磁性粒子的制备、表征及在热塑性高分子材料感应加热中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文面向热塑性高分子感应加热应用来开展微纳米磁性粒子的制备与表征,对制备过程、结构控制、磁性能以及在热塑性高分子材料中的发热与传热行为等进行了研究,主要内容包括以下几个方面:
     以无机硝酸盐为原料,采用两种软化学法(乙二胺四乙酸络合法和硬脂酸法)在相对较低的温度下分别制备了系列超细镍锌尖晶石铁氧体(Ni_(1-X0Zn_xFe_2O_4),系统研究了Zn对晶体结构以及磁学性质的影响。对不同方法制备镍锌铁氧体的反应历程进行了探讨。结果表明硬脂酸法制备纯相的产物所需的处理温度较高(900℃),团聚程度较重;乙二胺四乙酸络合法制备的产物结构疏松,粒子分散均匀,对系列产物的磁性能研究发现,热处理温度、时间、取代离子浓度等制备条件对比饱和磁化强度、矫顽力、剩磁和居里温度等有较大的影响,适当调整制备条件能够降低粉体粒径、优化物相组成、改善磁学性能,使磁性粒子的居里温度能够满足热塑性高分子熔融加工所需的窗口温度。系列产物的频谱研究表明,Ni_1-xZn_xFe_2O_4铁氧体的致密化程度与晶粒的大小能够影响存储磁能和磁损耗的大小,提高热处理温度以及增加锌离子取代浓度有助于在较低的磁场频率中,获得较高的存储磁能和较大的磁损耗,满足感应加热的应用需求。
     采用乙二胺四乙酸络合法和硬脂酸法合成了系列Y型六角晶系铁氧体粉末(Ba_2Co_(2-x)Zn_xFe_(12)O_(22)),系统研究了焙烧温度、初始溶液pH值、取代离子浓度等工艺参数对产物微结构与磁性能的影响,并探讨了六角晶系铁氧体的反应历程。结果表明通过乙二胺四乙酸络合法制备了形貌均匀、尺寸分布较窄的六角片状粉体,目标产物是通过多步反应实现的,络合物的条件稳定常数对于最终产物的结构组成具有较大影响。锌离子对钴离子的取代只是引起晶胞的膨胀,没有改变铁氧体的晶型结构。居里温度满足T_c=352.66-146.28x的线性关系。磁导率的实部和虚部随着取代量的增加均有所提高,共振频率则不断下降。在1~10MHz范围内磁损耗随着焙烧温度和取代量的增加快速增加。用硬脂酸法制备的目标产物颗粒较小但尺寸分布较宽,BaCO_3对于中间相(у-Fe_2O_3)具有稳定作用。与乙二胺四乙酸络合法制备的同组分产物相比,具有较小的比饱和磁化强度和较大的矫顽力,不利于弱交变磁场中的感应发热应用。
     采用液相还原法制备了系列形貌可控、粒度分布均匀的超细镍粉,系统研究了溶剂体系、反应溶液的pH值、镍盐初始浓度、反应温度以及表面活性剂的种类和浓度等工艺条件对粒径、形貌和磁性能的影响。结果表明,长链结构的表面活性剂具有调控粒径、形貌和团聚程度以及改善镍粉热稳定性的作用;所制粒径为50~900nm镍粉均表现出明显的铁磁性,比饱和磁化强度均低于体相金属材料,且随着粒径的减小而下降,可能与粒子不同的比表面导致有关;随着粒径的增加,复数磁导率的实部和虚部均出现增大,磁损耗峰具有向低频移动的趋势。
     从实现热塑性树脂基复合材料熔融加热的均匀性、居里温度控制的智能性以及加热的快速性等角度出发,基于磁场理论,计算了交变磁场中磁滞损耗、涡流损耗、趋肤效应以及热量传递等相关参数,并考察其与高分子基体中感应发热的关系。结果表明镍锌铁氧体、Y型六角晶系铁氧体和镍粉三类磁性粒子在饱和磁场中的磁滞损耗密度大小与材料的组分与粒径存在依赖性;镍锌铁氧体和Y型六角铁氧体在1~10MHz频率范围内的涡流损耗和趋肤效应可以忽略,而镍粉的粒径必须控制在1.1μm以内,才能避免影响;加热速率与粒子的体积分数、磁场频率、磁滞损耗密度以及材料的热力学参数相关,在1.5MHz、150 Oe交变磁场中体积分数为10%的Ni_(0.7)Zn_(0.3)Fe_2O_4、Ba_2Co_(1.5)Zn_(0.5)Fe_12O_(22)和Ni三类粒子在PEEK基体中的理论升温速率分别为69.3、17.0和8.6℃/s。
     采用溶液浸渍法制备了三类磁性粒子/PPESK复合材料薄层,考察了磁性粒子/PPESK复合材料的磁滞发热行为。结果表明磁场强度对于复合材料体系的最终温度和加热速率是关键因素之一,足够的磁场强度才能满足材料的居里温度智能控制和具有实际应用价值的加热速率。体积分数为10%的Ni_(0.7)Zn_(0.3)Fe_2O_4、Ba_2Co_(1.5)Zn_(0.5)Fe_(12)O_(22)和150nmNi三类粒子在PPESK基体中初始加热速率可达9.7、6.2和5.5℃/s,最终温度为394、266和329℃,具有良好的感应发热效果。
In this dissertation, a series of magnetic particles suiting for induction heating application of thermoplastic polymers were prepared and characterized. The preparation process, crystal structure control, magnetic properties, heating and heat transfer behavior in thermoplastic polymer were studied. The main research results are as follows:
     A series of ultrafine spinel ferrites (Ni_(1-x)Zn_xFe_2O_4) were synthesized at relatively low temperature by two soft chemical methods (EDTA complexing method and stearic acid method) using nitrates as raw materials. The effects of Zn content on the crystal structure and magnetic properties were studied. The reaction mechanism of different methods was preliminary discussed. The results indicated the pure phase products could be obtained at 900℃by stearic acid method and severe aggregations existed. The products obtained by EDTA conplexing method had high dispersible and loose structure. The study on the magnetic properties found the process conditions such as calcination temperature, time and the content of Zn ion had a large impact on the magnetization, coercivity, remanence and Curie temperature. The particles could ensure the induction heating of thermoplastic polymer by properly adjusting particles size, composition and magnetic properties. The magnetic spectra showed the capacity of magnetic energy storage and loss were related to the densification and grain growth of Ni_(1-x)Zn_xFe_2O_4. The increasing energy loss and storage suited for the induction heating at moderate frequency could be achieved by increasing the calcination temperature and the content of Zn ion.
     A series of Y type hexaferrite (Ba2Co_(2-x)Zn_xFe_12O_22) powders were prepared by EDTA complexing method and stearic acid method. The effects of calcination temperature, initial pH, ion concentration on the microstructure and magnetic properties were systemically investigated. The reaction process was discussed in detail. The results showed the products via EDTA method had uniform hexagonal shape and narrow particle size distribution, which were obtained by multi-step reactions. The structure and composition of products had a large dependence on the conditional stability constant of complexes precursor. The substitution of Co~(2+)by Zn~(2+)could not change the crystal structure except for expanding the lattice. The Curie temperature of products has a linear relation:Τ_c=352.66-146.28x. With increasing substitution, the real and imaginary parts of complex permeability increase and the resonance frequency decrease. The increasing calcination temperature and substitution could improve the loss in 1~10MHz frequency. The products obtained by stearic acid method were small in particle size and broad in distribution. The existence of BaCO_3 had good stabilization on the transition phase y-Fe2CO_3. Compared with EDTA method, products with the same composition had smaller magnetization and larger coercivity, which was not suitable for the induction heating under low alternating magnetic fields.
     Ultrafine nickel powders with controllable morphology and size were prepared by reducing nickel salts solution. The effects of the solvent ratio, pH value, Ni~(2+) concentration, temperature, different surfactants and concentration on the structure and magnetic properties are systemically studied. The results show the surfactants with chain structure can improve the thermal stability of products and control particles growth and aggregation. The obtained 50-900nm nickel powders showed evident ferromagnetism. The saturation magnetization was below the corresponding bulk counterpart and decreased with smaller size due to the different surface area. With increasing particle size, the real and imaginary parts of complex permeability increase and the loss peak shifts to lower frequency.
     Based on the magnetic field interaction theories, the parameters including hysteresis, eddy current loss, skin effect and heat transfer were preliminarily calculated to understand the uniform, Curie temperature control and quick induction heating process in thermoplastic polymer. The results indicated the dependence of hysteresis energy density of Ni-Zn ferrites, Y type hexaferrites and nickel powders on the composition and particles size in saturation fields. The impacts of eddy current loss, skin effect on the induction heating may neglect in 1~10MHz when Ni-Zn ferrites, Y type hexaferrites and< 1.1μm nickel powders are as susceptors. The heating rate is associated with the volume fraction, frequency, hysteresis energy density and the thermal properties. Under 1.5MHz frequency,150Oe alternating field, the heating rates of 10%volume fraction of Ni_(0.7)Zn(0.3)Fe_2O_4, Ba_2Co_(1.5)Zn_(0.5)Fe_(12)O_(22)and 150nm nickel in PEEK polymer are theoretically 69.3,17.0and 8.6℃/s.
     Three kinds of magnetic particles/PPESK composites layers were produced by solution impregnation process and their hysteresis heating behaviors were investigated. The results showed the field strength had a large impact on the finial temperature and heating rate of composites. Enough field strength is necessary to Curie temperature control and quick heating rate in the practical application. The experiment heating rates of 10% volume fraction of Ni_(0.7)Zn_(0.3)Fe_2O_4, Ba_2Co_(1.5)Zn_(0.5)Fe_12 and 150nm nickel in PPESK matrix are 9.7,6.2 and 5.5℃/s, which shows good induction heating characteristics.
引文
[1]Ahmed T J, Stavrov D, Bersee H E N, Beukers A. Induction welding of thermoplastic composites-an overview[J]. Composites Part A,2006,37(1):1638-1651.
    [2]陈祥宝.高性能树脂基体[M].北京:化学工业出版社.1999.
    [3]王会宗.磁性材料及其应用[M].北京:国防工业出版社.1989.
    [4]毕见强,孙康宁,尹衍什.磁性材料的研究和发展趋势[J].山东大学学报.2003.33(3):225-228.
    [5]Leslie-Pelecky D L, Rieke R D. Mganetic properties of nanosturctured materials [J]. Chem Mater,1996,8(8):1770-1783.
    [6]黄发荣,周燕.先进树脂基复合材料[M].北京:化学工业出版社.2008.
    [7]赵焱.聚醚醚酮(PEEK)/有机化蒙脱土(OMMT)复合材料的制备及其性能研究[M].博士论文.吉林大学.2009.
    [8]Chang I, Lees J. Recent development in thermoplastic composites:a review of matrix systems and processing methods [J]. J Thermoplast Compos Mater,1988,1(3):277.
    [9]郑亮.连续纤维增强杂蔡联苯聚芳醚树脂基复合材料的研究[M].博士论文.大连理工大学.2008.
    [10]唐明静,邓建国,贺江平,罗世凯.聚醚醚酮/碳纤维复合材料热性能和电性能的研究[J].塑料工业,2009,37(4):53-56.
    [11]陈平,于祺,孙明,陆春.高性能热塑性树脂基复合材料的研究进展[J].纤维复合材料,2005,22(2):52-57.
    [12]蹇锡高,王锦燕,廖功雄,张守海,杨大令.新型杂环高性能工程塑料研究进展[M].全国高分子学术论文报告会.2005:1-5.
    [13]秦明.热塑性聚芳醚酮类树脂基复合材料的制备及连接技术研究[M].博士论文.浙江大学.2004.
    [14]Srinivasa D T, Joana F, Ronald F G. Mechanics of mechanically fastened joints in polymer-matrix composite structures-a review [J]. Compos Sci Technol,2009,69(1): 301-329.
    [15]Chang I Y, Lees J K. Recent developments in thermoplastic composites:a review of matrix systems and processing methods[J], J Thermoplast Compos Mater,1988, 277-296.
    [16]Thoppul S, Finegan J, Gibson R. Mechanics of mechanically fastened joints in polymer-matrix composite structures-A review [J]. Compos Sci Technol,2009,69(3-4): 301-329.
    [17]Ageorges C, Ye L, Hou M. Advances in fusion bonding techniques for joining thermoplastic matrix composites:a review [J]. Composites Part A,2001,32(1): 839-857.
    [18]Stokes V K. Joining methods for plastics and plastic composites:an overview [J]. Polym Eng Sci,1989,29(19):1310-1324.
    [19]Carlsson L. Thermoplastic composite materials [M]. The Netherlands:Elsevier Science Publishers 1991.
    [20]吴新明,齐暑华,贺捷,理莎莎,莫军连.长玻纤增强注塑聚醚醚酮复合材料加工工艺与力学性能的研究[J].航空材料学报,2009,29(6):98-101.
    [21]Vodicka R. Thermoplastics for airframe applications a review of the properties and repair methods for thermoplastic composites [M]. DoD Report DSTO-TR-0424.1996: 1-19.
    [22]Hou M, Yang M, Beehag A, Mai Y-W, Ye L. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element [J]. Compos Struct,1999,47(1-4):667-672.
    [23]Yarlagadda S, Fink B K, Gillespie J W. Resistive susceptor design for uniform heating during induction [J]. J Thermoplast Compos Mater,1998,11(1):321.
    [24]Eveno E, Gillespie J. Resistance welding of graphite polyetheretherketone composites: an experimental investigation [J]. J Thermoplast Compos Mater,1988,1(4):322.
    [25]Davies P, Cantwell W, Jar P, Bourban P, Zysman V, Kausch H. Joining and repair of a carbon fibre-reinforced thermoplastic [J]. Composites,1991,22(6):425-431.
    [26]Kenney W. Designing plastic parts for ultrasonic assembly [J]. Machine Design,1992, 64(10):65-68.
    [27]Fernie J. Progress in joining of advanced materials [J]. Welding and Metal Fabrication, 1991,59(5):179-180.
    [28]郑立胜,李远才,董玉祥.飞机复合材料粘接修理技术及应用[J].粘接,2006,27(2):51-53.
    [29]Varadan V, Varadan V. Microwave joining and repair of composite materials [J]. Polym Eng Sci,2004,31(7):470-486.
    [30]Ku H, MacRobert M, Siores E, Ball J. Variable frequency microwave processing of thermoplastic composites [J]. Plast Rubber Compos,2000,29(6):278-284.
    [31]许旭东,周大振,夏玉庆.领先的感应加热热处理设备[J].国外金属热处理,2000,21(1):33-37.
    [32]吴良辰.塑料压力管道热熔对接焊机感应加热板的研制[M].硕士论文.天津大学.2004.
    [33]Deshmukh Y. Industrial heating:principles, techniques, materials, applications, and design [M]. CRC,2005.
    [34]Pollert E, Veverka P, Veverka M, Kaman O, Zaveta K, Vasseur S, Epherre R, Goglio G, Duguet E. Search of new core materials for magnetic fluid hyperthermia: Preliminary chemical and physical issues [J]. Prog Solid State Chem,2009,37(1): 1-14.
    [35]Rosensweig R. Heating magnetic fluid with alternating magnetic field [J]. J Magn Magn Mater,2002,252(1):370-374.
    [36]Cao S, Zhu Y, Ma M, Li L, Zhang L. Hierarchically nanostructured magnetic hollow spheres of Fe_3O_4 and gamma-Fe_2O_3:preparation and potential application in drug delivery [J]. J Phys Chem C,2008,112(6):1851-1856.
    [37]Hergt R, Dutz S, Muller R, Zeisberger M. Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy [J]. J Phys: Condens Matter,"2006,18(38):2919.
    [38]Kim D-H, Lee S-H, Kim K-N, Kim K-M, Shim I-B, Lee Y-K. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application [J]. J Magn Magn Mater,2005,293(1):320-327.
    [39]Kim D-H, Nikles D E, Johnson D T, Brazel C S. Heat generation of aqueously dispersed CoFe2O_4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia [J]. J Magn Magn Mater,2008,320(19):2390-2396.
    [40]任志艳,黄羽佳,唐柏生,张毅,翟亚.Fe304纳米颗粒的磁感应发热研究[J].化工时刊,2008,22(8):5-9.
    [41]陈光,崔崇.新材料概论[M].北京:科学出版社,2003.
    [42]Williams D F. Bio compatibility of clinical implant materials [M]. CRC Press,1982.
    [43]Marc Behl, Andreas Lendlein. Shape-memory polymers [J]. Mater Today,2007,10(4): 20-28.
    [44]Wu D Y, Meure S, Solomon D. Self-healing polymeric materials:A review of recent developments [J]. Prog Polym Sci,2008,33(1):479-522.
    [45]Buckley P R, McKinley G H, Wilson T S, Small IV W, Benett W J, Bearinger J P, McElfresh M W, Maitland D J. Inductively heated shape memory polymer for the magnetic actuation of medical devices [M]. Report. Hatsopoulos microfluids laboratory, Massachusetts Institute of Technology.2006:05.
    [46]Kagan V, Nichols R. Recent advances and challenges in induction welding of reinforced nylon in automotive applications [J]. SAE SP,2004,109-116.
    [47]Kukich D S, Karbhari V M, Steenkamer DA. An overview of composites joining processes [J]. CCM Report 94-07,1994,
    [48]S.M. C. Electromagnetic welding:an advance in thermoplastics assembly [J]. Mater Des,1987,8(1):41-45
    [49]Stark P, Rossi G, Mojazza H, Haghighat R, Schuler P. Temperature-controlled induction heating of polymeric materials [M]. USA Patents.2008.
    [50]Miller A K, Chang C, Payne A, Gun M,-Menzei E, Peled A. The nature of induction heating in graphite-fibre, polymer matrix composite materials [J]. SAMPE J,1990, 26(4):37-54.
    [51]Fink B K. Heating of continuous-carbon-fiber-reinforced thermoplastics by magnetic induction [M]. Doctoral Dissertation. University of Delaware.1991.
    [52]Fink B, McCullough R, Gillespie Jr J. A local theory of heating in cross-ply carbon tiber thermoplastic composites by magnetic induction [J]. Polym Eng Sci,2004,32(5): 357-369.
    [53]Lawless G W, Reinhart T J. A study of the induction heating of organic composites [M]. Proceedings of the 24th international SAMPE technology conference.1992: T375.
    [54]Fink B, Gillespie Jr J, Yarlagadda S. Tailored mesh susceptors for uniform induction heating, curing and bonding of materials [M]. USA Patents.2000.
    [55]Mahdi S, Kim H J, Gama B A, Yarlagadda S, Gillespie J J W. A comparison of oven-cured and induction-cured adhesively bonded composite joints [J]. J Compos Mater,2003,37(6):519-542.
    [56]Fink B K, McKnight S H, Gillespie Jr J W, Yarlagadda S. Ferromagnetic nano-particulate and conductive mesh susceptors for induction-based repair of composites; proceedings of the army science conference, Norfolk, VA, F June 15-17, 1998 [C].
    [57]Lin W W-L. Induction heating model for high frequency induction joining and repair of complex-shape graphite fiber/ploymer matrix composites [M]. PhD Thesis. Stanford University.1993.
    [58]杨咏来,宁桂玲.吸波材料及其研究进展[J].化工进展,1996,(5):19-21.
    [59]Rudolf R, Mitschang P, Neitzel M. Induction heating of continuous carbon-fibre-reinforced thermoplastics [J]. Composites Part A:Applied Science and Manufacturing,2000,31(11):1191-1202.
    [60]Murray A, Tisack M, Wu Y. Induction heating method for forming composite articles [M]. USA patents.1994.
    [61]Sturman Jr P, Gray R. Induction heating of polymer matrix composites in an autoclave [M]. USA patents.1995.
    [62]Benetar A, Gutowski T G. Method for fusion bonding thermoplastic composites [M]. SAMPE Quarterly.1986.
    [63]Border J, Salas R. Induction heated joining of thermoplastic composites without metal susceptors[M]. Proceedings of the 34"" International SAMPE Symposium.1989:256.
    [64]Kim H J, Yarlagadda S, Gillespite J W, Shevchenko N B, Fink B'K. Numerical study on thein-plane heating patterns of carbon fiber reinforced composites [M]. Proceedings of the 9th US-Japan Conference on Composite Materials.2000:117-124.
    [65]Yarlagadda S, Kim H J, Gillespie J'W, Shevchenko N B, Fink B K. Heating mechanisms in induction processing of carbon fiber reinforced thermoplastic prepreg [M]. Proceeding of the 45th international SAMPE symposium. Long Beach, CA.2000: 79-89.
    [66]Yarlagadda S, Heider D, Tierney J J, Gillespie J W, Shevchenko N B, Fink B K. Rapid automated induction lamination (RAIL) for high-volume production of carbon/thermoplastic laminates [M]. Proceeding of SAMPE-ACCE-DOE-SPE MidWest Advanced Materials and Processing Conference.2000:393-402.
    [67]Buckley J D, Fox R L, Tyeryar J R. Seam bonding of graphite reinforced composite panels using induction heating [J]. Industrial Heating,1987,54(3):32-34.
    [68]Owen C C. Magnetic induction for in-situ healing of polymeric material [M]. Master's Thesis. Virginia Technology University.2006.
    [69]都有为.永磁、软磁铁氧体的历史进程[J].磁性材料及器件,1994,25(2):23-27.
    [70]Rosensweig R E, Buschow K H J, Robert W C, Merton C F. Magnetic fluid:heating with AC magnetic fields [M]. Elsevier.2005.
    [71]Andreas J, Regina S, Peter W. Magnetic fluid hyperthermia (MFH):cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J]. J Magn Magn Mater,1999,201(1):413.
    [72]Lao L, Ramanujan R. Magnetic and hydrogel composite materials for hyperthermia applications [J]. J Mater Sci,2004,15(10):1061-1064.
    [73]George R K, Wilmington D. Method for induction heating of composite materials [M]. USA patents.1994.
    [74]Suwanwatana W, Yarlagadda S, Gillespie J J W. Hysteresis heating based induction bonding of thermoplastic composites [J]. Compos Sci Technol,2006,66(1): 1713-1723.
    [75]Zhang X K, Li Y F, Xiao J Q. Theoretical and experimental analysis of magnetic inductive heating in ferrite materials [J]. J Appl Phys,2003,93(10):7124-7126.
    [76]Bozorth R. Ferromagnetism [M]. Wiley-IEEE Press,1993.
    [77]Egelkraut S, Marz M, Ryssel H. Polymer bonded soft magnetic particles for planar inductive devices [M]. ETG-Fachbericht-CIPS.2008.
    [78]Suh J J, Song B M, Han Y H. Temperature dependence of power loss of Mn-Zn ferrites at high frequency [J]. IEEE Trans Magn,2000,36(5):3402.
    [79]Alexei V V, Oscar S C. Hysteresis loss in liquids [J]. J Chem Phys,1997,106(9): 3772-3774.
    [80]汪信,郝青丽,张莉莉.软化学方法导论[M].北京:科学出版社,2007.
    [81]Zahi S, Hashim M, Daud A R. Synthesis, magnetic properties and microstructure of Ni-Zn ferrite by sol-gel technique [J]. J Magn Magn Mater,2007,308(2):177-182.
    [82]Hossain A K M A,-Mahmud S T, Seki M, Kawai T, Tabata H. Structural, electrical transport, and magnetic properties of Ni_(1-x)Zn_xFe_2O_4 [J]. J Magn Magn Mater,2007, 312(1):210-219.
    [831 Kapse V D, Ghosh S A, Raghuwanshi F C, Kapse S D. Nanocrystalline spinel Nio.6Zno.4Fe2O4:A novel material for H2S sensing [J]. Mater Chem Phys,2009, 113(2-3):638-644.
    [84]Zhao D, Zeng X, Xia Q, Tang J. Inductive heat property of Fe3O4 nanoparticles in AC magnetic field for local hyperthermia [J]. Rare Met,2006,25(spec):621-625.
    [85]Thakur S, Katyal S C, Singh M. Structural and magnetic properties of nano nickel-zinc ferrite synthesized by reverse micelle technique [J]. J Magn Magn Mater,2009,321(1): 1-7.
    [86]Jalaly M, Enayati M H, Karimzadeh F. Investigation of structural and magnetic properties of nanocrystalline Nio.3Zno.7Fe204 prepared by high energy ball milling [J]. J Alloys Compd,2009,480(2):737-740.
    [87]Jadhav P A, Devan R S, Kolekar Y D, Chougule B K. Structural, electrical and magnetic characterizations of Ni-Cu-Zn ferrite synthesized by citrate precursor method [J]. J Phys Chem Solids,2009,70(2):396-400.
    [88]Shinde T J, Gadkari A B, Vasambekar P N. DC resistivity of Ni-Zn ferrites prepared by oxalate precipitation method [J]. Mater Chem Phys,2008,111(1):87-91.
    [89]Bera J, Roy P K. Effect of grain size on electromagnetic properties of Nio.7Zno.3Fe204 ferrite [J]. Physica B,2005,363(1-4):128-132.
    [90]Schiessl W, Potzel M, Karzel H, Steiner M, Kalvius G M, Martin A, Krause M K, Halevy I, Gal J, Schafer W, Will G, Hilberg M, Wappling R. Magnetic properties of the ZnFe2O4 spinel [J]. Phys Rev B:Condens Matter,1996,53(14):9143-9152.
    [91]Bao N, Shen L, Wang Y, Padhan P, Gupta A. A facile thermolysis route to monodisperse ferrite nanocrystals [J]. J Am Chem Soc,2007,129(41):12374-12375.
    [92]Zhang C X, Jiang W J, Yang X J, Han Q F, Hao Q L, Wang X. Synthesis and luminescent property of Sr2Ce04 phosphor via EDTA-complexing process [J]. J Alloys Compd. 2009,474(1-2):287-291.
    [93]仝玉萍.烧绿石型稀土锆酸盐的制备、结构及催化性能研究[M].博士论文.南京理工大学.2008.
    [94]张莉莉.无机层状纳米复合物的软化学法制备、结构及性能研究fMl.博士论文.南京理工大学.2005.
    [95]Parvatheeswara Rao B, Rao G S N, Mahesh Kumar A, Rao K H. Murthv Y L N. Hon2 S M, Kim C-O, Kim C. Soft chemical synthesis and characterization of Ni0.65Zn0.35Fe2O4nanoparticles [J]. J Appl Phys,2007,101(12):123902.
    [96]Mouallem-Bahout M, Bertrand S, Pena O. Synthesis and characterization of Zn_(1-x)Ni_xFe_2O_4 spinels prepared by a citrate precursor [J]. J Solid State Chem,2005, 178(4):1080-1086.
    [971 Srinivasan T, Srivastava C, Venkataramani N, Patni M. Infrared absorption in soinel ferrites [J]. Bull Mater Sci,1984,6(6):1063-1067.
    [98]Nasrazadani S, Raman A. The application of infrared spectroscopy to the study of rust systems. Part 2:study of cation deficiency in magnetite Fe_3O_4 produced during its transformation to maghemite γ-Fe2O3 and hematite a-Fe2O_3[J].Corros Sci,1993, 34(8):1355-1365.
    [99]Doroftei C, Rezlescu E, Dorin Popa P, Rezlescu N. Heat-treatment influence on the microstructure and magnetic properties of rare-earth substituted SrFe_12O_19 [J]. Cryst Res Technol,2006,41(11):1112-1119.
    [100]Ajmal M, Maqsood A. AC conductivity, density related and magnetic properties of Ni_(1-x)Zn_xFe2O4 ferrites with the variation of zinc concentration [J]. Mater Lett,2008, 62(14):2077-2080.
    [101]Verma A, Goel T C, Mendiratta R G, Kishan P. Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method [J]. J Magn Magn Mater,2000, 208(1-2):13-19.
    [102]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [103]Hossain A K M A, Biswas T S, Mahmud S T, Yanagida T, Tanaka H, Kawai T. Influence of Mg and Cr substitution on structural and magnetic properties of polycrystalline Nio.5oZno.5o-x-vMgxCrvFe204 [J]. Mater Chem Phys,2009,113(1): 172-178.
    [104]Tsutaoka T, Ueshima M, Tokunaga T, Nakamura T, Hatakeyama K. Frequeney dispersion and temperatuer variation of complex pemrebaility of Ni-Zn ferrite composite materials [J]. J Appl Phys,1995,78(6):3983-3991.
    [105]Akther Hossain A K M, Tabata H, Kawai T. Magnetoresistive properties of Zn_(1-x)Co_xFe2O4 ferrites [J]. J Magn Magn Mater,2008,320(6):1157-1162.
    [106]Tsutaoka T, Nakamura T, Hatakeyama K. Magnetic field effect on the complex pemrebaility spectra in a Ni-Zn ferrite [J]. J Appl Phys,1997,82(6):3068-3071.
    [107]Goldman A. Modern ferrite technology [M].2nd ed. Pittsburgh:Springer Verlag, 2006.
    [108]都有为.铁氧体[M].南京:江苏科学技术出版社,1996.
    [109]Bai Y, Zhou J, Gui Z, Li L, Qiao L. The physic properties of Bi-Zn codoped Y-type hexagonal ferrite [J]. J Alloys Compd,2008,450(1-2):412-416.
    [110]Wang X, Li L, Gui Z, Shu S, Zhou J. Preparation and characterizations of ultratine hexaganoal ferrite Co2Z powders [J], Mater Chem Phys,2003,77(1):248-253.
    [111]张国荣.微波铁氧体材料与器件[M].北京:电子工业出版社,1999.
    [1121 Smit J, Wiin H. Les Ferrites [M]. Paris:Dunod,1961.
    [113]Albanese G, Carbucicchio M, Deriu A, Asti G, Rinaldi S. Influence of the cation distribution on the magnetization of Y-type hexagonal ferrites [J]. Applied Physics, 1975,7(3):227-238.
    [114]Kwon H J, Shin J Y, Oh J H. The microwave absorbing and resonance phenomena of Y-type hexagonal ferrite microwave absorbers [J]. J Appl Phys,1994,75(10): 6109-6111.
    [115]Ringbom A. Complexation in analytical chemistry [M]. Interscience New York, 1963.
    [116]Liu Q, Sun J, Long H, Sun X, Zhong X, Xu Z. Hydrothermal synthesis of CoFe2O4 nanoplatelets and nanoparticles [J]. Mater Chem Phys,2008,108(2-3):269-273.
    [117]Ping X, Xijiang H,Jingjing J, Xiaohong W, Xuandong L, Aihua W. Synthesis and characterization of novel coralloid polyaniline/BaFe12O19 nanocomposites [J]. J Phys Chem C,2007,111(34):12603-12608.
    [1181 Pramanik N C, Fuiii T, Nakanishi M, Takada J, Sang Ii S. The effect of heat treatment temperature on the microstructure and magnetic properties of Ba2Co2Fei2O22 (Co2Y) prepared by sol-gel method [J]. Mater Lett,2006,60(21-22):2718-2722.
    [119]Tebble R, Craik D. Magnetic Materials [M]. London:Wiley-Interscience,1969.
    [1201 Sudakar C, Subbanna G N, Kutty-T R N. Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties [J]. J Magn Magn Mater,2003,263(3):253-268.
    [1211 Zi Z F, Sun Y P, Zhu X B, Yang Z R, Dai J M, Song W H. Structural and magnetic properties of SrFel2O19 hexaferrite synthesized by a modified chemical co-precipitation method [J]. J Magn Magn Mater,2008,320(21):2746-2751.
    [122]-Rezlescu N, Doroftei C, Rezlescu E,Popa P D. The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe_(12)O_(19) [J]. J Alloys Compd,2008,451(1-2):492-496.
    [123]Zhou W, Shao Z, Jin W. Synthesis of nanocrystalline conducting composite oxides based on a non-ion selective combined complexing process for functional applications [J]. J Alloys Compd,2006,426(1-2):368-374.
    [124]黄惠忠,刘忠范,朱永发,章晓中.纳米材料分析[M].北京:化学工业出版社,2003.
    [125]Wang C Y, Bai X, Liu S M, Liu L H. Synthesis of cobalt-aluminum spinels via EDTA chelating precursors [J]. J Mater Sci,2004,39(20):6191-6201.
    [126]Nakamoto K. Infrared and Raman spectra of Inorganic and Coordination Compounds [M]. New York:Wiley,1986.
    [127]Xiao S H, Jiang W F, Li L Y, Li X J. Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder [J]. Mater Chem Phys,2007, 106(1):82-87.
    [128]Hodgson S, Shen X, Sale F. Preparation of alkaline earth carbonates and oxides by the EDTA-gel process [J]. J Mater Sci,2000,35(21):5275-5282.
    [129]Waldron R. Infrared spectra of ferrites [J]. Physical Review,1955,99(6): 1727-1735.
    [130]Albanese G, Deriu A, Licci F, Rinaldi S. Preparation and magnetic characterization of the Ba2Zn2-2XCu2XFe_(12)O_(22) hexagonal ferrites [J]. IEEE Trans Magn,1978, MAG-14(710-712.
    [131]胡国光,姚学标.BaMnZnCo-Y型铁氧体微波吸收特性的研究[J].磁性材料及器件,1999,30(1):36-38.
    [132]Rane M V, Bahadur D, Srivastava C M. Fourier transform-infrared studies of non-stoichiometric Ni-Zr substituted barium ferrite [J]. J Phys D:Appl Phys,1999, 32(1):2001.
    [133]Wong-Ng W, McMurdie H, Paretzkin B, Hubbard C, Dragoo A. Standard X-ray diffraction powder patterns of fourteen ceramic phases [J]. Powder Diffr,1988,3(2): 113-121.
    [134]Novak P, Knizek K, Rusz J. Magnetism in the magnetoelectric hexaferrite system (Ba_(1-x)Sr_x)2Zn2Fe12022 [J]. Phys Rev B:Condens Matter,2007,76(2):24432-24431.
    [135]Salunkhe M Y, Choudhary D S, Kulkarni D K. Infrared absorption studies of the system Sr2Me2Fe12O22 [J]. Vib Spectrosc,2004,34(2):221-224.
    [136]Bai Y, Zhou J, Gui Z, Li L. Frequency dispersion of complex permeability of Y-type hexagonal ferrites [J]. Mater Lett,2004,58(10):1602-1606.
    [137]Antonioli G, Calabrese E, Deriu A, Emiliani U. Effect of the Zn2+distribution on the magnetic properties of Ba2Zn2Fe12O22(Zn2-Y) hexaferrite investigated by thermal-scan Mossbauer spectroscopy [J]. Nuovo Cimento D,1984,4D(3):255-262.
    [138]Haneda K, Morrish A. On the hyperfine field of gamma-Fe2O3 small particles [J]. Phys Lett A,1977,64(2):259-262.
    [139]Zhong W, Ding W, Zhang N, Hong J, Yan Q, Du Y. Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique [J]. J Magn Magn Mater,1997,168(1-2): 196-202.
    [140]李丹,王晓慧,徐永峰,陆路德,杨绪杰,汪信.硬脂酸凝胶法合成纳米钡铁氧体的红外吸收光谱研究[J].功能材料,1996,27(4):332-334.
    [141]Obol M, Vittoria C. Microwave permeability of Y-type hexaferrites in zero field [J]. J Appl Phys,2003,94(1):4013.
    [142]钟文定.铁磁学(中册) [M].北京:科学出版牡,1987
    [143]徐劲峰,李黎明,徐政.Y型六角铁氧体的晶化过程研究及性能表征[J].同济大学学报(自然科学版),2005,33(2):205-208.
    [144]Jia L J, Luo J, Zhang H W, Jing Y L, Shi Y. Effect of Y2O3 additive on the microstructure and high-frequency properties of Z-type hexaferrites [J]. J Magn Magn Mater, 2009,321(2):77-80.
    [145]Obol M, Vittoria C. Microwave permeability of Y-type hexaferrites in zero and low fields [J]. J Magn Magn Mater,2004,272-276(Supplement 1):E1799-E1800.
    [146]Gao J, Guan F, Zhao Y, Yang W, Ma Y, Lu X, Hou J, Kang J. Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity [J]. Mater Chem Phys,2001,71(2):215-219.
    [147]Hyeon T. Chemical synthesis of magnetic nanoparticles [J]. Chem Commun,2003, (8):927-934.
    [148]Park J, Lee E, Hwang N M. One-nanometer-scale sizecontrolled synthesis of monodisperse magnetic iron oxide nanoparticles [J]. Angew Chem Int Ed,2005,44(1): 2872.
    [149]Zhang X F, Dong X L, Huang H, Liu Y Y. Microwave absorption properties of the carbon-coated nickel nanocapsules [J]. Appl Phys Lett,2006,89(1):53115.
    [150]Han M, Liu Q, He J, Song Y, Xu Z, Zhu J. Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals [J]. Adv Mater,2007, 19(8):1096-1100.
    [151]Tepper F. Nanosize powders produced by electro-explosion of wire and their potential applications [J]. Powder Metall,2000,43(4):320-322.
    [152]陈祖耀,陈(?),朱英杰.γ-射线辐照从水溶液环境中制得金属镍超细粉的晶粒度和磁学性质[J].化学物理学报,1997,10(1):26-30.
    [153]Wang F, Zhang Z, Chang Z. Effects of magnetic field on the morphology of nickel nanocrystals prepared by gamma-irradiation in aqueous solutions [J]. Mater Lett,2002, 55(1-2):27-29.
    [154]Xia B, Lenggoro I, Okuyama K. Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl_2 6H2O precursor containing ammonia [J]. J Mater Sci,2001,36(7): 1701-1705.
    [155]Lu A, Salabas E, Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angew Chem Int Ed,2007,46(8):1222-1244.
    [156]Liu Z, Li S, Yang Y, Peng S, Hu Z, Qian Y. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts [J]. Adv Mater,2003,15(22): 1946-1948.
    [157]Bai L, Yuan F, Tang Q. Synthesis of nickel nanoparticles with uniform size via a modified hydrazine reduction route [J]. Mater Lett,2008,62(15):2267-2270.
    [158]Yu K, Kim D J, Chung H S, Liang H. Dispersed rodlike nickel powder synthesized by modified polyol process [J]. Mater Lett,2003,57(24-25):3992-3997.
    [1591 Wang C, Zhang X M, Qian X F, Xie Y, Wang W Z, Qian Y T. Preparation of nanocrystalline nickel powders through hydrothermal-reduction method [J]. Mater Res Bull.1998.33(12):1747-1751.
    [160]Fievet F, Largier J P, Blin B. Homogeneous and heterogeneous nucleations in the polyol proeess for the preparation of micron and submicron size metal particles [J]. Solid State Ionics,1989,32-33(1):198-205.
    [161]李智渝,韩承辉,沈俭一.溶液中肼还原钴离子制备纳米金属钴的反应动力字[J].化学学报,2006,64(4):295-300.
    [62]张锡瑜.分析化学原理[M].北京:科学出版社,1991.
    [163]颜爱国.尖晶石型铁氧体纳米晶的控制合成、结构和性能研究[M].博士论文.中南大学.2008.
    [164]Kim K H, Lee Y B, Lee S G, Park H, Park S S. Preparation of fine nickel powders in aqueous solution under wet chemical process [J]. Mater Sci Eng, A,2004,381(1-2): 337-342.
    [165]Moon Y, Park H, Do Kyung Kim C, Seog I. Preparation of monodisperse and spherical zirconia powders by heating of alcohol aqueous salt solutions [J]. J Am Ceram Soc,2005,78(10):2690-2694.
    [166]Li Y D, Li C W, Wang H R, Li L Q, Qian Y T. Preparation of nickel ultratine powder and crystalline film by chemical control reduction [J]. Mater Chem Phys,1999, 59(1):88-90.
    [167]Wang D-P, Sun D-B, Yu H-Y, Meng H-M. Morphology controllable synthesis of nickel nanopowders by chemical reduction process [J]. J Cryst Growth,2008,310(6): 1195-1201.
    [1681 Kim K H, Lee Y B, Choi E Y, Park H C, Park S S. Synthesis of nickel powders from various aqueous media through chemical reduction method [J]. Mater Chem Phys, 2004,86(2-3):420-424.
    [169J Niu H, Chen Q, Ning M, Jia Y, Wang X. Synthesis and One-Dimensional Self-Assembly of Acicular Nickel Nanocrystallites under Magnetic Fields [J]. J Phys Chem B,2004,108(13):3996-3999.
    [170]Xiong G, Yang X J, Wang X H, Lu L D, Wang X. Synthesis and characterization of X-type barium ferrite nanocrystals [J]. Chemical Journal of Chinese University, 1998,19(9):1467-1470.
    [171]Suwanwatana W, Yarlagadda S, Gillespie J J W. Influence of particle size on hysteresis heating behavior of nickel pariculate polymer films [J]. Compos Sci fechnol,2006,66(1):2825-2836.
    [172]Kaiser R, Miskolczy G. Magnetic properties of stable dispersions of subdomain magnetite particles [J]. J Appl Phys,1970,41(3):1064.
    [173]Kar K, Bhowmick A. Hysteresis loss in filled rubber vulcanizates and its relationship with heat generation [J]. J Appl Polym Sci,1998,64(8):1541-1555.
    [174]Santhanam R. Localized wound healing a mathematical model for electromagnetic induction on coated nanofiber wound dressings [M]. Master thesis. The university of Akron.2006.
    [175]Goldstein R J, Ibele W E, Patankar S V, Simon T W, Kuehn T H, Strykowski P J, Tamma K K, Heberlein J V R, Davidson J H, Bischof F A K. Heat transfer-a review of 2003 literature [J]. Int J Heat Mass Transfer,2006,49(1):451-534.
    [176]宛德福,马兴隆.磁性物理学[M].北京:电子工业出版社,1999.
    [177]廖绍彬.铁磁学(下册)[M].北京:科学出版社,1988.
    [178]Cullity B D, Graham C D. Introduction to magnetic materials [M].2nd ed. Piscataway, New Jersey:IEEE Press,2009.
    [179]Rudney V, Loveless D, Cook R, Black M. Handbook of induction heating [M]. New York, USA; Marcel Dekker.2003.
    [180]El-sharkawy A, Abousehly A, Higgy E, City N, Cairo E. Thermal properties of spinel Nickel-Zinc ferrite in the temperature range 400 to 1000K [J]. Phys Status Solidi A,1986,95(2):605-611.
    [181]Peters F G. Thermal properties of polycrystalline garnets and ferrites [J]. IEEE Trans Magn,1968,4(3):480-480.
    [1821 Properties of MnZn, NiZn ferrite [Ml. http://www.ferroxcube.com/prod/assets/proper.htm.
    [183]Mostaghel N, Byrd R A. Inversion of Ramberg-Osgood equation and description of hysteresis loops [J]. Int J Non Linear Mech,2002,37(8):1319-1335.
    [184]Bao G, Hutchinson J, McMeeking R. Particle reinforcement of ductile matrices against plastic flow and creep [J]. Acta Metallurgia et Materialia,1991,39(8): 1871-1882.
    [185]Dowling N E. Mechanical behavior of materials:engineering methods for deformation, fracture, and fatigue [M].3rd ed. New Jersey:Pearson Prentice Hall, 2007.