu A. Reinforcement mechanism of nanofilled polymer melts as elucidated bynonlinear viscoelastic behavior[J]. Macromolecules,2002,35(19):7262-7273.
    [13] Chazeau L, Brown J D, Yanyo L C, et al. Modulus recovery kinetics and other insights into thePayne effect for filled elastomers[J]. Polymer composites,2000,21(2):202-222.
    [14] Simo J C. On a fully three-dimensional finite-strain viscoelastic damage model: formulation andcomputational aspects[J]. Computer methods in applied mechanics and engineering,1987,60(2):153-173.
    [15] Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect[J].Journal of the Mechanics and Physics of Solids,2002,50(9):2011-2028.
    [16] Mullins L. Softening of rubber by deformation[J]. Rubber Chemistry and Technology,1969,42(1):339-362.
    [17] Mullins L, Tobin N R. Theoretical model for the elastic behavior of filler-reinforced vulcanizedrubbers[J]. Rubber Chemistry and Technology,1957,30(2):555-571.
    [18] Johnson M A, Beatty M F. A constitutive equation for the Mullins effect in stress controlleduniaxial extension experiments[J]. Continuum Mechanics and Thermodynamics,1993,5(4):301-318.
    [19] Johnson M A, Beatty M F. The Mullins effect in uniaxial extension and its influence on thetransverse vibration of a rubber string[J]. Continuum Mechanics and Thermodynamics,1993,5(2):83-115.
    [20] Bueche F. Mullins effect and rubber--filler interaction[J]. Journal of applied polymer Science,1961,5(15):271-281.
    [21] Bueche F. Molecular basis for the Mullins effect[J]. Journal of Applied Polymer Science,1960,4(10):107-114.
    [22] Govindjee S, Simo J. A micro-mechanically based continuum damage model for carbonblack-filled rubbers incorporating Mullins' effect[J]. Journal of the Mechanics and Physics ofSolids,1991,39(1):87-112.
    [23] Marckmann G, Verron E, Gornet L, et al. A theory of network alteration for the Mullins effect[J].Journal of the Mechanics and Physics of Solids,2002,50(9):2011-2028.
    [24] Tomita Y, Tanaka S. Prediction of deformation behavior of glassy polymers based on molecularchain network model[J]. International journal of solids and structures,1995,32(23):3423-3434.
    [25] Heinrich G, Kl U Ppel M. Recent advances in the theory of filler networking in elastomers[A].Filled Elastomers Drug Delivery Systems[M]. Springer,2002.1-44.
    [26] Ogden. Non-linear elastic deformations[M]. Chichester: Ellis Horwood limited,1984.
    [27] Wu P D, Van der Giessen E. On improved network models for rubber elasticity and theirapplications to orientation hardening in glassy polymers[J]. Journal of the Mechanics and Physicsof Solids,1993,41(3):427-456.
    [28] Arruda E M, Boyce M C. A three-dimensional constitutive model for the large stretch behavior ofrubber elastic materials[J]. Journal of the Mechanics and Physics of Solids,1993,41(2):389-412.
    [29] Tanner R I. From A to (BK) Z in constitutive relations[J]. Journal of Rheology,1988,32(7):673-703.
    [30] Bergstrom J S, Boyce M C. Constitutive modeling of the large strain time-dependent behavior ofelastomers[J]. Journal of the Mechanics and Physics of Solids,1998,46(5):931-954.
    [31] Huber N, Tsakmakis C. Finite deformation viscoelasticity laws[J]. Mechanics of materials,2000,32(1):1-18.
    [32] Amin A, Lion A, Sekita S, et al. Nonlinear dependence of viscosity in modeling therate-dependent response of natural and high damping rubbers in compression and shear:Experimental identification and numerical verification[J]. International journal of plasticity,2006,22(9):1610-1657.
    [33] Lion A. A physically based method to represent the thermo-mechanical behaviour ofelastomers[J]. Acta Mechanica,1997,123(1-4):1-25.
    [34] Miehe C, Keck J. Superimposed finite elastic--viscoelastic--plastoelastic stress response withdamage in filled rubbery polymers. Experiments, modelling and algorithmic implementation[J].Journal of the Mechanics and Physics of Solids,2000,48(2):323-365.
    [35] Luo W, Hu X, Wang C, et al. Frequency-and strain-amplitude-dependent dynamical mechanicalproperties and hysteresis loss of CB-filled vulcanized natural rubber[J]. International Journal ofMechanical Sciences,2010,52(2):168-174.
    [36] Papoulia K D, Panoskaltsis V P, Kurup N V, et al. Rheological representation of fractional orderviscoelastic material models[J]. Rheologica acta,2010,49(4):381-400.
    [37] Adolfsson K, Enelund M, Olsson P. On the Fractional Order Model of Viscoelasticity[J].Mechanics of Time-Dependent Materials,2005,9(1):15-34.
    [38] Lion A, Kardelky C. The Payne effect in finite viscoelasticity: constitutive modelling based onfractional derivatives and intrinsic time scales[J]. International Journal of Plasticity,2004,20(7):1313-1345.
    [39] Hanyga A. Fractional-order relaxation laws in non-linear viscoelasticity[J]. ContinuumMechanics and Thermodynamics,2007,19(1-2):25-36.
    [40] Heymans N. Fractional calculus description of non-linear viscoelastic behaviour of polymers[J].Nonlinear Dynamics,2004,38(1-4):221-231.
    [41] Torquato S. Effective stiffness tensor of composite media: II. Applications to isotropicdispersions[J]. Journal of the Mechanics and Physics of Solids,1998,46(8):1411-1440.
    [42] Berveiller M, Zaoui A. An extension of the self-consistent scheme to plastically-flowingpolycrystals[J]. Journal of the Mechanics and Physics of Solids,1978,26(5):325-344.
    [43] Hashin Z, Shtrikman S. On some variational principles in anisotropic and nonhomogeneouselasticity[J]. Journal of the Mechanics and Physics of Solids,1962,10(4):335-342.
    [44] Guth E, Gold O. On the hydrodynamical theory of the viscosity of suspensions[J]. Phys. Rev,1938,53:322.
    [45] Hill R. On constitutive macro-variables for heterogeneous solids at finite strain[J]. Proceedings ofthe Royal Society of London. A. Mathematical and Physical Sciences,1972,326(1565):131-147.
    [46] Guth E. Theory of filler reinforcement[J]. Rubber Chemistry and Technology,1945,18(3):596-604.
    [47] Bergstrom J S, Boyce M C. Mechanical behavior of particle filled elastomers[J]. Rubberchemistry and technology,1999,72(4):633-656.
    [48]夏勇.轮胎胶料在较大变形范围内准静态力学性能的研究——测试、表征以及细观数值本构模型[D].合肥:中国科学技术大学,2004.
    [49] Lopez-Pamies O, Ponte Castaneda P. Second-order homogenization estimates incorporating fieldfluctuations in finite elasticity[J]. Mathematics and Mechanics of Solids,2004,9(3):243-270.
    [50] Ponte Casta N Eda P, Tiberio E. A second-order homogenization method in finite elasticity andapplications to black-filled elastomers[J]. Journal of the Mechanics and Physics of Solids,2000,48(6):1389-1411.
    [51] A H A. Modeling filler reinforcement in elastomers[D]. London: Queen Mary University ofLondon,2005.
    [52] Fukahori Y, Seki W. Stress analysis of elastomeric materials at large extensions using the finiteelement method[J]. Journal of materials science,1993,28(16):4471-4482.
    [53] Tomita Y, Azuma K, Naito M. Computational evaluation of strain-rate-dependent deformationbehavior of rubber and carbon-black-filled rubber under monotonic and cyclic straining[J].International Journal of Mechanical Sciences,2008,50(5):856-868.
    [54] Jha V, Hon A A, Thomas A G, et al. Modeling of the effect of rigid fillers on the stiffness ofrubbers[J]. Journal of Applied Polymer Science,2008,107(4):2572-2577.
    [55] Akutagawa K, Yamaguchi K, Yamamoto A, et al. Mesoscopic mechanical analysis of filledelastomer with3d-finite element analysis and transmission electron microtomography[J]. RubberChemistry and Technology,2008,81(2):182-189.
    [56] Rintoul M D, Torquato S, Others. Reconstruction of the structure of dispersions[J]. Journal ofColloid and Interface Science,1997,186(2):467-476.
    [57] Ostoja-Starzewski M, Du X, Khisaeva Z F, et al. Comparisons of the size of the representativevolume element in elastic, plastic, thermoelastic, and permeable random microstructures[J].International Journal for Multiscale Computational Engineering,2007,5(2).
    [58] Hazanov S, Huet C. Order relationships for boundary conditions effect in heterogeneous bodiessmaller than the representative volume[J]. Journal of the Mechanics and Physics of Solids,1994,42(12):1995-2011.
    [59] Govindjee S. An evaluation of strain amplification concepts via Monte Carlo simulations of anideal composite[J]. Rubber chemistry and technology,1997,70(1):25-37.
    [60] Li X, Xia Y, Li Z, et al. Three-dimensional numerical simulations on the hyperelastic behavior ofcarbon-black particle filled rubbers under moderate finite deformation[J]. ComputationalMaterials Science,2012,55(0):157-165.
    [61]过梅丽.高聚物与复合材料的动态力学热分析[M].化学工业出版社,1900.
    [62]李其抚.固态高聚物动静态黏弹性的实验研究[D].湘潭:湘潭大学,2009.
    [63]焦剑,雷渭.高聚物结构、性能与测试[M].化学工业出版社,2003.
    [64] Isayev A I, Wong C M, Zeng X. Effect of oscillations during extrusion on rheology andmechanical properties of polymers[J]. Advances in Polymer Technology,1990,10(1):31-45.
    [65] Isayev A I, Fan X. Viscoelastic plastic constitutive equation for flow of particle filled polymers[J].Journal of Rheology,1990,34(1):35-55.
    [66] Brown R P. Physical testing of rubber[M]. Kluwer Academic Publishers,1996.
    [67]龚科家,危银涛,叶进雄.填充橡胶超弹性本构参数试验与应用[J].工程力学,2009,26(6):193-198.
    [68] Mooney M. A theory of large elastic deformation[J]. Journal of applied physics,1940,11(9):582-592.
    [69] Rivlin R S, Saunders D W. Large elastic deformations of isotropic materials. VII. Experiments onthe deformation of rubber[J]. Philosophical Transactions of the Royal Society of London. SeriesA, Mathematical and Physical Sciences,1951,243(865):251-288.
    [70] Treloar L R G. The physics of rubber elasticity[M]. Oxford University Press, USA,1975.
    [71] Boyce M C, Arruda E M. Constitutive models of rubber elasticity: a review[J]. Rubber chemistryand technology,2000,73(3):504-523.
    [72] Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J].Rubber chemistry and technology,1990,63(5):792-805.
    [73] James H M, Guth E. Theory of the elastic properties of rubber[J]. The Journal of ChemicalPhysics,1943,11:455.
    [74] Flory P J, Rehner Jr J. Statistical Mechanics of Cross-Linked Polymer Networks I. RubberlikeElasticity[J]. The Journal of Chemical Physics,1943,11:512.
    [75]匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989.
    [76] Rivlin R S, Saunders D W. Large elastic deformations of isotropic materials. VII. Experiments onthe deformation of rubber[J]. Philosophical Transactions of the Royal Society of London. SeriesA, Mathematical and Physical Sciences,1951,243(865):251-288.
    [77]李晓芳.橡胶刚双材料非线性有限元分析及破坏机理研究[D].福州大学,2006.
    [78] Yeoh O H. Some forms of the strain energy function for rubber[J]. Rubber Chemistry andtechnology,1993,66(5):754-771.
    [79] Gent A N. A new constitutive relation for rubber[J]. Rubber chemistry and technology,1996,69(1):59-61.
    [80] Valanis K C, Landel R F. The Strain-Energy Function of a Hyperelastic Material in Terms of theExtension Ratios[J]. Journal of Applied Physics,1967,38(7):2997-3002.
    [81] Rivlin R S. Large elastic deformations of isotropic materials. IV. Further developments of thegeneral theory[J]. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences,1948,241(835):379-397.
    [82] Ogden R W. Large deformation isotropic elasticity-on the correlation of theory and experimentfor incompressible rubberlike solids[J]. Proceedings of the Royal Society of London. A.Mathematical and Physical Sciences,1972,326(1567):565-584.
    [83] Mullins L. Engineering with rubber[J]. Rubber Chemistry and Technology,1986,59(3):69-83.
    [84] Harwood J, Payne A R, Whittaker R E. Stress-Softening and reinforcement of rubber[J]. Journalof Macromolecular Science, Part B: Physics,1971,5(2):473-486.
    [85] Mostafa A, Abouel-Kasem A, Bayoumi M R, et al. Insight into the effect of CB loading ontension, compression, hardness and abrasion properties of SBR and NBR filled compounds[J].Materials\&Design,2009,30(5):1785-1791.
    [86] Ramesan M T. The effects of filler content on cure and mechanical properties of dichlorocarbenemodified styrene butadiene rubber/carbon black composites[J]. Journal of Polymer Research,2005,11(4):333-340.
    [87] Neogi C, Basu S P, Bhowmick A K. An investigation on the failure envelopes of carbonblack-filled natural rubber and styrene-butadiene rubber vulcanizates[J]. Journal of MaterialsScience Letters,1990,9(12):1379-1382.
    [88] Mostafa A, Abouel-Kasem A, Bayoumi M R, et al. On the influence of CB loading on the creepand relaxation behavior of SBR and NBR rubber vulcanizates[J]. Materials\&Design,2009,30(7):2721-2725.
    [89] Ferry J D, Grandine L D, Fitzgerald E R. The Relaxation Distribution Function ofPolyisobutylene in the Transition from Rubber-Like to Glass-Like Behavior[J]. Journal ofApplied Physics,1953,24(7):911-916.
    [90] Plazek D J, Chay I, Ngai K L, et al. Viscoelastic properties of polymers.4. Thermorheologicalcomplexity of the softening dispersion in polyisobutylene[J]. Macromolecules,1995,28(19):6432-6436.
    [91] Plazek D J, Ngai K L. Correlation of polymer segmental chain dynamics withtemperature-dependent time-scale shifts[J]. Macromolecules,1991,24(5):1222-1224.
    [92]罗文波,唐欣,谭江华,等.流变材料长期力学性能加速表征的若干进展[J].材料导报,2007,(7):8-10.
    [93] Meijer H E, Govaert L E. Mechanical performance of polymer systems: The relation betweenstructure and properties[J]. Progress in polymer science,2005,30(8):915-938.
    [94] Klompen E, Govaert L E. Nonlinear viscoelastic behaviour of thermorheologically complexmaterials[J]. Mechanics of Time-Dependent Materials,1999,3(1):49-69.
    [95] Ward I M, Sweeney J. Mechanical properties of solid polymers[M]. Wiley,2012.
    [96]马德柱,何平笙,徐种德.高聚物的结构与性能(第二版)[M].北京:科学出版社,1999.
    [97] Li B C. Fundamentals of polymer physics[M]. Beijing: Chemical Industry Press,1999.
    [98]杨挺青.粘弹性力学[M].武汉:华中理工大学出版社,1990.
    [99] Shaw M T, Macknight W J. Introduction to polymer viscoelasticity[M]. Wiley-Interscience,2005.
    [100] Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxation mechanisms inamorphous polymers and other glass-forming liquids[J]. Journal of the American ChemicalSociety,1955,77(14):3701-3707.
    [101] van Gurp M, Palmen J. Time-temperature superposition for polymeric blends[J]. Rheol. Bull,1998,67(1):5-8.
    [102] Resch J A, Ke Ss Ner U, Stadler F J. Thermorheological behavior of polyethylene: a sensitiveprobe to molecular structure[J]. Rheologica acta,2011,50(5-6):559-575.
    [103] Sodeifian G, Haghtalab A. Discrete relaxation spectrum and K-BKZ constitutive equation forPVC, NBR and their blends[J]. Applied Rheology,2004,14(4):180-189.
    [104] Mavridis H, Shroff R N. Temperature dependence of polyolefin melt rheology[J]. PolymerEngineering\&Science,1992,32(23):1778-1791.
    [105] Cole K S, Cole R H. Dispersion and absorption in dielectrics I. Alternating currentcharacteristics[J]. The Journal of Chemical Physics,1941,9(4):341-352.
    [106] Dae Han C, Kim J K. On the use of time-temperature superposition in multicomponent/multiphase polymer systems[J]. Polymer,1993,34(12):2533-2539.
    [107] Harrell E R, Nakajima N. Modified Cole-Cole plot based on viscoelastic properties forcharacterizing molecular architecture of elastomers[J]. Journal of applied polymer science,1984,29(3):995-1010.
    [108]陈朝中.无定形聚合物力学行为的应变率依赖性研究[D].湘潭:湘潭大学,2009.
    [109] Li R. Time-temperature superposition method for glass transition temperature of plasticmaterials [J]. Materials Science and Engineering: A,2000,278(1–2):36-45.
    [110]周雄,肖世武,胡小玲,等.填充硫化橡胶动态力学性能的分数阶微分流变模型[Z].中国浙江杭州:2010.
    [111]孙海忠,张卫.服从分数导数Zener本构模型的粘弹性阻尼器的阻尼性能分析及试验研究[J].振动工程学报,2008,21(1):48-53.
    [112]路纯红,白鸿柏.粘弹性材料本构模型的研究[J].高分子材料科学与工程,2007,(6):28-31.
    [113]张为民.聚合物基纳米复合材料的等效粘弹性连续介质微观力学研究[D].湘潭大学,2007.
    [114]陈文,孙洪广,李西成.力学与工程问题的分数阶导数建模[M].北京:科学出版社,2010.
    [115]张淳源.粘弹性断裂力学[M].武昌:华中理工大学出版社,1994.
    [116] Zhang Chunyuan. Viscoelastic Fracture Mechanics[M]. Beijing: Science Press,2006.
    [117]孙海忠.高分子材料的分数导数型本构关系及其应用[D].南京:暨南大学,2006.
    [118] Koeller R C. Polynomial operators, Stieltjes convolution, and fractional calculus in hereditarymechanics[J]. Acta Mechanica,1986,58(3-4):251-264.
    [119] Koeller R C. Applications of fractional calculus to the theory of viscoelasticity[J]. ASME,Transactions, Journal of Applied Mechanics(ISSN0021-8936),1984,51:299-307.
    [120] Fa W. Fractional Differential Equations[M]. San Diego, California: ACADEMIC PRESS,1999.
    [121] Bagley R L, Torvik P J. A theoretical basis for the application of fractional calculus toviscoelasticity[J]. Journal of Rheology,1983,27(3):201-211.
    [122] Hill R. Elastic properties of reinforced solids: some theoretical principles[J]. Journal of theMechanics and Physics of Solids,1963,11(5):357-372.
    [123] Lion A, Kardelky C, Haupt P. On the frequency and amplitude dependence of the Payne effect:theory and experiments[J]. Rubber chemistry and technology,2003,76(2):533-547.
    [124] Payne A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I[J].Journal of Applied Polymer Science,1962,6(19):57-63.
    [125]孙晋.白炭黑填充溶液聚合丁苯橡胶的流变行为研究[D].浙江大学,2009.
    [126] Kraus G. Mechanical losses in carbon-black filled rubbers[Z].1984.
    [127] Cho J, Youn S. A viscoelastic constitutive model of rubber under small oscillatory loadsuperimposed on large static deformation considering the Payne effect[J]. Archive of AppliedMechanics,2006,75(4-5):275-288.
    [128] Lion A, Kardelky C. The Payne effect in finite viscoelasticity: constitutive modelling based onfractional derivatives and intrinsic time scales[J]. International Journal of Plasticity,2004,20(7):1313-1345.
    [129] Huber G, Vilgis T A, Heinrich G. Universal properties in the dynamical deformation of filledrubbers[J]. Journal of Physics: Condensed Matter,1996,8(29): L409.
    [130] Vieweg S, Unger R, Heinrich G, et al. Comparison of dynamic shear properties ofstyrene--butadiene vulcanizates filled with carbon black or polymeric fillers[J]. Journal ofapplied polymer science,1999,73(4):495-503.
    [131] Ulmer J D. Strain dependence of dynamic mechanical properties of carbon black-filled rubbercompounds[J]. Rubber chemistry and technology,1996,69(1):15-47.
    [132] Molinari A, Germain Y. Self heating and thermal failure of polymers sustaining a compressivecyclic loading[J]. International journal of solids and structures,1996,33(23):3439-3462.
    [133] Lesuer D R, Zaslawsky M, Kulkarni S V, et al. Investigation into the Failure of Tank TrackPads.[R]. DTIC Document,1980.
    [134] Segurado J, Llorca J. A numerical approximation to the elastic properties of sphere-reinforcedcomposites[J]. Journal of the Mechanics and Physics of Solids,2002,50(10):2107-2121.
    [135] Tyrus J M, Gosz M, Desantiago E. A local finite element implementation for imposing periodicboundary conditions on composite micromechanical models[J]. International journal of solidsand structures,2007,44(9):2972-2989.
    [136] Pinho-Da-Cruz J, Oliveira J A, Teixeira-Dias F. Asymptotic homogenisation in linear elasticity.Part I: Mathematical formulation and finite element modelling[J]. Computational MaterialsScience,2009,45(4):1073-1080.
    [137] Ostoja-Starzewski M. Random field models of heterogeneous materials[J]. International Journalof Solids and Structures,1998,35(19):2429-2455.
    [138]侯善芹,刘书田.颗粒增强复合材料弹性性能的统计特征分析[J].科学技术与工程,2008,8(15):1671-1819.
    [139] Drugan W J. Micromechanics-based variational estimates for a higher-order nonlocalconstitutive equation and optimal choice of effective moduli for elastic composites[J]. Journalof the Mechanics and Physics of Solids,2000,48(6):1359-1387.
    [140]杨俊,吴炜,王治国.颗粒填充复合材料的应变统计特征与刚度模量[J].航空学报,2005,(26):44-49.
    [141] Monetto I, Drugan W J. A micromechanics-based nonlocal constitutive equation and minimumRVE size estimates for random elastic composites containing aligned spheroidalheterogeneities[J]. Journal of the Mechanics and Physics of Solids,2009,57(9):1578-1595.
    [142] Monetto I, Drugan W J. A micromechanics-based nonlocal constitutive equation for elasticcomposites containing randomly oriented spheroidal heterogeneities[J]. Journal of theMechanics and Physics of Solids,2004,52(2):359-393.
    [143]帅词俊,段吉安,王炯.关于黏弹性材料的广义Maxwell模型[J].力学学报,2006,38(4):565-569.