南祁连化隆地区镁铁—超镁铁质侵入岩地质、地球化学特征与铜镍成矿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩浆镍铜硫化物矿床是金属硫化物与硅酸盐岩浆不混溶的结果。从硅酸盐岩浆中分离的亲硫元素,进入镁铁或超镁铁岩浆中的硫化物液滴,这些硫化物液滴与镁铁质或超镁铁质岩浆发生熔离和聚集,从而形成了岩浆镍铜(铂)硫化物矿床。世界主要岩浆铜镍硫化物矿床是板内岩浆作用的结果,多集中在稳定克拉通边缘、裂谷环境及地幔柱活动区域。在地质形成历史上,从太古代至古生代均有产出。中国岩浆镍铜硫化物矿床主要发育于元古宙和晚古生代而呈鲜明的时代特色,其他时代少有发现和报道。这些岩浆镍铜硫化物矿床主要集中在稳定克拉通边缘和造山带中,本应板内环境的矿床为何发育在造山带中,仅仅是因为造山带中的矿床被暴露出来吗?金川是世界上第三大岩浆镍铜硫化物矿床,是大规模岩浆作用的结果。同期大规模的岩浆作用可能波及更大的范围,祁连山、柴北缘、阿尔金山都有可能发育镍铜矿化的镁铁-超镁铁岩体。无独有偶,与金川矿床所在的龙首山遥相呼应的南祁连造山带,产出有化隆镁铁-超镁铁岩带,该岩带长约160Km,宽10~30Km,呈西窄东宽的楔形夹持于拉脊山南缘断裂与青海南山断裂之间。其间侵位于化隆岩群中的镁铁-超镁铁岩体伴有不同程度的镍铜矿化,甚至达到了中小型矿床规模,可见为一较重要的镍铜矿化带。
     论文选择化隆岩带内的裕龙沟、拉水峡、亚曲、下什堂等镁铁-超镁铁岩体为研究重点,突出岩石学和地球化学的研究方法,利用岩浆源区性质和演化过程,开展岩浆与围岩及硫化物熔离机制的刻画剖析,探讨岩浆成矿作用。取得主要进展与成果如下:
     (1)青海省化隆岩带内的镁铁-超镁铁岩体均无一例外地侵入到化隆地块的化隆岩群中。化隆岩群是一套以石英岩、黑云石英片岩、二云母片岩、石英片岩、角闪片岩、黑云斜长片麻岩、混合片麻岩和混合岩为主体,变质程度较深的中-深变质岩系。带内含矿岩体基本都由镁铁质-超镁铁质岩石构成,主要造岩矿物有橄榄石、辉石、斜方辉石、单斜辉石、斜长石、角闪石及黑云母等等。含矿岩相多数为辉长-苏长岩、辉石岩以及橄榄岩相。
     (2)首次精确测定了化隆岩群的形成时代,数据集中于893Ma与919Ma两个峰值,且存在1000~1600Ma的古老锆石。其内斜长角闪岩具有轻稀土元素富集、Nb-Ta不亏损特征,与典型OIB具有相对亏损高场强元素(如Th、Nb)的特征不同,而在大地构造环境判别图上又落入了板内玄武岩区。这些反映了化隆群原岩来源于软流圈地幔交代大陆岩石圈地幔的熔融源,可能属于Rodinia超大陆在新元古代汇聚中局部裂解或者Rodinia超大陆整体上汇聚没有完成,局部就开始裂解的产物。
     (3)利用ID-TIMS和LA-ICP-MS方法,首次获得了化隆岩带内镁铁-超镁铁岩体的精确结晶年龄。亚曲辉长岩(09YQ-01)和裕龙沟角闪辉石岩(09YL-01)利用ID-TIMS获得锆石U-Pb年龄分别为440.74±0.33Ma (MSWD=1.1)和442.4±1.6Ma(MSWD=0.59)。下什堂辉橄岩(XST-01)和阿什贡辉橄岩(ASG-01)样品通过LA-ICP-MS获得锆石U-Pb年龄分别为449.8±2.4Ma (MSWD=0.31)和436.1±1.2Ma(MSWD=0.13)。这四个年龄数值较为接近,共同约束了此岩带镁铁质杂岩体的形成时限。
     (4)青海省化隆岩带内的镁铁质杂岩体的m/f值多集中在1.1、3.0和1.53,介于1~3.5之间,属于铁质系列。稀土元素的球粒陨石和微量元素的原始地幔蛛网图表现出轻稀土元素相对富集、负Eu异常及Nb-Ta负异常,几乎所有样品都有Zr-Hf负异常。富集大离子亲石元素(Sr、Rb、Ba)以及相对亏损高场强元素(Nb、Ta、Hf、Zr)。表现出了岛弧岩浆作用的地球化学特点。
     (5)化隆地区镁铁质杂岩体的Nd和Sr同位素组成变化很大,这暗示岩浆体系在演化过程中可能是开放的。稀疏浸染状矿石硫化物的187Os/188Os初始比值介于0.29~2.19之间,相对幔源矿床的187Os/188Os初始比值较高,又低于壳源矿床的187Os/188Os初始比值,可能混染了较多的壳源物质。γOs值越表现为大的正值且变化范围较大(+80~+1183),连同普遍存在的Nb、Ta亏损,进一步说明可能也与地壳同化混染密切相关。
     (6)地球化学特征表明带内杂岩体的母岩浆来自一个曾被交代富集的地幔源区,其εNd(t)=-7.74~+8.36,这些共同表明其岩浆源区应该位于软流圈地幔,并混有一部分被俯冲板片交代的地幔楔物质。而这种交代富集事件显然与祁连、柴北缘在早古生代期间大规模的板片俯冲有关。由于俯冲带熔/流体对地幔楔交代富集事件的时间与该富集地幔发生熔融的时间相隔较近,致使化隆地区镁铁质杂岩体虽然具有富集的微量元素特征,但未遭受同化混染的样品却基本保持了亏损地幔的同位素性质。
     (7)在Th/Yb对Nb/Yb的协变图中,化隆岩带内镁铁质杂岩体位于MORB-OIB线的上方,落入现代岛弧玄武岩区域。在化隆岩带北邻的拉脊山,亦产出有440-450Ma的镁铁-超镁铁侵入体和同时期花岗岩,进一步揭示拉脊山小洋盆最终于450Ma闭合。此时的化隆地块,处于拉脊山小洋盆和柴北缘洋完全俯冲闭合转为碰撞造山阶段,岩浆在后碰撞的伸展部位上侵而形成了化隆岩带的镁铁-超镁铁岩体。化隆群富硅地层为硫化物的不混溶创造了同化混染的条件,并最终导致富硅物质的加入,致使岩浆中硫化物的不混溶作用发生,从而可形成不同品位不同类型的岩浆铜镍硫化物矿床。
Magmatic nickel-copper-PGE sulfide deposits form as the result of the segregation andconcentration of droplets of liquid sulfide from mafic or ultramafic magma and thepartitioning of chalcophile elements into these from the silicate magma.Magmatic sulfidedeposits fall into two major groups when considered on the basis of the value of theircontrained metals,one group in which Ni,and,to a lesser extent,Cu,are the most valuableproducts and a second in which the PGE are the most important. The magmatic Ni-Cu sulfidedeposits were the results from intraplate magmatism in the world,and concentrated in themargin of stable craton, rift environment and mantle plume activity region,from Archean toPaleozoic in formation geological history. In China,the magmatic Ni-Cu sulfide deposits werefocused on Proterozoic and late Paleozoic,but seldom other ages.These deposits were fosteredin the margin of stable craton and orogenic belt,but these magmatic Ni-Cu sulfide depositswere supposed to intraplate environment,why growed in orogenic belt,only because thedeposits from orogenic belt exposed? Jinchuan magmatic Ni-Cu sulfide deposit from Gansuprovince in China,the third largest deposit,was the result of very very large-scalemagmatism.The contemporaneous large-scale magmatic event may sweep more greaterarea,such as Qilian mountains,north margin of Qaidam basin and Arkin orogenic belt,thesearea maybe grow many mafic-ultramafic intrusions and mineralization. It is not unique,andsouth Qilian mountains with that of Longshoushan mountains containing Jinchuandeposit,developed Hualong mafic-ultramafic intrusions belt,its distribution nearly NW andabout length160Km,width10~30Km,was located in the middle part of the south margin ofLajishan mountains fault and fault of southern Qinghai mountains showing a wedge bodywith narrow west and wide east.The mafic-ultramafic intrusions that emplaced into Hualonggroup had different degree Ni-Cu mineralization,and even formed middle-small scaledeposits,therefore,it is a more important Ni-Cu mineralization belt in Qinghai province.
     The paper selected the Yulonggou, Lashuixia, Yaqu and Xiashentang intrusions of Hualongmafic-ultramafic belt for study, focused on the mineral deposit, petrology and geochemistry,through the depth research by the magma source and the characteristic of primary magma, theevolution process of magma, and the material exchange between with the magma andsurrounding rocks, the segregation mechanism of sulfide, and discuss the mineralization anddepth process of magmatic sulfide deposits in South Qilian mountains. The main results asfollowing:
     (1) All of mafic-ultramafic intrusions of Hualong rocks belt in Qinghai province intruded into Hualong rocks group of Hualong massif,and Hualong rocks group was a suit ofmiddle-deep metamorphic rock series,including quartzite,biotite quartz schist,muscovite andbiotite schist,quartz schist,hornblende schist,biotite plagioclase gneiss,compound gneiss andmigmatite.Ore-bearing intrusions from Hualong belt were made of mafic-ultramafic rocks,andits rock-forming minerals composed of olivine, augite, orthorhombic pyroxene, clinopyroxene,plagioclase, hornblende and biotite,and so on.Ore-bearing lithofacies were basicly gabbronorite,pyroxenite and peridotite, with intense alteration.
     (2) The forming age of Hualong rocks group was precisely determined firstly,the datafocused on893Ma and919Ma,and accompanied by ancient zircons of1000~1600Ma.Theamphibolites of Hualong group showed enriched LREE,undepleted Nb-Ta,it similared to traceelements distribution model and characteristic elements ratio,but different with relativedepleted high field strength elements(Th,Nb) of typical OIB,and belonged to intraplatecontinental basalt in the tectonic environment discrimination diagram.All of these reflectedthe original rock of amphibolites in Hualong group originated from melting source thatasthenosphere mantle metasomatic continental lithosphere mantle,it maybe belong to localcracking products of superlarge continent during convergence of Rodinia,or the superlargecontinent Rodinia's convergence had not finished in the whole and the local begined cracking.
     (3) We obtained firstly crystallization ages of mafic-ultramafic intrusions in Hualong rocksbelt from Yaqu,Yulonggou,Xiashentang and Ashengong by ID-TIMS and LA-ICP-MS,theages were respectively440.74±0.33Ma (MSWD=1.1),442.4±1.6Ma (MSWD=0.59),449.8±2.4Ma (MSWD=0.31) and436.1±1.2Ma(MSWD=0.13),commonly constrainting theformation time limitation of mafic complex.
     (4) The m/f ratio of mafic complex in Hualong rocks belt,Qinghai province,was focused on1.1,1.53and3.0,mostly1~3.5,belonging to ferruginous series mafic complex.They showedrelative enriched LREE,negative Eu and Nb-Ta anomaly,and almost negative Zr-Hf anomalyfrom spider diagram of chondrited REE and primitive mantle trace elements.And they had thecharacteristics of enriched large ionic lithophile elements(Sr,Rb,Ba) and relative depletedhigh field strength elements(Nb,Ta,Hf,Zr).All of these revealed geochemical characteristics ofarc magmatism.
     (5) The Nd and Sr isotopic composition changed greatly,suggesting open magma systemduring evolution.The initial ratio of187Os/188Os from sulfide of sparse disseminated ore was0.29~2.19,higher than that of mantle source deposits,but lower than that of crustaldeposits,maybe have more crustal contamination.The ratio of γOswas+80~+1183,together with ubiquitous depleted Nb and Ta,explaining furtherly the close relationship with crustalcontamination.
     (6) Geochemical characteristics showed that parent magma originated from mantle sourcemetasomatic enriched once,and its εNd(t) ratio was-7.74~+8.36,these suggesting the magmasource should had been located in asthenospheric mantle region that contaminated by mantlewedge material with subduction plate metasomatism.This metasomatic enriched event wasrelated with large scale plate subduction at early Paleozoic in Qilian mountains and northmargin of Qaidam basin.
     (7) On the covariant diagram of Th/Yb vs Nb/Yb,the mafic complex within Hualong rocksbelt was located in the above at the line of MORB-OIB,and falled into the region of modernisland arc basalt.Lajishan mountains,northern adjacent area of Hualong rocks belt,had manymafic-ultramafic intrusions with the age of440-450Ma and coeval granite,it furtherlyrevealed the close time on the Lajishan small ocean basin was about450Ma.Meanwhile,theHualong massif was at the orogenic stage after closing completely of Lajishan small oceanbasin and north margin of Qaidam basin ocean,the magma intruded into the position thatbelonged to postcollisional extension and formed the mafic-ultramafic intrusions of Hualongrocks belt.The riched silicon strata of Hualong rocks group created the condition ofassimilation and contamination for sulfide immiscibility,finally caused the addition on theriched silicon material,occurred the sulfide immiscibility,and last formed the different grademagmatic Ni-Cu sulfide deposits in Hualong rocks belt,Qinghai province.
引文
[1]宋谢炎,肖家飞,朱丹,等.岩浆通道系统与岩浆硫化物成矿研究新进展[J].地学前缘.2010.17(1):153-163
    [2]陈浩琉,吴水波,傅德彬,等.镍矿床[M].北京:地质出版社,1993,22-57
    [3]柴凤梅,张招崇,毛景文,等.新疆哈密白石泉含铜镍镁铁-超镁铁质岩体铂族元素特征[J].地球学报,2006,27(2):123~128
    [4] Barnes SJ, Lightfoot PC. Formation of magmatic nickel sulfide ore deposits andprocessses affecting their copper and platinum-group element contents[J]. In: HedenquistJW, Thompson JFH, Goldfarb R J, Richards JP (eds) Economic Geology,100thanniversary volume:2005,179–213
    [5]汤中立,李文渊.金川铜镍硫化物(含铂)矿床成床模式及地质对比[M].北京:地质出版社,1995
    [6]夏明哲.新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用.长安大学博士论文,2009
    [7]金川公司信息中心.世界镍矿资源现状[R].内部资料.2000
    [8]汤中立.中国的小岩体岩浆矿床[J].中国工程科学,2002,4(6):9-12
    [9]毛景文,Franco PIRAJNO,张作衡,等.天山—阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床:主要特点及可能与地幔柱的关系[J].地质学报,2006,80(7):925-942
    [10] Barnes, S.J., Picard, C.P. The behavior of platinum-group elements during partial melting,crystal fractionation and sulphide segregation: an example from the Cap Smith fold belt,northern Quebec. Geochim. Cosmochim Acta.1993,57,79–87
    [11] Naldrett A.J. Magma Sulfide Deposits Geology,Geochemistry And Exploration [M].Springer,2004,1-17
    [12] Naldrett A.J. Fundamentals of Magmatic Sulfide Deposits[C]. In: Li and Ripley. NewDevelopments in Magmatic Ni-Cu and PGE Deposits. Xi’an,2009,1~309
    [13]张铭杰,李延鑫,胡沛青,等.傅飘儿.中国东部陆下岩石圈地幔中的再循环地壳流体组分[J].地质学报,2009,83(3):311-323.
    [14]柴凤梅,张招崇,毛景文,等.新疆哈密白石泉含铜镍镁铁-超镁铁质岩体铂族元素特征[J].地球学报,2006.27(2):123~128
    [15]毛景文,郑榕芬,叶会寿,等.豫西熊耳山地区沙沟银铅锌矿床成矿的40Ar-39Ar年龄及其地质意义[J].矿床地质,2006.25(4):359-368.
    [16] Li C.S and Ripley E.M. Empirical equations to predict the sulfur content of maficmagmas at sulfide saturation and applications to magmatic sulfide deposits[J].Mineralium Deposita,2005,40:2l8~230
    [17] Li C, Ripley E.M. Sulfur contents at sulfide-liquid or anhydrite saturation in silicatemelts: Empirical equations and example applications[J]. Economic Geology,2009.104:405–412
    [18] Naldrett A.J.IGCP. Projeet No.161and a Proposed classification of Ni-Cu-PGE sulfidedeposits[J]. Canadian mineralogist,1979,17:143-145
    [19]李文渊.中国铜镍硫化物矿床成矿系列与地球化学[M].西安:西安地图出版社,1996,1-228
    [20] Naldrett AJ. Magmatic sulphide deposits[C]. Oxford Monographs on Geoligy andGeophysics.1989,14:186
    [21]毛景文,Franco PIRAJNO,张作衡,等.天山—阿尔泰东部地区海西晚期后碰撞铜镍硫化物矿床:主要特点及可能与地幔柱的关系[J].地质学报,2006,80(7):925-942
    [22] Qin K.Z, Zhang L.C, Xiao W.J, et al. Overview of major Au, Cu, Ni andFe deposits andmetallogenic evolution of the eastern TianshanMountains, Northwest China[C]. In: MaoJingwen, et al., eds.Tectonic Evolution and Metallogeny of the Chinese Altay andTianshan. London: IAGOD Guidebook, Series,2003,10,227~248
    [23] Zhou M.F, Lesher C.M, Yang Z.X et al. Geochemistry and petrogenesis of270MaNi–Cu–(PGE) sulfide-bearing mafic intrusions in the Huangshan district, EasternXinjiang, Northwest China: implications for the tectonic evolution of the Central Asianorogenic belt [J]. Chemical Geology,2004,209:233-257
    [24]李文渊.祁连山主要矿床组合及其成矿动力学分析[J].地球学报,2004,25(3):313-320
    [25] Naldrett A.J. Fundamentals of Magmatic Sulfide Deposits[C]. In: Li and Ripley. NewDevelopments in Magmatic Ni-Cu and PGE Deposits. Xi’an,2009,1~296
    [26] Lesher C.M, Arndt N.T, Groves D.I. Genesis of komatiite-associated nickel sulfidedeposits at Kambalda, Western Australia: a distal volcanic model. In: Buchanan DL,Jone MJ (eds) Sulfide deposits in mafic and ultramafic rocks. Institute of MiningMetallurgy, London,1984, pp70–80
    [27] Lehmann J, Arndt N, Windley B. Field relationships and geochemical constraints on theemplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu,China [J]. Economic Geology,2007,102:75–94
    [28] Li C, Naldrett A.J. The geology and petrology of the Voisey's Bay intrusion: Reaction ofolivine with trapped sulfide and silicate liquids [J]. Lithos,1999,47:1–31
    [29] Li C, Naldrett A.J. Melting reactions of gneissic inclusions with enclosing magma atVoisey’s Bay, Labrador, Canada: Implications with respect to ore genesis [J].Economic Geology.2000,95:801–814
    [30]钱壮志,孙涛,汤中立,等.2009a.东天山黄山东铜镍矿床铂族元素地球化学特征及其意义.地质论评,55(6):873-884
    [31]唐冬梅,秦克章,孙赫,等.天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征:对东疆镁铁-超镁铁质岩体源区和成因的制约[J].岩石学报,2009,25(4):817-831
    [32] Naldrett A.J. World-class Ni-Cu-PGE deposits: key factors in their genesis[J].Mineralium Deposita,1999,34:227-240
    [33] Keays R.R, Nickel E.H, Groves D.I, et al. Iridium and palladium as discriminants ofvolcanic-exhalative, hydrothermal,and magmatic nickel sulfide mineralization[J]. EconGeol,1982, l77:1535~1547
    [34] Keays R.R. The role of komatiitic and picritic magmatism and Ssaturation in theformation of the ore deposits[J]. Lithos,1995,34,1~18
    [35] Campbell I.H., Griffiths R.W. The evolution of mantle’s chemical structure[J]. Lithos,1993,30:389-399
    [36] Campbell I.H, Naldrett A.J. The influence of silicate: sulfide ratioson the geochemistry ofmagmatic sulfides[J]. Econ Geol,1979,74:1503~1506
    [37] Campbell I.H. Implications of Nb/U,Th/U and Sm/Nd in plume magma for therelationship between continental and oceanic crust formation and the depleted mantle[J]. Geochmica et CosmochimicsActa,2002,66(9):1651-166
    [38] Todt W, Cliff R A, Hanser A, Hofmann A W. Re-calibration of NBS lead standards usinga202Pb-205Pb double spike (abstract)[J]. Terra Nova (Suppl.),1993,5:396
    [39]唐冬梅.东天山后碰撞镁铁质–超镁铁质镍铜硫化物矿床PGE地球化学示踪与富集规律研究[D].北京:中国科学院地质与地球物理博士学位论文,2009
    [40]王赐银,朱文斌,马瑞士.东天山苦水变质岩带变质作用特征及其成因研究[J].南京大学学报(自然科学版),1992,28(4):595-604
    [41] Gerstenberger, H. and Haase, G.A highly effective emitter substance for massspectrometric Pb isotope ratio determinations[J]. Chemical Geology,1997,136:309-312.
    [42] Jaffey, A.H., Flynn, K.F., Glendenin, L.E., et al, Precision measurement of half-lives andspecific activities of235U and238U[J].Physical Review,1971,4:1889-1906.
    [43] Krogh, T.E., A low contamination method for hydrothermal decomposition of zircon andextraction of U and Pb for isotopic age determinations[J].Geochimica et CosmochimicaActa,1973,37:485-494.
    [44] Ludwig, K.R., User’s Manual for Isoplot3.00: A geochronological toolkit for MicrosoftExcel. Berkeley Geochronology Center[J].Special Publication,2003, No.4,71p.
    [45] Mattinson, J.M.Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combinedannealing and multi-step partial dissolution analysis for improved precision andaccuracy of zircon ages[J]. Chemical Geology,2005,220:47-66.
    [46] Liu Y.S,Gao S,Hu ZC, et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopesand trace elements in zircons from mantle xenoliths[J]. Journal of Petrology,2010, v.51,p.537-571.
    [47]侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492
    [48] Shirey, S.B., Walker, R.J.The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann. Rev. Earth Planet.1998,Sci.26,423–500
    [49]张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re–Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志,2005,24(4):285~294
    [50]周振华,吕林素,冯佳睿,等.内蒙古黄冈矽卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义[J].岩石学报,2010,26(3):667-679
    [51]朱飞霖,陶琰,胡瑞忠,等.四川省会理县青矿山Ni-Cu-PGE矿床成因机制的Re-Os同位素证据[J].岩石学报,2011,27(9):2625-2634
    [52]杜安道,赵敦敏,王淑贤,等. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J].岩矿测试,2001,20(4):247-252
    [53]杜安道,屈文俊,李超,等.铼-锇同位素定年方法及分析测试技术的进展[J].岩矿测试,2009,28(3):288-304
    [54]李文渊.岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J].西北地质,2007,40(2):1-28.
    [55] Maier W.D, Barnes S.J, De Waal S.A. Exploration for magmatic Ni-Cu-PGE sulphidedeposits: Areview of recent advances in the use of geochemical tools, and theirapplication to some south African ores[J]. South African Geology,1998,101(3):237~253
    [56] Naldrett A.J. Nickle sulphide deposits: Their classification and genesis with specialemphasis on deposits of volcanic association[J]. Canadian Mining and MetallurgicalBull,1973,66:45-63
    [57]高亚林.金川矿区地质特征、时空演化及深边部找矿研究.兰州大学博士论文,2009
    [58] Ross J.R, Travis G.A. The niekel sulfide deposits in westem Australia in globalPerspective[J]. Economic Geology,1981,76(6):1291-1329
    [59]孙涛.新疆东天山黄山岩带岩浆硫化物矿床及成矿作用研究.长安大学博士论文,2011
    [60]汤中立, Barnes S.J.岩浆硫化物矿床成矿机制[M],北京:地质出版社,1998
    [61]汤中立,闫海卿,焦建刚,等.中国岩浆硫化物矿床新分类与小岩体成矿作用[J].矿床地质.2006.25(1):1-8
    [62]汤中立.中国镁铁、超镁铁岩浆矿床成矿系列的聚集与演化[J].地学前缘,2004,11(1):113-119
    [63]苏犁.中国中西部几个新元古代镁铁、超镁铁岩体研究及对Rodinia超大陆裂解事件的制约.西北大学博士论文,2004
    [64]秦克章,丁奎首,许英霞,等.东天山图拉尔根、白石泉铜镍钴矿床钴、镍赋存状态及原岩含矿性研究[J].矿床地质,2007,26(1):1~14
    [65]秦克章,方同辉,王书来,等.2002.东天山板块构造分区、演化与成矿地质背景研究[J].新疆地质,20(4):302-308
    [66]毛景文,杨建民,屈文俊,等.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义[J].矿床地质,2002,21(4):323~330
    [67]韩宝福,季建清,宋彪,等.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2004,49(22):2324-2328
    [68] Naldrett A J and Lightfoot P.C. Ni-Cu-PGE deposits of the Noril’sk region, Siberia:Their formation in conduit for flood basalt volcanism[C]. Geological Association ofCanada Short Course,1999, l3:l95~250
    [69] Naldrett A J, Asif M, Schandl E, et al. Platinum-group elements in the Sudbury0res:Significance with respect to the origin of different ore zones and to the exploration forfootwall ore bodies[J]. Econ. Geol.,1999,94:185~210
    [70]孙赫.2009.东天山镁铁-超镁铁岩铜镍硫化物矿床通道式成矿机制与岩体含矿性评价研究.博士学位论文.北京:中国科学院地质与地球物理研究所,1-262
    [71] Lambertt D.D, Walker R.J, Morgan J.W. Re-Os and Sm-Nd isotope geochemistry of theStillwater Complex, montana: implications for the prteogenesis of the J-M Reef[J].Journal of petrology,1998,35:1717-1753
    [72] Naldrett A.J. Fedornko V.A, Asif M, et al. Controls on the compositions of Ni-Cu sulfidedeposits as illustrated by those at Noril’sk, Siberia[J]. Economic Geology,1996,91:751-773
    [73] Naldrett A.J. World-class Ni-Cu-PGE deposits: key factors in their genesis[J].Mineralium Deposita,1999,34:.227-240
    [74] Reply E.M. sulfur isotopic abundances of the Dunk Road Cu-Ni deposit Duluth complexMinnesota[J]. Economic Geology,1981,76:619-637
    [75]李士彬,胡瑞忠,宋谢炎,等.硫化物熔离对岩浆硫化物含矿岩体中橄榄石Ni含量的影响——以金川岩体为例[J].矿物岩石地球化学通报,2008,27(2):146-152
    [76]宋谢炎,胡瑞忠,陈列锰.铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J].地学前缘.2009,16(4):287-305
    [77] Barnes, S.J., Picard, C.P., The behavior of platinum-group elements during partialmelting, crystal fractionation and sulphide segregation: an example from the Cap Smithfold belt, northern Quebec[J]. Geochim. Cosmochim.1993, Acta57,79–87
    [78] Maier,W.D., Barnes, S.J., De klerk,W.J., et al. Cu/Pd and Cu/Pt of silicate rocks in theBushveld complex: implications for platinum-group elementexploration[J]. EconomicGeology91,1151–1158
    [79]傅飘儿,胡沛青,张铭杰,等.新疆黄山铜镍硫化物矿床成矿岩浆作用过程[J].地球化学,2009,38(5):432-448
    [80]张招崇,王福生.一种判别原始岩浆的方法-以苦橄岩和碱性玄武岩为例[J].吉林大学学报,2003,33(2):130-134
    [81] Chai G and Naldrett A.J.1992. The Jinchuan ultramafic intrusion: Cumulate of ahigh-Mg basaltic magma[J]. J. Petrol.,33(2):277-303
    [82] Song X.Y and Li X.R. Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit,NW China: implications for the formation of magmatic sulfide mineralization in apostcollisional environment[J]. Mniner Deposita,2008,44:1432~1466
    [83] Song X.Y, Keays R.R, Zhou M.F, et al. Siderophile and Chalcophile ElementalConstraints on the Origin of the Jinchuan Ni–Cu–(PGE) Sulfide Deposit, NW China[J].Geochim Cosmochim Acta,2009,73:404~424
    [84]秦克章,孙赫,唐冬梅,等.东天山镁铁-超镁铁岩含矿性评价以及Cu-Ni(PGE)成矿规律与隐伏矿定位预测[J].矿物学报,2009,增刊:80~81
    [85] Li C, Ripley E.M, Naldrett A.J. Compositional variations of olivine and sulfur isotopes inthe Noril’sk and Talnakh intrusions, Siberia: Implications for ore forming processes indynamic magma conduits[J]. Economic Geology,2003,98:69-86
    [86] Arth J.G. Behaviour of trace elements during magmatic processes—A summary oftheoretical models and their applications[J]. J. Res. USGS.,1976,4(1):41-47
    [87] Li C.S, Naldrett A.J, Ripley E.M. Controls on the Fo and Ni contents of olivine insulfide-bearing mafic-ultramafic intrusions: principles, modeling and examples fromVoisey’s Bay[J]. Earth Science Frontiers,2007,14(5):177~185
    [88] Li C.S and Naldrett A.J. Geology and petrology of the Voisey’s Bay intrusion: reactionof olivine with sulfide and silicate liquids [J]. Lithos,1999,47: l~31
    [89] Lightfoot P.C., Naldrett A.J., Gorbachev N.S, et al. Chemostratigraphy of the SiberianTrap lava, Noril’sk district, Russia: implications and source of flood basalt magma andtheir associated Ni–Cu mineralisation. Proceedings of the Sudbury-Noril’sksymposium[J]. Ontario Geological Survey Special Publication.1994, No.5, pp.283–312
    [90]胡克兵,姚书振,屈文俊,等.2008.新疆东天山葫芦铜镍硫化物矿床Re-Os同位素物质来源示踪研究[J].岩石学报,24(10):2359-2370
    [91]汤中立.金川含铂硫化铜镍矿床成矿模式[J].现代地质,1990,4(4):55-64.
    [92]汤中立.中国岩浆硫化物矿床的主要成矿机制[J].地质学报,1996,36(3):237-243
    [93] Saunders A.D, Norry M.J, Tarney J. Origin of MORB and chemically depleted mantlereservoirs: trace element constraints. Pitrol, Special Litho-sphere Isse,1988.425-445
    [94]姜常义,程松林,叶书峰,等.新疆北山地区坡山北镁铁质岩石地球化学与岩石成因[J].岩石学报,2006,22:115~126
    [95] Wang Yan.2006. Petrogenesis of Permian flood basalts and mafic-ultramafic intrusion inthe Jinping(SW China) and Songda(Northern Vietnam) districts.博士学位论文.香港:香港大学
    [96]潘小菲,刘伟.东天山香山镁铁-超镁铁岩中富CH4流体包裹体的特征及其意义[J].岩石学报,2005,21(1):211~218
    [97] Green D.H. Genesis of archean peridotic magmas and constraints on archean geothermalgradients and tectonics[J]. Geology,1975,3:15-18
    [98]汤中立,钱壮志,姜常义,等.中国超大型镍铜铂岩浆硫化物矿床预测[M].北京:地质出版社.2006
    [99] Naldrett A.J. Magmatic sulfide deposit: geology, geochemistry and exploration[M].Springer, Berlin Heidelberg New York.2004,1-238
    [100] Lambert D.D, Foster J.G, Frick L.R, et al. Geodynamics of magmatic Cu-Ni-PGEsulfide deposits: New insights from the Re-Os isotopic system[J]. Economic Geology,1998,93(2):121~137
    [101] Naldrett A.J. Fedornko V.A, Asif M, et al. Controls on the compositions of Ni-Cusulfide deposits as illustrated by those at Noril’sk, Siberia[J]. Economic Geology,1996,91:751-773
    [102] Lightfoot P.C, Hawkesworth C.J. Flood basalts and magmatic Ni,Cu and PGE sulphidemineralization: Comparative geochemistry of the Noril’sk(Siberian Trap)and WestGreenland Sequences. In:Mahoney J J, Coffin M F, eds. large igneous province[C].Washington DC, Amercian Geophysical Union:1997,357~380
    [103] Ripley E.M, Alawi J.A. Petrogenesis of pelitic xenoliths at the Babbitt Cu-Nideposit,Duluth Complex, Minnesota,USA.Lithos,1988,21:143~159
    [104]张招崇,闫升好,陈柏林,等.新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束[J].岩石矿物学杂志,2003,22(3):217-224
    [105] Li C.S and Ripley E.M. Empirical equations to predict the sulfur content of maficmagmas at sulfide saturation and applications to magmatic sulfide deposits[J].Mineralium Deposita,2005,40:2l8~230
    [106] Ghiorso M.S, Sack R.O.Chemical mass transfer in magmatic processes IV. A revisedand internally consistent thermody-namic model for the interpolation and extrapolationof liquid–solid equilibria in magmatic systems at elevated temperatures and pressures[J].Contrib Miner Petrol.1995,119:197–212
    [107] Zhou M.F, Malpas J, Song X.Y, et al. A temporal link between the Emeishan large igneousprovince (SW China) and the end-Guadalupian mass extinction[J],Earth and Planetary ScienceLetters,2002,196(3-4):113-122
    [108]姜常义,夏明哲,钱壮志,等.新疆喀拉通克镁铁质岩体群的岩石成因研究[J].岩石学报,2009,25(4):738-748
    [109]钱壮志,王建中,姜常义,等.喀拉通克铜镍矿床铂族元素地球化学特征及其成矿作用意义.岩石学报,2009b,25(4):832-844
    [110]吴华,李华芹,莫新华,等.新疆哈密白石泉铜镍矿区基性-超基性岩的形成时代及其地质意义[J].地质学报,2005,79(4):498-502
    [111]李月臣,赵国春,屈文俊,等.新疆香山铜镍硫化物矿床Re-Os同位素测定.岩石学报,2006,22:245~251
    [112] Zhang Z.H, Mao J.W, Du A.D, et al. Re-Os dating of two Cu-Ni sulfide deposits innorthern Xinjiang, NW China and its geological significance[J]. Journal of Asian EarthSciences,2008,32:204~217
    [113]孙涛,钱壮志,汤中立,等.新疆葫芦铜镍矿床锆石U-Pb年代学、铂族元素地球化学特征及其地质意义[J].岩石学报.2010.26(11):3339-3349
    [114] Zhang M.J, Sandra L.K, C Li, et al. Precise U–Pb zircon–baddeleyite age of theJinchuan sulfideore-bearing ultramafic intrusion, western China. Miner Deposita.2009DOI10.1007/s00126-009-0259-x
    [115]夏明哲,姜常义,钱壮志,等.新疆东天山葫芦岩体岩石学与地球化学研究[J].岩石学报,2008,24(12):2749-2760
    [116]三金柱,秦克章,汤中立,等.东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义[J].岩石学报,2010,26(10):3027-3035
    [117] Irvine T.N. Crystallization sequences of the Muskox intrusion and other layeredintrusions: Ⅱ.Origin of chromitite layers and similar deposits of other magmaticores[J].Geochim CosmochimActa,1975,39:991~1020
    [118] Ripley E.M, Lightfoot P.C, Li C.S, et al. Sulfur isotopic studies of continental floodbasalts in the Noril’sk region: Implications for the association between lavas andore-bearing intrusions[J]. Geochimica et CosmochmicaActa,2003,67(15):2805-2817
    [119] Maier W.D. Paltinum-group eIement (PGE) deposits and occurrences: Mineralizationstyles, genetic concepts, and exploration criteria[J]. Journal of African Earth Sciences,2005,4l: l65-l9l
    [120] Li C, Naldrett A.J, Ripley E.M. Critical Factors for the Formation of Nickel-Copperdeposit in an evolved magma system: lessons from a comparison of the Pants Lake andVoisey’S Bay Sulfide Occurrences in Labrador,Canada[J]. Mnineralium Deposita,2001,36:85~92
    [121] Maier W.D, Barnes S.J, Gartz V, et al. Pt-Pd reefs in magnetitites of the Stella layeredinstrusion, South Africa: A world of new exploration opportunities for platinum-froupelements[J]. Geology,2003,31:885-888
    [122]孙赫,秦克章,李金祥,等.地幔部分熔融程度对东天山镁铁质-超镁铁质岩铂族元素矿化的约束-以图拉尔根和香山铜镍矿为例[J].岩石学报,2008,24(5):1079~1086.
    [123]肖庆华,秦克章,唐冬梅,等.新疆哈密香山西铜镍-钛铁矿床系同源岩浆分异演化产物—矿相学、锆石U-Pb年代学及岩石地球化学证据[J].岩石学报,2010,26(2):503-522
    [124] Li C, Lightfoot P.C, Amelin Y, et al. Contrasting petrological and geochemicalrelationships in the Voisey's Bay and Mushuau intrusions, Labrador: Implications for oregenesis[J]. Economic Geology,2000a,95:771-800
    [125] Li C, Naldrett A.J. Melting reactions of gneissic inclusions with enclosing magma atVoisey's Bay, Labrador, Canada: Implications with respect to ore genesis[J]. EconomicGeology,2000b,95:801-814
    [126]姜常义,夏明哲,余旭,等.塔里木板块东北部柳园粗面玄武岩带:软流圈地幔减压熔融的产物.岩石学报.2007,23(7):1777-1790
    [127]姜常义,张蓬勃,卢登蓉,等.新疆塔里木板块西部瓦吉里塔格地区二叠纪超镁铁岩的岩石成因与岩浆源区[J].岩石学报.2004,20(6):1433-1444
    [128]姜常义,卢登蓉,白开寅,等.大陆岩石圈地幔交代作用的产物—且干布拉克蛭石矿床[J].岩石学报,2005,21(1):201-210
    [129]姜常义,钱壮志,姜寒冰,等.云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J].岩石学报,2007,23(4):777-792
    [130] Foster J.G, Lambert D.D and Frick L.R.1996. Re-Os isotopic evidencefor genesis ofArchaean nickel ores from uncontaminated komatiites [J]. Nature,382:703-706
    [131] Keays R.R, Ihlenfed C, Mcinnes B.I.A et al. Re-Os isotope dating of the JinchuanNi-Cu-PGE, sulfide deposit, China[A]. J. G. Shellnutt, M.F.Zhou and K.N.Pang. Recentadvancees in magmatic ore systems in mafic-ultramafic rocks[C].Hong kong SAR China:Proceedings of the IGCP479Hong Gong Workshop,Abstract Volume,2004,41-42
    [132] Mccandless T.E, Ruiz J. Re-Os evidence for regional mineralization in NorthAmerica[J]. Scienee.1993,261:1282-1286
    [133]罗照华,马拉库舍夫,潘妮娅等.铜镍硫化物矿床的成因:以诺里尔斯克(俄罗斯)和金川(中国)为例[J].矿床地质,2000,19(4):330-339
    [134]解广轰,汪方亮,范彩云等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J].中国科学(D辑),1998,28:31-36
    [135] Song X.Y, Zhou M.F, Hou Z.Q et al. Geochemical constraints on the mantle source ofthe Upper Permian Emeishan Continental Flood Basalts, Southwestern China[J].International Geology Review,2001,43:213–225
    [136] Naldrett A.J. An overview of Ni-Cu mineralization with conclusions guide inexploration (Z).International Geological Correlation Programme479short course notes,2004,154-164
    [137] Lightfoot P.C, Keays R.R. Siderophile and chalcophile metalvariations in flood basaltsfrom the Siberian Trap, Noril’sk Region: implications for the origin of the Ni–Cu–PGEsulfideores[J]. Econ Geol,2005,100:439~462
    [138] Lightfoot P.C, Naldrett A.J. Geological and geochemical relationships in the Voisey’sBay intrusion, Nain Plutonic Suite,Labrador, Canada[A].In: Keays RR, Lesher CM,Lightfoot PC, Farrow CEG (eds) Dynamic processes in magmatic ore deposits and theirapplication in mineral exploration[C].Geol Assoc Can Short Course Notes,1999,13:1~30
    [139]陈波,夏明哲,汪帮耀,等.新疆东天山黄山岩体岩石地球化学特征与岩石成因[J].矿物岩石,2010,30(3):23-33
    [140]袁洪林,吴福元,高山,等.2003.东北地区新生代侵人体的错石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,48(14):1511-1520
    [141] Zhu Y.F, Zhang L.F, Gu L.B, et al.2005. The zircon SHRIMP chronology and traceelement geochemistry of the Carboniferous volcanic rocks in western TianshanMountains. Chinese Science Bulletin,50:2201-2212
    [142] Barnes S.J. The use of metal ratios in prospecting for platinum group element deposit inmafic and ultramafic intrusion. Journal of Geochemical Exploration,1990,37(1):91-99
    [143] Ulmer, P. The dependence of the Fe2+–Mg cation-partitioning between olivine andbasaltic liquid on pressure, temperature and composition. Contributions to Mineralogyand Petrology,1989,101,261–273
    [144] Putirka, K.D.2005. Mantle potential temperatures at Hawaii, Iceland, and themid-oceanridge system, as inferred from olivine phenocrysts: evidence for thermally drivenmantle plume. Geochemistry, Geophysics, Geosystems6, Q05L08. doi:10.1029/2005GC000915
    [145] Maclean W.H. Liquid phase relations in the FeS-FeO-Fe2O3-SiO2sysytems and theirapplications in geology[J]. Economic Geology,1969,64:865-884
    [146] Lesher C.M and Campbell I.H. Geochemical and fluid-dynamic modeling ofcompositional variation in Archean komatiite-hosted nickel-sulfide ores in WesternAustralia[J]. Econ. Geol.,1993,88:804-816
    [147] Maier W.D, Barnes S.J, Li C.S. A re-evaluation of the role of crustal contamination inthe formation of magmatic sulfides in the Bushveld Complex[C]. In:The9thinternationalPGE symposium. Montana, USA,2002(July21-25)
    [148] Ryna B. The Nain–Churchill boundary and the Nain Plutonic Suite: A regionalperspective on the geologic setting of the Voisey’s Bay Ni–Cu–Co deposit[J]. Econ Geol,2000,95:703~724
    [149] Lambert D.D, Frikc L.R, Foster G.J, et al. Re-Os isotopic systematics of the Voisey′sBay Ni-Cu-Co magmatic sulfide system,Labardor, Canada:II Implications for paerentalmagma chemistry, ore genesis, and metal redistribution[J]. Econ.Geol.,2000,867-888
    [150] Ripley E.M, Li C.S. Paragneiss assimilation in the genesis of magmatic Ni-Cu–Cosulfide mineralization at Voisey′s Bay, Labardor: δ34S、 δ13C and Se/S evidence[J].Econ.Geol.,2002,97(6):867-888
    [151]王玉往,王京彬,王莉娟,等.新疆北部镁铁-超镁铁质岩的PGE成矿问题[J].地学前缘.2010,17(1):137-152
    [152] Lightfoot P.C and Hawkesworth C.J. Flood basalts and magmatic Ni, Cu and PGEsulphide mineralization: Comparative geochemistry of the Noril’sk (Siberian Trap) andWest Greenland sequences[A]. In: Mahoney JJ and Coffin MF, ed. Large igneousprovince [M]. Washington D C:American Geophysical Union.1997.357-380
    [153] Li C,Naldrett A.J. Melting reactions of gneissic inclusions with enclosing magma atVoisey’s Bay,Labrador,Canada:Implications with respect to ore genesis[J].EconomicGeology.2000.95:801-814
    [154] Lambert D.D, Foster J.G., Frick L.R, et al. Re-Os isotopic systematics of the Voisey'sBay Ni-Cu-Co magmatic ore system, Labrador, Canada[J]. lithos,1999,47,(1~2):69~88
    [155] Sproule R.A, Lambert D.D, Hoatson D.M. Re–Os isotopic constraints on the genesis ofthe Sally Malay Ni–Cu–Co deposit, East Kimberley, Western Australia[J]. Lithos,1999,47,89~106
    [156] Foster J.G., Lambert D.D, Frick L.R. Re-Os isotopic evidence for genesis ofArchaeannickel ores from uncontaminated komatiites[J]. Nature,1996,382:703~706
    [157] HolzheidA, Grove T.L. Sulfur saturation limits in silicate melts and their implicationsfor core formation scenarios for terrestrial planets[J].American Mineralogist,2002,87:227-237
    [158] Barnes S J, Tang Z.L. Chrome spinel from the Jinchuan Ni-Cu sulfide deposit,GansuProvince, People’s Republic of China[J]. Economic Geology,1999,94:343-356.
    [159] Barovich K.M, Foden J.A. Neoproterozoic flood basalt province in southern-centralAustralia: geochemical and Nd isotope evidence from basin fill.Precambrian Research,2000,100,213-234.
    [160] Chen Y.J. Thermal effects of gabbro accretion from a deeper second melt lens at the fastspreading East Pacifi Rise[J]. Geophysics Research,2001,106:8581-8588.
    [161] Godard M, Jousselin D, Bodinier J L. Relationships between geochemistry andstructure beneath a palaeo-spreading centre:a study of the mantle section in the Omanophiolite[J]. Earth and Planetary Science Letter,2000,180:133-148.
    [162] Hasse K.M.Geochemical constraints on magma source and mixing processes in EasterMicroplate MORB(SE Pacific):a case study of plume-ridge interaction[J]. ChemistryGeology,2002,182:335-355.
    [163]汤中立.金川铜镍硫化矿床成矿模式[J].现代地质,1990,4(4):55-64
    [164]汤中立.中国岩浆硫化物矿床的主要成矿机制[J].地质学报,1996,36(3):237-243
    [165]王润民,赵昌龙.新疆喀拉通克一号铜镍硫化物矿床[M].北京:地质出版社,1991
    [166]杨轩柱,彭礼贵,董显扬,等.金川含铜镍超基性岩体的岩浆包裹体特征及其地质意义[J].地质论评,1991,37(1):70-80.
    [167] Mecdonald R, Rogers N.W, Fitton J.G, et al. Plume–Lithosphere interactions in thegeneration of the basalts of the Kenya Rift, East Africa[J]. Journal of Petrology,2001,42:877-900
    [168] Barker J.A, Menzies M.A, Thirlwall M.F, et al. Petrogenesis of Quaternary intraplatevolcanism Sana’a Yenmen: Implication and polybaric melt hybridization [J]. Journal ofPetrology,1997,38:1359-1390
    [169]夏明哲.新疆东天山黄山岩带镁铁-超镁铁质岩石成因及成矿作用[D].长安大学博士论文,2009
    [170]张招崇,阎升好,陈柏林,等.阿尔泰造山带南缘镁铁质–超镁铁质杂岩体的Sr、Nd、O同位素地球化学及其源区特征探讨[J].地质论评,2006,51(1):38~42
    [171]韩春明,肖文交,赵国春,等.新疆喀拉通克铜镍硫化物矿床Re–Os同位素研究及其地质意义[J].岩石学报,2006,22(1):163~170
    [172]王京彬,王玉往,何志军.东天山大地构造演化的成矿示踪[J].中国地质,2006,33(3):461-469
    [173]白云来.新疆哈密黄山-镜尔泉铜镍成矿体系的地质构造背景[J].甘肃地质学报,2000,9(2)1-7
    [174]何国绮,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,1994,1-437
    [175]张铭杰,李延鑫,胡沛青,等, NiuYaoling,傅飘儿.中国东部陆下岩石圈地幔中的再循环地壳流体组分[J].地质学报,2009,83(3):311-323.
    [176]胡沛青,张铭杰,汤庆艳,等.金川Cu-Ni-PGE硫化物矿床成矿过程稀有气体同位素组成示踪[J].岩石学报,2010,26(11):3375-3386.
    [177] Mao J.W, Pirajno F, Zhang Z.H, et al.,Areview of the Cu–Ni sulphide deposits in theChinese Tianshan andAltay orogens (XinjiangAutonomous Region, NW China)Principal characteristics and ore-forming processes[J]. Journal ofAsian Earth Sciences,2008,32:184-203
    [178]韩宝福,季建清,宋彪,等.新疆准噶尔晚古生代陆壳垂直生长(I)-后碰撞深成岩活动的时限[J].岩石学报,2006,22(5):1077-1086
    [179]吴昌志,张遵忠, Khin Z,等.东天山觉罗塔格红云滩花岗岩年代学、地球化学及其构造意义[J].岩石学报,2006,22(5):1121-1134
    [180] Zhu Y.F, Guo X, Zhang L.F, et al. Geochemistry and zircon SHRIMP dating on theLate Paleozoic volcanic rocks in west Tianshan Mountains (Central Asia, Xinjiang)[C].Geochim Cosmochim Acta, Suppl.,2006, A755
    [181] Thompson J.F.H. Acadian synorogenic mafic intrusions in the Maine Appalachians.American Jounral of Science,1984,284:462~483
    [182] Barnes S.J. Unusual nickel and copper to noble metal ratios from the Rana layeredintrusion,northern Norway. Nor Geol Tidsskr,1987,67,215~231
    [183]唐冬梅,秦克章,刘秉光,等.铂族元素矿床的主要类型、成矿作用及研究展望[J].岩石学报,2008,24(3):569-588
    [184] Boyd R and Mathiesen C.O.The nickel mineralization of Rana mafic intrusion Nordland N orway. Can Mineral,1979,17:287~298
    [185] Maier W.D and Barnes S.J. Application of lithogeochemistry to exploration for PGEdeposits[A]. In: Mungall JE(ed), Exploration for platinum–group elements deposits[C].Mine Assoc Can Short Course Notes,2005,35:309~341
    [186] Buchanan D.L and Nolan J. Soubility of sulfur and sulfide immiscibility in synthetictholeiitic melts and their relevance to Bushveld–complex rocks[J]. Can Mineral,1979,17:483~494
    [187]柴凤梅.新疆北部三个与岩浆型Ni-Cu硫化物矿床有关的镁铁-超镁铁质岩的地球化学特征对比研究[D].北京:中国地质科学院,2006
    [188]夏明哲,姜常义,钱壮志,等.新疆东天山黄山东岩体岩石地球化学特征与岩石成因[J].岩石学报,2010,26(8):2413-2430
    [189]丁建华.新疆东天山铜、镍、金矿资源潜力评价[D].2007.博士学位论文.北京:中国地质科学院
    [190]李华芹,谢才富,常海亮,等.新疆北部有色贵金属矿床成矿作用年代学[M].北京:地质出版社,1998,1-264
    [191] Zhang Z.C, Mao J.W, Chai F.M, et al.Geochemistry of the Permian Kalatongke MaficIntrusions, Northern Xinjiang, Northwest China:Implications for the Genesis ofMagmatic Ni–Cu Sulfide Deposits[J]. Econ Geol,2009,104(2):185~203
    [192]王焰.云南二叠纪白马寨铜镍硫化物矿床的成因:地壳混染与矿化的关系[J].矿物岩石地球化学通报,2008,27(4):332-343
    [193]糜梅,陈衍景,孙亚莉,等.河南周庵铂族-铜镍矿床的稀土和铂族元素地球化学特征:热液成矿的证据[J].岩石学报,2009,25(11):2769-2775
    [194]秦克章,丁奎首,许英霞,等.东天山图拉尔根、白石泉铜镍钻矿床钴、镍赋存状态及原岩含矿性研究[J].矿床地质,2007,26(L):1~14
    [195]苏本勋,秦克章,唐冬梅,等.新疆北山地区坡十镁铁-超镁铁岩体的岩石学特征及其对成矿作用的指示[J].岩石报,2011,27(12):3627-3639
    [196]孙赫,唐冬梅,秦克章,等.亲铜元素的地球化学行为研究进展及其在岩浆硫化物矿床中的应用[J].地质论评,2009,55(6):840-850
    [197]田毓龙,包国忠,汤中立,等.金川铜镍硫化物矿床岩浆通道型矿体地质地球化学特征[J].地质学报,2009,83(10):1515-1525
    [198]王玉往,王京彬,王莉娟,等.新疆北部镁铁-超镁铁质岩的PGE成矿问题[J].地学前缘,20l0,17(1):137-152
    [199]张招崇,李莹,赵莉,等.攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束[J].岩石学报,2007,23(10):2339-2352
    [200]夏林圻,夏祖春,任有祥.2001.北祁连山构造-火山岩浆-成矿动力学[M].北京:中国大地出版社
    [201]张照伟,李文渊,高永宝,等.青海省化隆县下什堂岩体地质-地球化学特征及其含矿性研究[J].大地构造与成矿学,2011,35(4):596-602
    [202] Song S.G, Zhang L.F, Niu Y.L, et al.2006.Evolution from oceanic subduction tocontinental collision:a case study from the Northern Tibetan plateau based ongeochemical and geochronological data[J]. Journal of Petrology,47(3):435-455
    [203]马中平,李向民,徐学义,等.南阿尔金山清水泉镁铁-超镁铁质侵入体LA-ICP-MS锆石U-Pb同位素定年及其意义[J].中国地质,2011,38(4):1071-1078
    [204]孙佳.青海化隆亚曲含镍岩体成岩成矿作用及其构造响应.长安大学硕士论文,2010
    [205]董国安,杨宏仪,刘敦一,等.龙首山群碎屑锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报,2007.(6):1572-1585
    [206]陆松年,于海峰,李怀坤,等.“中央造山带”早古生代缝合带及构造分区概述[J].地质通报,2006.25(12):1369-1380
    [207]许志琴,杨经绥,李海兵,等.中央造山带早古生代地体构造与高压/超高压变质带的形成[J].地质学报,2006,80(12):4970-4981
    [208]徐旺春,张宏飞,柳小明.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义[J].科学通报,2007.52(10):1174-1180
    [209]张照伟,李文渊,高永宝,等.南祁连化隆微地块铜镍成矿地质条件及找矿方向[J].地质学报,2009.83(10):1483-1489
    [210] Li X.H,Li Z.X,Ge.W.C,et al.Reply to the comment:Mantle plume-,but not arc-relatedNeoproterozoic mdgmatism in South China[J].Precambrian Research,2004,115:147-159.
    [211] Song S.G, Niu Y.L, Zhang L.F, et al. Tectonic evolution of early Paleozoic HPmetamorphic rocks in the North Qilian Mountains, NW China: Newperspectives[J].Journal of Asian Earth Sciences,2009,35:334–353
    [212] Song G, Su L, Li X.H, et al. Grenville-age orogenesis in the Qaidam-Qilian block: Thelink between South China and Tarim[J].Precambrian Research,2012a,220–221:9–22
    [213] Song S.G, Niu Y.L, Su L, et al. Tectonics of the North Qilian orogen, NW China[J].Gondwana Research doi:10.1016/j.gr.2012b.02.004
    [214]张照伟,李文渊,高永宝,等.2012a.南祁连裕龙沟岩体ID-TIMS锆石U-Pb年龄及其地质意义[J].地质通报,31(2-3):455-462
    [215] Tseng C, Zuo G, Yang H.J, et al. Occurrence of Alaskan-type mafic-ultramaficintrusions in the North Qilian Mountains, northwest China: Evidence of Cambrian arcmagmatism in the Qilian block[J].Island Arc,2009,18:526–549
    [216]何世平,李荣社,王超,等,南祁连东段化隆岩群形成时代的进一步限定[J].岩石矿物学杂志,2011,30(1):34~44
    [217]陈隽璐,何世平,王洪亮,等.秦岭-祁连造山带结合部位基性岩墙的LA-ICPMS锆石U-Pb年龄及地质意义[J].岩石矿物学杂志,2006,25(6):455-462
    [218]李文渊.祁连山岩浆作用有关硫化金属矿床成矿与找矿.西北大学博士论文,2004
    [219]李文渊.祁连山岩浆作用有关金属硫化物矿床成矿与找矿[M].北京:地质出版社,2006,1-209
    [220]高永宝,李文渊,谢燮,等.青海化隆地区拉水峡铜镍矿床地质、地球化学特征及成因[J].地质通报,2012a.31(5):763-772
    [221] Lehmann J, Nicholas A, Brian W, et a1. Field Relationships and GeochemicalConstraints on the Emplacement of the Jinchuan Intrusion and its Ni-Cu-PGE SulfideDeposit,Gansu,China[J].Economic Geology,2007, Vol.102.PP.75-94.
    [222]张照伟,李文渊,高永宝,等.南祁连亚曲含镍铜矿基性杂岩体形成年龄及机制探讨[J].地球学报,2012b.33(6):1-11
    [223] Matthew J.S, James S.B, Luca F,et al. Partitioning behavior of trace elements betweendacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablationICPMS analysis of silicate melt inclusions[J]. Geochimica et Cosmochimica Acta73(2009)2123–2141.
    [224] Madeleine C.S, Humphreys, S. L, Kearns, et al. SIMS investigation of electron-beamdamage to hydrous, rhyolitic glasses: Implications for melt inclusionanalysis[J].American Mineralogist,2006,91:667–679.
    [225] Tsuyoshi I, Fouad T and Toshikazu T. Boron isotope and trace element systematics ofthe three volcanic zones in the Kamchatka arc[J].Geochimica et Cosmochimica Acta,2001,65(24):4523-4537.
    [226] Wendlandt R.F. sulphide saturation of basalts and andesite melts at high pressures andtemperatures[J].AM.Mineral,1982,67:877-885.
    [227] Naldrett A.J. Niekel sulfides deposits:classification, composition,and genesis[J].Eeon.Geol.,1981,6:28-65
    [228] Herzberg C.O, Hara M J.Plume-associated ultramafic magmas of Phanerzoicage[J].Journal of Petrology,2002,43:1857-1883.
    [229] Naldrett A.J. Key factors in the genesis of Noril’sk,Subdury,Jinchuan,Voisey’s Bay andother world-class Ni-Cu-PGE deposits:implications for exploration[J].Austrian Journalof Earth Sciences,1997,44:283-316.
    [230] Anders E, Grevesse N.Abundances of the elements: meteoritic and solar[J].Geochimicaet Cosmochimica Acta,1989,53:197–214
    [231] Holwell D.A, Boyce A.J, McDonald I. Sulfur isotope variations within the PlatreefNi-Cu-PGE deposit: Genetic implications for the origin of sulfidemineralization[J].Economic Geology,2007,102:1091–1110
    [232] Irvine T.N. Crystallization sequences of the Muskox intrusion and other layeredintrusions: II. Origin of the chromite layers and similar deposits of other magmaticores[J].Geochimica et Cosmochimica Acta,1975,39:991–1020
    [233] Li C, Ripley E.M. Empirical equations to predict the sulfur content of mafic magma atsulfide saturation and applications to magmatic sulfide deposits[J].Mineralium Deposita,2005,40:218–230
    [234] Ripley E.M, Li C.S,Craig H.M, et al. Micro-scale S isotope studies of the Kharaelakhintrusion,Noril’sk region, Siberia:Constraints on the genesis of coexisting anhydrite andsulfide minerals[J].Geochimica et Cosmochimica Acta,2010,74:634-644.
    [235] Lehmann J, Arndt N, Windley B, et al.Field relationships and geochemical constraintson the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu,China[J].Economic Geology,2007,102:75–94
    [236] Ripley E.M. Systematics of sulphur and oxygen isotopes in matic igneous rocks andrelated Cu-Ni-PGE mineralization. In: Keays RR, Lesher CM, Lightfoot PC and FarrowCEG(eds.)[C]. Dynamic Processes in Magmatic Ore Deposits and their Application toMineral Exploration: Geological Association of Canada. Short Course Notes,1999,13:133~158
    [237] Mavrogenes J.A, O’Neill H.S.C. The relative effects of pressure, temperature, andoxygen fugacity on the solubility of sulfide in mafic magmas[J].Geochimica etCosmochimica Acta,1999,63:1173–1180
    [238] Barnes S.J, Lightfoot P.C. Formation of magmatic nickel sulfide ore deposits andprocessses affecting their copper and platinum-group element contents[J]. In: HedenquistJW, Thompson JFH, Goldfarb R J, Richards JP (eds) Economic Geology,100thanniversary volume:2005,179–213
    [239] Barnes S.J, Makovicky E, Karup-Moller S, et al. Partition coefficients for Ni, Cu, Pd, Pt,Rh and Ir between monosulfide solid solution and sulfideliquid and the implication forthe formation of composition ally zoned Ni-Cu sulfide bodies by fractionalcrystallization of sulfideliquid[J]. Can J Earth Sci,1997,34:366~374
    [240]张招崇,闫升好,陈柏林,等.新疆喀拉通克基性杂岩体的地球化学特征及其对矿床成因的约束[J].岩石矿物学杂志,2003,22(3):217-224
    [241] Tao Y, Li C,Song X, et al. Mineralogical,petrological and geochemical studies of theLimahe mafic-ultramatic intrusion and the associated Ni-Cu sulfide ores, SWChina[J].Mineralium Deposita,2008,43,849-872
    [242]姜常义,郭娜欣,夏明哲,等.塔里木板块东北部坡一镁铁质-超镁铁质层状侵入体岩石成因[J].岩石学报,2012,28(7):2209-2223
    [243]李文渊,张照伟,高永宝,等.秦祁昆造山带重要成矿事件与构造响应[J].中国地质,2011,(5):1135-1149