基于石墨烯材料的制备及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯,一种由单层碳原子紧密堆积成的二维蜂窝状晶格结构碳质材料,至2004年发现以来,已在实验科学和理论科学上受到了极大的关注。由于其具有特殊的纳米结构以及优异的性能,基于石墨烯的材料已在电子学、光学、磁学、生物医学、催化、传感器、储能等诸多领域显示出了巨大的应用潜能。本论文中,将主要以化学修饰后的石墨烯-氧化石墨烯为前驱体,制备了基于石墨烯的衍生物及复合物材料,并对部分产物的性能进行了表征;同时也对石墨烯材料在粒子合成过程中的特殊功能进行了考察。主要内容如下:
     1.氧化石墨烯的表面改性。利用含有两个异氰酸酯基团的甲苯2,4-二异氰酸酯作为桥联剂将具有双亲功能的高分子接枝到氧化石墨烯的表面,从而获得了具双亲功能的氧化石墨烯。改性后的石墨烯能够同时在水和有机溶剂中稳定地分散。
     2.石墨烯的制备。以还原性较弱的乙醇和乙二醇为还原剂,分别利用醇热法和多元醇还原法,实现了对氧化石墨烯的选择性还原。经过乙醇和乙二醇处理后的氧化石墨烯,只有环氧基功能团可以被还原,而对羟基和羧基的还原效果则比较差。由于只是部分还原,氧化石墨烯的石墨化程度比水合肼还原的要低,因而醇还原后的石墨烯所具有的导电率介于氧化石墨烯和深度还原后的氧化石墨烯之间。
     3.基于石墨烯的纳米粒子复合物
     (1)在有机溶剂正己醇中,通过硝酸钴盐在氧化石墨烯表面原位分解成核形成Co_3O_4粒子,从而获得了氧化石墨烯-CO_3O_4复合物。由于可能结合了氧化石墨烯和CO_3O_4两种组分对高氯酸铵的催化热分解作用,氧化石墨烯-CO_3O_4复合物的添加不仅降低了高氯酸铵的热分解温度,同时也提高了其放热量。
     (2)以氧化石墨烯为前驱体,采用了水-乙二醇混合体系,制备了石墨烯-贵金属纳米粒子(Au, Pt, Pd)复合物。在反应体系中,金属纳米粒子被乙二醇还原并吸附在氧化石墨烯的表面,然后作为催化剂,在较低的温度下催化乙二醇还原氧化石墨烯,从而最终得到石墨烯负载金属纳米粒子复合物。以石墨烯-Pt复合物为模板,利用循环伏安法考察了该复合物在甲醇燃料电池上的应用。结果显示了石墨烯-Pt复合物对甲醇具有很好的催化活性,且具有很好的抗中毒性和循环寿命。
     (3)采用了醇热法制备了石墨烯负载TiO2纳米粒子的复合物。在160℃反应温度下,钛酸四丁酯可以分解形成TiO2纳米粒子,并且负载在醇还原的石墨烯单片上,从而形成石墨烯-TiO2纳米粒子复合物。通过改变反应过程中钛酸四丁酯的用量,还可以调节负载在石墨烯表面的TiO2纳米粒子的量,获得不同石墨烯与TiO2配比的复合材料。
     4.以氧化石墨烯为纳米衬底,采用了银镜反应制备了准二维的银纳米粒子膜。通过该方法制备的二维银纳米粒子膜具有很好的灵活性,能够在水中分散形成稳定的悬浮液。将这种稳定悬浮的银纳米粒子膜进行堆砌组装,可以形成具有镜面反射性质的连续的宏观粒子膜。这类纳米粒子膜具有拉曼增强性能,使吸附在银粒子膜上的氧化石墨烯的拉曼信号有着明显增强,并且信号增强的程度可以通过控制银纳米粒子的密度进行调节。
     5.石墨烯材料在粒子合成过程中的特殊功能
     (1)以预吸附乙酸铜的氧化石墨烯为原料,采用多元醇还原的方法制备了石墨烯-Cu_2O复合物。结果显示,在氧化石墨烯存在的条件下,Cu_2O可以形成边长在200nm左右立方块形颗粒。而没有加入氧化石墨烯时,所形成的Cu_2O则为团聚的、没有固定形貌的纳米粒子。这一结果说明了石墨烯在Cu_2O合成的过程中,起到了特殊的模板作用,使得Cu_2O粒子的生长具有一定的方向性,从而形成了立方块形。此外,锂电池电化学性质的初步测试结果显示了该复合物第一次的充放电循环具有较大的储存容量,但该电极材料的循环性却比较差。
     (2)利用改进的银镜反应研究了氧化石墨烯对银纳米粒子大小的影响。结果证明,氧化石墨的加入可以明显降低所合成银粒子的大小,并且反应前的预热时间、反应的温度、银盐的用量、氧化石墨烯的用量等条件对最终形成的银纳米粒子的大小都有一定的影响。在一定条件下利用氧化石墨烯稳定的银纳米粒子具有非常好的稳定性,能够与一些有机溶剂如甲醇、乙醇、丙酮、异丙醇任意的混合而仍然保持很好的稳定分散。
Graphene, a monolayer of carbon atoms packed into a dense honeycomb crystal structure, has attracted tremendous attention from both the experimental and theoretical scientific communities since it was found in 2004. Due to the unique nanostructure and extraordinary properties, graphene based materials have shown promising applications in electronics, optics, magnetics, biomedicine, catalysis, sensors, energy storage etc. In this dissertation, the chemical modified graphene-graphene oxide was used as precursor to prepare graphene based derivants and composites, and certain properties of these products were also analyzed. Furthermore, the special functions of graphene based sheets on synthesis of particles were also investigated. The dissertation is mainly focused on:
     1. Surface modification of graphene oxide. Amphiphilic oligoester was grafted onto the surface of graphene oxide after utilization of toluene-2,4-diisocyanate as a coupling agent, which contained two isocyanate groups. One remarkable result after modification was that the obtained graphene was dispersed stably in both aqueous and organic solutions.
     2. Preparation of graphene. Graphene oxide was selective reduced using ethanol and ethylene glycol as reductants through solvothermal and polyol methods, respectively. Only the epoxy groups on graphene oxides were reduced by alcohols, while those groups such as hydroxyl and carboxyl groups were maintained. Due to the partial reduction, the degree of re-graphitization of alcohol reduced graphene oxide was lower than that of hydrazine reduced, and the conductivity also fell into an intermediate stage between that of graphene oxide and its deeply reduced counterparts.
     3. Graphene based nanoparticle composites.
     (1) Graphene oxide-Co_3O_4 nanocomposites were synthesized through the in situ decomposition of cobalt nitrate and crystal growth of CO3_O_4 on the surface of graphene oxide sheets in n-hexanol solvent. Probably due to the concert effect of graphene oxide and CO_3O_4 on the catalysis of ammonium perchlorate, the addition of graphene oxide-Co_3O_4 composites not only brought down the decomposition temperature, but also increased the exothermic heat of ammonium perchlorate.
     (2) Graphene-metal nanoparticle (Au, Pt and Pd) composites were synthesized using graphene oxide sheets as precursor and metal nanoparticles as building blocks in the water-ethylene glycol system. In this system, the metal nanoparticles formed first and were adsorbed onto the surface of carbon sheets. Then these particles played a pivotal role in catalytic reduction of graphene oxide with ethylene glycol under low temperature, leading to the formation of graphene-metal particle nanocomposites consequently. The graphene-Pt composite was used as a model to test the applicability in direct methanol fuel cells through cyclic voltammograms analyses. And results indicated that such composite possessed good catalysis activity and cyclability.
     (3) Graphene-TiO_2 composites were prepared using solvothermal progress. At 160℃, the tetrabutyl titanate decomposed into TiO_2 nanoparticles and adsorbed onto the alcohol reduced graphene sheets, forming composite consequently. The densities of TiO_2 nanoparticles on graphene sheets were altered easily just through controlling the usage of tetrabutyl titanate.
     4. Graphene oxide sheets had been used as the nanoscale substrates for the formation of quasi-two-dimensional silver nanoparticle films. These silver nanoparticle films assembled on graphene oxide sheets were flexible and formed stable suspensions in aqueous solutions. And the obtained suspensions were easily processed into macroscopic films with high reflectivity. Raman signals of graphene oxide in such hybrid films were increased by the attached silver nanoparticles and the degree of enhancement could be adjusted by varying the quantity of silver nanoparticles on the graphene oxide sheets.
     5. The special functions of graphene-based sheets on the particle synthesis.
     (1) Graphene-cuprous oxide (CU_2O) composites were prepared using copper acetate pre-adsorbed graphene oxide sheets as precursors. Results showed that cubic CU_2O particles with an edge length of~200 nm formed in the present of graphene oxide, while ruleless and hard aggregated CU_2O particles were obtained without graphene oxide. Such results indicated that in our system the carbon sheets might play a role as a template which made Cu_2O crystals grow along certain directions, forming cube-like crystals. A preliminary study on the electrochemical behavior of the graphene-Cu_2O composite used as anode material for lithium ion batteries was carried out. The capacity of such sample was high in the first charge-discharge cycle. Nevertheless, such electrode showed a poor cyclability.
     (2) A modified silver mirror reaction was used to investigate the affection of graphene oxide on the silver particle size. Results confirmed that addition of graphene oxide could lead to forming small silver nanoparticles. Meanwhile, the reaction conditions such as pre-heated time, temperature, the usage of silver salt and graphene oxide also affected the size of silver nanoparticles. Under certain conditions, the as-synthesized aqueous silver particle colloids were much stable, which were mixed discretionarily with some organic solvents, such as methanol, ethanol, acetone,1-propanol. etc.. and kept stability.
引文
[1]Geim A K. Graphene:Status and Prospects. Science [J],2009,324(5934):1530-1534.
    [2]Geim A K, Kim P. Carbon wonderland. Sci. Am. [J],2008,298(4):90-97.
    [3]Geim A K, Novoselov K S. The rise of graphene. Nat. Mater. [J],2007,6(3):183-191.
    [4]Li D, Kaner R B. Materials science-Graphene based materials. Science [J],2008,
    320(5880):1170-1171.
    [5]Lee C, Wei X, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic
    strength of monolayer graphene. Science [J],2008,321(5887):385-388.
    [6]Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K, et al.
    Chaotic dirac billiard in graphene quantum dots. Science [J],2008,320(5874):356-358.
    [7]Zhang Y B, Brar V W, Girit C, Zettl A, Crommie M F. Origin of spatial charge
    inhomogeneity in graphene. Nat. Phys. [J],2009,5(10):722-726.
    [8]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene:The new
    two-dimensional nanomaterial. Angew. Chem. Int. Ed. [J],2009,48(42):7752-7777.
    [9]Jiang C Y, Markutsya S, Pikus Y, Tsukruk V V. Freely suspended nanocomposite
    membranes as highly sensitive sensors. Nat. Mater. [J],2004,3(10):721-728.
    [10]Miranda R, de Parga A L V. GRAPHENE Surfing ripples towards new devices. Nat.
    Nanotechnol. [J],2009,4(9):549-550.
    [11]Stoller M, Park S, Zhu Y, An J, Ruoff R. Graphene-based ultracapacitors. Nano Lett.
    [J],2008,8(10):3498-3502.
    [12]Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Narrow graphene nanoribbons
    from carbon nanotubes. Nature [J],2009,458(7240):877-880.
    [13]Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Room temperature
    all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett.
    [J],2008,100(20):206803.
    [14]Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, et al. Supercapacitor
    devices based on graphene materials. J. Phys. Chem. C [J],2009,113(30):13103-13107.
    [15]Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, et al.
    Detection of individual gas molecules adsorbed on graphene. Nat. Mater. [J],2007,6(9):
    652-655.
    [16]Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene
    oxide as a transparent and flexible electronic material. Nat. Nanotechnol. [J],2008,3(5): 270-274.
    [17]Zhang Y B, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature [J].2005,438(7065):201-204.
    [18]Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, et al. Room temperature quantum hall effect in graphene. Science [J],2007,315(5817):1379-1379.
    [19]Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim P. Observation of the fractional quantum hall effect in graphene. Nature [J].2009,462(7270):196-199.
    [20]Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater. [J],2009,8(3):235-242.
    [21]Lin Y M, Avouris P. Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. [J],2008,8(8):2119-2125.
    [22]Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature [J], 2009,458(7240):872-875.
    [23]Valles C, Drummond C, Saadaoui H, Furtado C A, He M, Roubeau O, et al. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. [J].2008,130(47): 15802-15804.
    [24]Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science [J],2000,290(5495):1331-1334.
    [25]Yang X Y, Dou X, Rouhanipour A, Zhi L J, Rader H J, Mullen K. Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. [J].2008,130(13):4216-4217.
    [26]Hummers W S, Offeman R E. Preparation of graphitic oxide. J. Am. Chem. Soc. [J], 1958,80(6):1339-1339.
    [27]Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature [J],2007,448(7152): 457-460.
    [28]Elias D C, Nair R R, Mohiuddin T M G, Morozov S V. Blake P, Halsall M P, et al. Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science [J],2009,323(5914):610-613.
    [29]Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. [J],2009,9(11):3867-3870.
    [30]Chattopadhyay J, Mukherjee A, Hamilton C E, Kang J, Chakraborty S, Guo W H, et al. Graphite epoxide. J. Am. Chem. Soc. [J],2008,130(16):5414-5415.
    [31]Kamat P V. Graphene based nanoarchitectures:Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. [J],2009,1(2): 520-527.
    [32]Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, et al. Graphene-based composite materials. Nature [J],2006,442(7100):282-286.
    [33]RamanathanT, Abdala A A, StankovichS, Dikin D A, Herrera Alonso M, Piner R D, et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. [J], 2008,3(6):327-331.
    [34]Brodie B C. Ann. Chim. Phys. [J],1860,59,466-471.
    [35]Staudenmaier L. Ber. Dtsch. Chem. Ges [J],1898,31,1481-1487.
    [36]Gao W, Alemany L B, Ci L J, Ajayan P M. New insights into the structure and reduction of graphite oxide. Nat. Chem. [J],2009,1(5):403-408.
    [37]Lerf A, He H Y, Forster M, Klinowski J. Structure of graphite oxide revisited. J. Phys. Chem. B [J],1998,102(23):4477-4482.
    [38]Paci J T, Belytschko T, Schatz G C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J. Phys. Chem. C [J],2007, 111(49):18099-18111.
    [39]Boukhvalov D W, Katsnelson M I. Modeling of graphite oxide. J. Am. Chem. Soc. [J], 2008,130(32):10697-10701.
    [40]Li X L, Wang H L, Robinson J T, Sanchez H, Diankov G, Dai H J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. [J],2009,131(43): 15939-15944.
    [41]Liu Z, Robinson J T, Sun X M, Dai H J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. [J],2008,130(33):10876-10877.
    [42]Wang H L, Hao Q L, Yang X J, Lu L D, Wang X. Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. [J],2009,11(6):1158-1161.
    [43]Chen H, Muller M B, Gilmore K J, Wallace G G, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. [J],2008,20(18): 3557-3561.
    [44]Park S, Ruoff R S. Chemical methods for the production of graphenes. Nat. Nanotechnol. [J],2009,4(4):217-224.
    [45]Liu Z H, Wang Z M, Yang X J, Ooi K T. Intercalation of organic ammonium ions into layered graphite oxide. Langmuir [J],2002,18(12):4926-4932.
    [46]Matsuo Y, Watanabe K, Fukutsuka T, Sugie Y. Characterization of n-hexadecylalkylamine intercalated graphite oxides as sorbents. Carbon [J],2003,41(8): 1545-1550.
    [47]Nethravathi C, Rajamathi M. Delamination, colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols. Carbon [J],2006,44(13):2635-2641.
    [48]Herrera-Alonso M, Abdala A A, McAllister M J, Aksay I A. Prud'homme R K. Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir [J],2007, 23(21):10644-10649.
    [49]Matsuo Y, Miyabe T, Fukutsuka T, Sugie Y. Preparation and characterization of alkylamine-intercalated graphite oxides. Carbon [J],2007,45(5):1005-1012.
    [50]Liu P G, Gong K C, Xiao P, Xiao M. Preparation and characterization of poly(vinyl acetate)-intercalated graphite oxide nanocomposite. J. Mater. Chem. [J],2000,10(4): 933-935.
    [51]Xiao P, Xiao M, Liu P G, Gong K C. Direct synthesis of a polyaniline-intercalated graphite oxide nanocomposite. Carbon [J],2000,38(4):626-628.
    [52]Matsuo Y, Higashika S, Kimura K, Miyamoto Y, Fukutsuka T. Sugie Y. Synthesis of polyaniline-intercalated layered materials via exchange reaction. J. Mater. Chem. [J],2002, 12(5):1592-1596.
    [53]Wang G C, Yang Z Y, Li X W, Li C Z. Synthesis of poly(aniline-co-o-anisidine) intercalated graphite oxide composite by delamination/reassembling method. Carbon [J], 2005,43(12):2564-2570.
    [54]Bissessur R, Scully S F. Intercalation of solid polymer electrolytes into graphite oxide. Solid State Ionics [J].2007,178(11-12):877-882.
    [55]Chua Y H, Yamagishi M, Wang Z M, Kanoh H, Hirotsu T. Adsorption characteristics of nanoporous carbon-silica composites synthesized from graphite oxide by a mechanochemical intercalation method. J. Colloid Interface Sci. [J],2007,312(2): 186-192.
    [56]Hata H, Kubo S, Kobayashi Y, Mallouk T E. Intercalation of well-dispersed gold nanoparticles into layered oxide nanosheets through intercalation of a polyamine. J. Am. Chem. Soc. [J],2007,129(11):3064-3065.
    [57]Cano-Marquez A G, Rodriguez-Macias F J, Campos-Delgado J, Espinosa-Gonzalez C G, Tristan-Lopez F, Ramirez-Gonzalez D, et al. Ex-MWNTs:Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. [J],2009, 9(4):1527-1533.
    [58]Stankovich S, Piner R D. Nguyen S T, Ruoff R S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon [J],2006,44(15):3342-3347.
    [59]Matsuo Y, Fukunaga T, Fukutsuka T, Sugie Y. Silylation of graphite oxide. Carbon [J], 2004,42(10):2117-2119.
    [60]Matsuo Y, Tabata T, Fukunaga T, Fukutsuka T, Sugie Y. Preparation and characterization of silylated graphite oxide. Carbon [J],2005,43(14):2875-2882.
    [61]Matsuo Y, Komiya T, Sugie Y. The effect of alkyl chain length on the structure of pillared carbons prepared by the silylation of graphite oxide with alkyltrichlorosilanes. Carbon [J],2009,47(12):2782-2788.
    [62]Matsuo Y, Matsumoto Y, Fukutsuka T, Sugie Y. Reaction between dibutyltin oxide and graphite oxide. Carbon [J],2006,44(14):3134-3135.
    [63]Park S, Lee K S, Bozoklu G, Cai W, Nguyen S T, Ruoff R S. Graphene oxide papers modified by divalent ions-Enhancing mechanical properties via chemical cross-linking. Acs Nano [J],2008,2(3):572-578.
    [64]Cai D Y, Song M. Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem. [J],2007,17(35):3678-3680.
    [65]Paredes J I, Villar-Rodil S, Martinez-Alonso A, Tascon J M D. Graphene oxide dispersions in organic solvents. Langmuir [J],2008,24(19):10560-10564.
    [66]Xu C, Wu X D, Zhu J W, Wang X. Synthesis of amphiphilic graphite oxide. Carbon [J], 2008,46(2):386-389.
    [67]Treossi E, Melucci M, Liscio A, Gazzano M, Samori P, Palermo V. High contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching. J. Am. Chem. Soc. [J],2009,131(43):15576-15577.
    [68]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. [J],2008,3(2):101-105.
    [69]Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. [J],2008,18(10):1518-1525.
    [70]Si Y, Samulski E T. Synthesis of water soluble graphene. Nano Lett. [J],2008,8(6): 1679-1682.
    [71]Wang G X, Yang J, Park J, Gou X L, Wang B, Liu H, et al. Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C [J],2008,112(22):8192-8195.
    [72]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, et al. Electric field effect in atomically thin carbon films. Science [J],2004,306(5696):666-669.
    [73]Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium. Nat. Mater. [J], 2008,7(5):406-411.
    [74]Berger C, Song Z M, Li X B, Wu X S. Brown N, Naud C, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science [J],2006,312(5777): 1191-1196.
    [75]Di C A, Wei D C, Yu G, Liu Y Q, Guo Y L. Zhu D B. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. [J], 2008,20(17):3289-3293.
    [76]黄毅,陈永胜.石墨烯的功能化及其相关应用科学(B辑:化学)[J],2009,9:887-896.
    [77]Stankovich S, Piner R D, Chen X Q, Wu N Q, Nguyen S T, RuoffR S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. [J],2006,16(2):155-158.
    [78]Li X L, Wang X R, Zhang L, Lee S W, Dai H J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science [J].2008.319(5867):1229-1232.
    [79]Liang Y Y, Wu D Q, Feng X L, Mullen K. Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. [J],2009,21(17):1679-1683.
    [80]Patil A J, Vickery J L, Scott T B, Mann S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. [J],2009, 21(31):3159-3164.
    [81]Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, et al. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. [J],2008,3(9):538-542.
    [82]Dalton A B, Collins S, Munoz E. Razal J M. Ebron V H. Ferraris J P. et al. Super-tough carbon-nanotube fibres:These extraordinary composite fibres can be woven into electronic textiles. Nature [J],2003,423(6941):703-703.
    [83]De S, Lyons P E, Sorel S, Doherty E M. King P J. Blau W J, et al. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. Acs Nano [J], 2009,3(3):714-720.
    [84]Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. [J],2009,131(10):3611-3620.
    [85]Nethravathi C, Rajamathi J T, Ravishankar N, Shivakumara C, Rajamathi M. Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites. Langmuir [J],2008,24(15):8240-8244.
    [86]Hamilton C E, Lomeda J R, Sun Z Z, Tour J M, Barron A R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. [J],2009,9(10):3460-3462.
    [87]Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon [J],2007,45(7):1558-1565.
    [88]Shen J F, Hu Y H, Li C, Qin C, Ye M X. Synthesis of amphiphilic graphene nanoplatelets. Small [J],2009,5(1):82-85.
    [89]Park S, An J H, Jung 1 W, Piner R D, An S J, Li X S, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. [J],2009, 9(4):1593-1597.
    [90]Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L, et al. Deoxygenation of
    exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation. Adv. Mater. [J],2008,20(23):4490-4493.
    [91]Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon [J],2008,46(14): 1994-1998.
    [92]Williams G, Seger B, Kamat P V. TiO_2graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano [J],2008,2(7):1487-1491.
    [93]Georgakilas V, Gournis D, Tzitzios V, Pasquato L, Guldi D M, Prato M. Decorating carbon nanotubes with metal or semiconductor nanoparticles. J. Mater. Chem. [J],2007, 17(26):2679-2694.
    [94]Peng X H, Chen J Y, Misewich J A, Wong S S. Carbon nanotube-nanocrystal heterostructures. Chem. Soc. Rev. [J],2009,38(4):1076-1098.
    [95]Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface. Nano Letters [J],2009,9(6):2255-2259.
    [96]Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mulhaupt R. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction. J. Am. Chem. Soc. [J],2009,131(23): 8262-8270.
    [97]Xu C, Wang X, Zhu J W. Graphene metal particle nanocomposites. J. Phys. Chem. C [J],2008,112(50):19841-19845.
    [98]Muszynski R, Seger B, Kamat P V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C [J],2008,112(14):5263-5266.
    [99]Si Y C, Samulski E T. Exfoliated graphene separated by platinum nanoparticles. Chem. Mater. [J],2008,20(21):6792-6797.
    [100]Xu C, Wang X, Yang L, Wu Y. Fabrication of a graphene-cuprous oxide composite. J. Solid State Chem. [J],2009,182(9):2486-2490.
    [101]Xu C, Wang X, Zhu J W, Yang X J. Lu L. Deposition of CO3O4 nanoparticles onto exfoliated graphite oxide sheets. J. Mater. Chem. [J],2008,18(46):5625-5629.
    [102]Paek S M, Yoo E. Honma I. Enhanced cyclic performance and lithium storage capacity of SnO_2graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. [J],2009,9(1):72-75.
    [103]Wang D H, Choi D W, Li J, Yang Z G, Nie Z M, Kou R, et al. Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. Acs Nano [J],2009, 3(4):907-914.
    [104]Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, et al. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. [J],2010,22(1):103-106.
    [105]Mastalir A, Kiraly Z, Patzko A. Dekany I, L'Argentiere P. Synthesis and catalytic application of Pd nanoparticles in graphite oxide. Carbon [J],2008,46(13):1631-1637.
    [106]Wang C Y, Li D, Too C O, Wallace G G. Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem. Mater. [J].2009,21(13):2604-2606.
    [107]Paek S M, Yoo E, Honma I. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters [J].2009,9(1):72-75.
    [108]Granero A J, Razal J M, Wallace G G Panhuis M I H. Spinning carbon nanotube-gel fibers using polyelectrolyte complexation. Adv. Funct. Mater. [J],2008, 18(23):3759-3764.
    [109]Fujigaya T, Morimoto T, Niidome Y, Nakashima N. N1R laser-driven reversible volume phase transition of single-walled carbon nanotube/poly(n-isopropylacrylamide) composite gels. Adv. Mater. [J],2008,20(19):3610-3614.
    [110]Vaysse M. Khan M K, Sundararajan P. Carbon nanotube reinforced porous gels of poly(methyl methacrylate) with nonsolvents as porogens. Langmuir [J],2009,25(12): 7042-7049.
    [111]Das B, Prasad K E, Ramamurty U, Rao C N R. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene. Nanotechnology [J],2009, 20(12):125705.
    [112]Vickery J L, Patil A J, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv. Mater. [J],2009,21(21): 2180-2184.
    [113]Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. Acs Nano [J],2009,3(7):1745-1752.
    [114]Ansari S, Kelarakis A, Estevez L, Giannelis E P. Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small [J],2010,6(2): 205-209.
    [115]Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, et al. Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C [J],2009,113(22): 9921-9927.
    [116]Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. [J], 2008,8(8):2277-2282.
    [117]Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S-Y, et al. Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. [J],2010,22(11):1247-1252.
    [118]Kuc A, Zhechkov L, Patchkovskii S, Seifert G, Heine T. Hydrogen sieving and storage in fullerene intercalated graphite. Nano Lett. [J],2007,7(1):1-5.
    [119]Cai D Y, Song M, Xu C X. Highly conductive carbon-nanotube/graphite-oxide hybrid films. Adv. Mater. [J],2008,20(9):1706-1709.
    [120]Subrahmanyam K S, Vivekchand S R C, Govindaraj A, Rao C N R. A study of graphenes prepared by different methods:characterization, properties and solubilization. J. Mater. Chem. [J],2008,18(13):1517-1523.
    [121]Matte H, Subrahmanyam K S, Rao C N R. Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J. Phys. Chem. C [J],2009,113(23):9982-9985.
    [122]Che J F, Xiao Y H, Wang X, Pan A B, Yuan W, Wu X D. Grafting polymerization of polyacetal onto nano-silica surface via bridging isocyanate. Surf. Coat. Technol. [J], 2007,201(8):4578-4584.
    [123]Kohut A, Ranjan S, Voronov A, Peukert W, Tokarev V, Bednarska O, et al. Design of a new invertible polymer coating on a solid surface and its effect on dispersion colloidal stability. Langmuir [J],2006,22(15):6498-6506.
    [124]Kohut A, Voronov A, Peukert W. An effective way to stabilize colloidal particles dispersed in polar and nonpolar media. Langmuir [J],2007,23(2):504-508.
    [125]Jeong H K, Lee Y P, Lahaye R J W E, Park M H, An K H, Kim I J. et al. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. [J],2008,130(4): 1362-1366.
    [126]Tuinstra F, Koenig J L. Raman spectra of graphite. Bull. Am. Phys. Soc. [J].1970, 15(3):1126-1130.
    [127]Jorio A, Pimenta M A, Souza A G, Saito R. Dresselhaus G, Dresselhaus M S. Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. [J],2003,5,139.
    [128]Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, et al. Spatially resolved raman spectroscopy of single-and few-layer graphene. Nano Lett. [J],2007,7(2): 238-242.
    [129]Kudin K N, Ozbas B, Schniepp H C, Prud'homme R K, Aksay I A, Car R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. [J],2008,8(1): 36-41.
    [130]Ramesh P, Bhagyalakshmi S, Sampath S. Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide. J. Colloid Interface Sci. [J], 2004,274(1):95-102.
    [131]Bissessur R, Liu P K Y, White W, Scully S F. Encapsulation of polyanilines into graphite oxide. Langmuir [J].2006,22(4):1729-1734.
    [132]Szabo T, Szeri A, Dekany I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon [J], 2005,43(1):87-94.
    [133]Zhang S T, Fu R W, Wu D C, Xu W, Ye Q W, Chen Z L. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels. Carbon [J], 2004,42(15):3209-3216.
    [134]Yang G W, Gao G Y, Wang C. Xu C L, Li H L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon [J].2008, 46(5):747-752.
    [135]Yuan W, Jiang G, Che J, Qi X, Xu R, Chang M W, et al. Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J. Phys. Chem. C [J],2008,112(48): 18754-18759.
    [136]Girishkumar G, Hall T D, Vinodgopal K, Kamat P V. Single wall carbon nanotube supports for portable direct methanol fuel cells. J. Phys. Chem. B [J],2006,110(1): 107-114.
    [137]Kong B S, Jung D H, Oh S K, Han C S, Jung H T. Single-walled carbon nanotube gold nanohybrids:Application in highly effective transparent and conductive films. J. Phys. Chem. C [J],2007,111(23):8377-8382.
    [138]Banerjee S, Wong S S. In situ quantum dot growth on multiwalled carbon nanotubes. J. Am. Chem. Soc. [J],2003,125(34):10342-10350.
    [139]Niyogi S, Bekyarova E, Itkis M E, MCWilliams J L, Hamon M A, Haddon R C. Solution properties of graphite and graphene. J. Am. Chem. Soc. [J],2006,128(24): 7720-7721.
    [140]Mu Y Y, Liang H P, Hu J S, Jiang L, Wan L J. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B [J],2005,109(47):22212-22216.
    [141]Zanella R, Basiuk E V, Santiago P, Basiuk V A, Mireles E, Puente-Lee I, et al. Deposition of gold nanoparticles onto thiol-functionalized multiwalled carbon nanotubes. J. Phys. Chem. B [J],2005,109(34):16290-16295.
    [142]Grzelczak M, Correa-Duarte M A, Salgueirino-Maceira V, Giersig M, Diaz R, Liz-Marzan L M. Photoluminescence quenching control in quantum dot-carbon nanotube composite colloids using a silica-shell spacer. Adv. Mater. [J],2006,18(4):415-420.
    [143]He T, Chen D R, Jiao X L. Controlled synthesis of CO3O4 nanoparticles through oriented aggregation. Chem. Mater. [J],2004,16(4):737-743.
    [144]Jiang J, Li L C. Synthesis of sphere-like CO3O4 nanocrystals via a simple polyol route. Mater. Lett. [J],2007,61(27):4894-4896.
    [145]Narkiewicz U, Podsladly M, Arabczyk W, Wozniak M J, Kurzydlowski K J. Carbon-coated cobalt nanoparticles. Mater. Sci. Eng., C [J],2007,27(5-8):1273-1276.
    [146]Shan Y, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater. Chem. Phys. [J],2007, 103(2-3):206-210.
    [147]Tripathy S K, Christy M, Park N H, Suh E K, Anand S, Yu Y T. Hydrothermal synthesis of single-crystalline nanocubes of CO3O4. Mater. Lett. [J],2008,62(6-7): 1006-1009.
    [148]Xu R, Zeng H C. Self-generation of tiered surfactant superstructures for one-pot synthesis of Co3O4 nanocubes and their closeand non-close-packed organizations. Langmuir [J],2004,20(22):9780-9790.
    [149]Li J, Tang S B, Lu L, Zeng H C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc. [J],2007,129(30): 9401-9409.
    [150]Reid D L, Russo A E, Carro R V, Stephens M A, LePage A R, Spalding T C, et al. Nanoscale additives tailor energetic materials. Nano Lett. [J],2007,7(7):2157-2161.
    [151]Pham-Huu C, Keller N, Charbonniere L J. Ziessle R, Ledoux M J. Carbon nanofiber supported palladium catalyst for liquid-phase reactions. An aetive and selective catalyst for hydrogenation of C= C bonds. Chem. Commun. [J],2000.19):1871-1872.
    [152]Yu R Q, Chen L W, Liu Q P, Lin J Y, Tan K L, Ng S C, et al. Platinum deposition on carbon nanotubes via chemical modification. Chem. Mater. [J],1998,10(3):718-722.
    [153]Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem. Mater. [J],2001,13(3):733-737.
    [154]Liu Z L, Lin X H, Lee J Y, Zhang W. Han M, Gan L M. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells. Langmuir [J],2002,18(10):4054-4060.
    [155]Zhu J F, Zhu Y J. Microwave-assisted one-step synthesis of polyacrylamide-metal (M) Ag, Pt, Cu) nanocomposites in ethylene glycol. J. Phys. Chem. B [J],2006,110(17): 8593-8597.
    [156]Raghuveer M S, Agrawal S, Bishop N, Ramanath G. Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chem. Mater. [J],2006,18(6):1390-1393.
    [157]Li W Z, Liang C H, Zhou W J, Qiu J S. Zhou Z H. Sun G Q, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B [J],2003,107(26):6292-6299.
    [158]Xing Y C. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J. Phys. Chem. B [J],2004,108(50):19255-19259.
    [159]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature [J],2005, 438(7065):197-200.
    [160]Guo S, Dong S, Wang E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano [J],2009,4(1):547-555.
    [161]Lu J, Do I, Drzal L T, Worden R M, Lee I. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. Acs Nano [J],2008,2(9):1825-1832.
    [162]Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. [J],2009,109(9):4183-4206.
    [163]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem. Rev. [J],1995,95(3):735-758.
    [164]Xia X H, Jia Z H, Yu Y, Liang Y, Wang Z, Ma L L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon [J],2007,45(4):717-721.
    [165]Shah M S A S, Nag M, Kalagara T, Singh S, Manorama S V. Silver on PEG-PU-TiO2 polymer nanocomposite films:An excellent system for antibacterial applications. Chem. Mater. [J],2008,20(7):2455-2460.
    [166]Wang W D, Serp P, Kalck P, Silva C G, Faria J L. Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Mater. Res. Bull. [J],2008,43(4):958-967.
    [167]Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon nanotube-Ti2O composites. Adv. Mater. [J],2009,21(21):2233-2239.
    [168]Yan J Y, Song H H, Yang S B, Yan J D, Chen X H. Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochim. Acta [J],2008, 53(22):6351-6355.
    [169]Wang H B, Zhou M J, Yang F J, Wang J, Jiang Y, Wang Y et al. Monolayer Assembly and Fixation of FePt Nanoparticles:Microstructure and Magnetic Properties. Chem. Mater. [J],2009,21(2):404-409.
    [170]Jin J, Wakayama Y, Peng X S, Ichinose I. Surfactant-assisted fabrication of free-standing inorganic sheets covering an array of micrometre-sized holes. Nat. Mater. [J], 2007,6(9):686-691.
    [171]Qu L, Dai L. Novel Silver Nanostructures from Silver Mirror Reaction on Reactive Substrates. J. Phys. Chem. B [J],2005,109(29):13985-13990.
    [172]Yu A, Liang Z, Cho J, Caruso F. Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. Nano Lett. [J],2003,3(9):1203-1207.
    [173]Lu Y, Liu G L, Lee L P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering Substrate. Nano Lett. [J],2004,5(1):5-9.
    [174]Xia H, Wang D. Fabrication of macroscopic freestanding films of metallic nanoparticle monolayers by interfacial self-assembly. Adv. Mater. [J],2008,20(22): 4253-4256.
    [175]Xu C, Wang X. Fabrication of flexible metal-nanoparticte film using graphene oxide sheets as substrates. Small [J].2009.5(19):2212-2217.
    [176]Wuelfing W P, Zamborini F P, Templeton A C, Wen X, Yoon H, Murray R W. Monolayer protected clusters:Molecular precursors to metal films. Chem. Mater. [J],2000, 13(1):87-95.
    [177]Shen L, Ji J, Shen J. Silver mirror reaction as an approach to construct superhydrophobic surfaces with high reflectivity. Langmuir [J],2008,24(18):9962-9965.
    [178]Park H K, Yoon J K, Kim K. Novel fabrication of Ag thin film on glass for efficient surface-enhanced raman scattering. Langmuir [J],2006,22(4):1626-1629.
    [179]Doty R C, Tshikhudo T R, Brust M, Fernig D G. Extremely stable water-soluble Ag nanoparticles. Chem. Mater. [J],2005,17(18):4630-4635.
    [180]Han L, Wu W, Kirk F L. Luo J, Maye M M, Kariuki N N, et al. A direct route toward assembly of nanoparticle-carbon nanotube composite materials. Langmuir [J],2004, 20(14):6019-6025.
    [181]Ko H, Singamaneni S, Tsukruk V V. Nanostructured surfaces and assemblies as SERS media. Small [J],2008,4(10):1576-1599.
    [182]Sun L, Song Y, Wang L, Guo C, Sun Y, Liu Z. et al. Ethanol-induced formation of silver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J. Phys. Chem. C [J],2008,112(5):1415-1422.
    [183]Yang Y, Shi J L, Tanaka T, Nogami M. Self-assembled silver nanochains for surface-enhanced Raman scattering. Langmuir [J].2007,23(24):12042-12047.
    [184]Kinnan M K, Chumanov G. Surface enhanced raman scattering from silver nanoparticle arrays on silver mirror films:Plasmon-induced electronic coupling as the enhancement mechanism. J. Phys. Chem. C [J],2007,111(49):18010-18017.
    [185]Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. [J],1982,86(17):3391-3395.
    [186]Wei G, Wang L, Liu Z G, Song Y H, Sun L L, Yang T, et al. DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced Raman scattering. J. Phys. Chem. B [J].2005,109(50):23941-23947.
    [187]Fujimori T, Urita K, Aoki Y, Kanoh H, Ohba T, Yudasaka M, et al. Fine nanostructure analysis of single-wall carbon nanohorns by surface-enhanced Raman scattering. J. Phys. Chem. C [J],2008,112(20):7552-7556.
    [188]Chen Y C, Young R J, Macpherson J V, Wilson N R. Single-walled carbon nanotube networks decorated with silver nanoparticles:A novel graded SERS substrate. J. Phys. Chem. C [J],2007,111(44):16167-16173.
    [189]Kim J, Cote L J, Kim F, Huang J. Visualizing graphene based sheets by fluorescence quenching microscopy. J. Am. Chem. Soc. [J],2009,132(1):260-267.
    [190]Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Water-soluble graphene covalently functionalized by biocompatible poly-L-iysine. Langmuir [J],2009, 25(20):12030-12033.
    [191]Wang L, Lee K, Sun Y Y, Lucking M, Chen Z F, Zhao J J, et al. Graphene Oxide as an Ideal Substrate for Hydrogen Storage. ACS Nano [J],2009,3(10):2995-3000.
    [192]Zhu Z P, Su D S, Weinberg G, Schlogl R. Supermolecular self-assembly of graphene sheets:Formation of tube-in-tube nanostructures. Nano Lett. [J],2004,4(11): 2255-2259.
    [193]Worsley K A, Ramesh P, Mandal S K, Niyogi S, Itkis M E, Haddon R C. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. [J],2007,445(1-3):51-56.
    [194]Gou L F, Murphy C J. Controlling the size Of Cu2O nanocubes from 200 to 25 nm. J. Mater. Chem. [J],2004,14(4):735-738.
    [195]Wang D B, Mo M S, Yu D B, Xu L Q, Li F Q, Qian Y T. Large-scale growth and shape evolution of Cu2O cubes. Cryst. Growth Des. [J],2003,3(5):717-720.
    [196]Zhang C Q, Tu J P, Huang X H, Yuan Y F, Chen X T, Mao F. Preparation and electrochemical performances of cubic shape CU2O as anode material for lithium ion batteries. J. Alloys Compd. [J],2007,441(1-2):52-56.
    [197]Gou L F, Murphy C J. Solution-phase synthesis of CU2O nanocubes. Nano Lett. [J], 2003,3(2):231-234.
    [198]Wang X Y, Zhang F, Xia B Y, Zhu X F, Chen J S, Qiu S L, et al. Controlled modification of multi-walled carbon nanotubes with CuO, Cu2O and Cu nanoparticles. Solid State Sci. [J],2009,11(3):655-659.
    [199]Martinez-Ruiz A, Alonso-Nunez G. New synthesis of Cu2O and Cu nanoparticles on multi-wall carbon nanotubes. Mater. Res. Bull. [J],2008,43(6):1492-1496.
    [200]Yu Y, Ma L L, Huang W Y, Du F P, Yu J C, Yu J G, et al. Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process. Carbon [J],2005,43(3):670-673.
    [201]Matsuo Y, Hatase K, Sugie Y. Preparation and characterization of poly(vinyl alcohol) and Cu(OH)2-poly(vinyl alcohol) intercalated graphite oxides. Chem. Mater. [J], 1998,10(8):2266-2269.
    [202]Yu Y, Ma L L, Huang W Y, Li J L, Wong P K, Yu J C. Coating MWNTs with Cu2O of different morphology by a polyol process. J. Solid State Chem. [J],2005,178(5): 1488-1494.
    [203]Park J C, Kim J, Kwon H, Song H. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv. Mater. [J],2009,21(7):803-807.
    [204]McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. [J],2007,19(18):4396-4404.
    [205]Fu L, Gao J, Zhang T, Cao Q, Yang L C, Wu Y P, et al. Effect of Cu2O coating on graphite as lithium ion battery in PC-based anode material of electrolyte. J. Power Sources [J],2007,171(2):904-907.
    [206]Zheng S F, Hu J S. Zhong L S, Song W G, Wan L J, Guo Y G. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem. Mater. [J],2008,20(11):3617-3622.
    [207]Carotenuto G, Pepe G P, Nicolais L. Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur. Phys. J. B [J],2000,16(1): 11-17.
    [208]Xia Y N, Gates B, Yin Y D, Lu Y. Monodispersed colloidal spheres:Old materials with new applications. Adv. Mater. [J].2000.12(10):693-713. [209] Skrabalak S E, Chen J Y, Sun Y G Lu X M, Au L, Cobley C M, et al. Gold nanocages:Synthesis, properties and applications. Acc. Chem. Res. [J],2008,41(12): 1587-1595.
    [210]Zoval J V, Stiger R M. Biernacki P R, Penner R M. Electrochemical deposition of silver nanocrystallites on the atomically smooth graphite basal plane. J. Phys. Chem. [J], 1996,100(2):837-844.
    [211]Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles:Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B [J],2006,110(33):16248-16253.
    [212]Mirkhalaf F, Paprotny J, Schiffrin D J. Synthesis of metal nanoparticles stabilized by metal-carbon bonds. J. Am. Chem. Soc. [J].2006,128(23):7400-7401.