硅碳纳米材料在纳米发电机中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米发电机有望能解决纳米技术中能源供应这一极其重要的问题,它使得纳米器件的能量供给系统与工作系统同时都能达到纳米量级,从而保持了自备电源的完整性和纳米器件系统的微型化等特点。它不仅为实现整个纳米器件工作系统的真正小型化奠定了理论基础,同时还能有效地收集自然界中甚至生物体内广泛存在却又一直被忽略的微量机械能来满足纳米器件正常运转所需的能量,这些能量的回收过程将有力地推动纳米技术的继续发展,其本身也有重大的应用前景。
     目前所报道的纳米发电机以压电式为主,通过ZnO纳米材料特有的半导体性质和压电效应的耦合实现了电荷的产生、分离、累积和输运,从而将机械能转化为电能,这种发电机的可动部件多,容易导致器件的稳定性问题。因此,有必要开发出一种新型的、稳定性好的纳米发电机来有效地收集环境中被忽视的振动能,从而拓宽纳米发电机的应用范围。本文旨在通过对静电式纳米发电机的开发、优化而实现振动能的收集和电能的输出。本论文的主要内容包括以下几个方面:
     (1)硅纳米线作为一种重要的一维半导体材料,由于其独特的电学和力学性能以及能与现代半导体技术和硅工业相兼容等特点而能够被广泛应用于化学催化、生物传感、电子器件和新能源等多个领域。我们通过改进的氧化物辅助生长法制备的硅纳米线中含有-石英,并通过实验进一步深入地探讨了这种良好的压电材料的形成机理。由于-石英的存在使所制备的硅纳米线表现出极好的驻极体效应,基于它而开发的纳米发电机的输出电流为2.8nA,转化率为2.2%。由此开辟了硅纳米线在微能源方面的新应用。
     (2)氧化石墨烯由于其表面的含氧官能团的存在,使其性质与石墨烯相比,有很大的不同。在一个氧化石墨烯片上,存在有孤立的石墨烯“小区域”,这些“小区域”的尺寸只有几个纳米而且被无定形的含氧官能团包围着。所以,电荷很容易被储存在这些量子化水平的石墨烯中,或者很容易被电负性较高的含氧基团捕获在无定形的介质层上而使其带有静电。由这种带静电的氧化石墨烯膜组装成的柔性纳米发电机的输出电流高达3.23nA,能量转化效率为12.1%。更重要的是,所制备的纳米发电机的输出电流高度依赖于制备过程中的pH值,因而可用于纳米发电机制备过程的优化。
     (3)氮化硼纳米片也是一种理想的具有蜂窝状的二维结构,石墨烯结构中的碳由sp2杂化结合形成的网状结构被硼原子和氮原子交替取代了,但与石墨烯良好的导电性相反的是,氮化硼并不导电,其禁带宽度为5.3-5.9eV。我们用化学法在高温条件下所制备的氮化硼纳米片因带有一定量的电荷而能将其运用于纳米发电机的开发。所制备的纳米发电机在外加1MΩ负载的情况下输出的平均电流为0.95nA,充分说明了器件的实用性。
     (4)以碳纳米管为原料,用高温高压催化法制备的纳米金刚石表面比同条件下石墨为碳源的金刚石表面有较多的含氧官能团。这些含氧官能团能够使纳米金刚石在水中分散均匀,形成稳定的悬浮液,同时增加了对生物材料多巴胺的结合力。将这种纳米金刚石进行进一步的表面的修饰,有望突破其在纳米发电机领域的新应用。
The invention of nanogenerators provides a potential strategy to solve the critical problem of energy supplying in nanotechnology. Due to the presence of nanogenerators, the system of energy supplying and processing in nanodevices can work at nano levels, retaining the integrity of self-power and miniaturization of nanodevices. It not only lays the foundation for the miniaturization of nanodevices'working systems, but also can efficiently harvest the micro mechanical energy, which has been ignored and viewed as uselessness in the environment. Harvesting the ubiquitous mechanical energy has been proposed as an important and potential application, which will powerfully push the nanotechnology forward.
     To date, a number of reports on nanogenerators have been published, such as ZnO nanowires, which could realize the charge generation, separation, accumulation and transfer due to the unique coupling of semiconducting and piezoelectric effect. These devices involved various movable parts, causing the problem of stability. As a result, it is important to design a novel device structure with stability to harvest the vibrational energy in the environment, which will broaden the applications of nanogenerators. This thesis aims to the exploitation and optimization of the novel structure, resulting in the harvesting of vibrational energy and output of electricity. The main research works are listed as follows:
     (1) As an important1D semiconductor material, silicon nanowires (SiNWs) have been extensively used in chemistry, catalysis, biosensors, electronics and new energy resource, due to their unique electric and mechanics properties and compatibility to silicon industry. The SiNWs obtained from modified oxide-assisted growth contain alpha quartz, which is an excellent piezoelectric material. The existence of alpha quartz makes the as-prepared SiNWs exhibit an electret effect, and a series of experiments were carried out to explore the formation mechanism of the material. The SiNWs were utilized to fabricate a nanogenerator, which yielded an output current of2.8nA with a conversion efficiency of2.2%. These findings open up a novel application of SiNWs in micro energy.
     (2) The presence of numerous oxygen-containing functional groups makes graphene oxide (GO) substantially different from graphene in that the former exhibits versatile and unique properties. Within a GO sheet, isolated pockets of graphene are surrounded by amorphous regions of oxygen-containing functional groups. Charges can be stored either in the discrete, quantized levels of the nanosized graphene, or trapped in the amorphous GO dielectric, where oxygen functionalities like epoxy and hydroxyl groups have high electron affinity. A flexible nanogenerator based on GO film was fabricated to harvest acoustic energy, whose output current is about3.23nA with a high conversion efficiency of12.1%. The generated current of the flexible nanogenerator sensitively depends on the pH value of the suspensions for GO films production, which is a good clue for the optimization of the device.
     (3) Boron nitride nanosheet (BNNS) is an analogue of graphene in which alternating boron (B) and nitrogen (N) atoms substitute for C atoms in a honeycomb network with sp2bonding. BN is a promising material with a wide band gap (5.3-5.9eV). The as-prepared BNNSs were found to be charged, which were fabricated into a nanogenerator, yielding an output current of0.95nA with a load of1MQ, illustrating the practicality of the device.
     (4) It was found that the O-containing functional groups on diamonds'surface from carbon nanotubes as carbon source are more than those from graphite, although the diamonds are fabricated by high pressure high temperature catalytic method under the same conditions. These O-containing functional groups enhanced their combination with bio-material—dopamine (DA), achieving ultra-dispersed and more stable suspension. With a further modification, the as-prepared nanodiamonds may find new applications.
引文
[1]Morifuji E., Momose H. S., Ohguro T., Yoshitomi T., Kimijima H., Matsuoka F., Kinugawa M., Katsumata Y., Iwai H., Future perspective and scaling down road map for RF CMOS [J], VLSI Circuit,1999,17,163-164.[2]Lundstrom M., Moore's Law Forever?[J], Science,2003,299,210-211.[3]Morales A. M., Lieber C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires [J], Science,1998,279:208-211.[4]Zhang Y. F., Tang Y. H., Wang N., Yu D. P., Lee C. S., Bello I., Lee S. T., Silicon nanowires prepared by laser ablation at high temperature [J], Appl Phys Lett,1998,72,1835-1837.[5]Cui Y., Wei Q., Park H., Lieber C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J], Science,2001,293,??1289-1292.[6]Cui Y., Lieber C. M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J], Science,2001,291,851-853.[7]Huang Y., Duan X. F., Cui Y., Lincoln J. L., Kyoung H.K., Lieber C. M., Logic gates and computation from assembled nanowire building blocks [J], Science,2001,294,1313-1317.[8]Peng K. Q., Xu Y., Wu Y., Yan Y. J., Lee S. T., Zhu J., Aligned single-crystalline Si nanowire arrays for photovoltaic applications [J], Small,2005,1,1062-1067.[9]Wu, Z., Neaton J. B., Grossman J. C., Charge Separation via Strain in Silicon Nanowires [J], Nano Letters,2009,9,2418-2422.[10]Tian B., Kempa T. J., Lieber C. M., Single nanowire photovoltaics [J], Chem. Soc. Rev,2009,38,16-24.[11]Li Y Y, Cunin F., Link J. R., Gao T., Betts R. E., Reiver S. H., Chin V., Bhatia S. N., Sailor M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications [J], Science,2003,299,2045-2047.[12]Wu E. C., Park J. H., Park J., Segal E., Cunin F., Sailor M. J., Oxidation-Triggered Release of Fluorescent Molecules or Drugs from Mesoporous Si Microparticles [J], ACS Nano,2008,2,2401-2409.[13]Su S., He Y., Zhang M. L., Yang K., Song S. P., Zhang X. H., Fan C. H., Lee S. T., High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors [J], Appl. Phys. Lett.,2008,93,023113.[14]Shao M. W., Zhang M. L., Wong N. B., Ma D. D. D., Wang H., Chen W. W., Lee S. T., Ag-modified Silicon Nanowires Substrate for Ultra-sensitive Surface-Enhanced Raman Spectroscopy [J], Appl. Phys. Lett.,2008,93,233118.[15]Li H. J., Carbon/carbon composites [J], New Carbon Mater.,2001,16,79-80.[16]Kroto H. W., Heath J. R, O'Brien S. C., Curl R F, Smalley R. E., C60: Buckminsterfullerene [J], Nature,1985,318,162-163.[17]Iijima S., Helical microtubules of graphitic carbon [J], Nature,1991,354,56-58.[18]Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric field effect in atomically thin carbon films [J], Science,2004,306,666-669.[19]Geim A. K., Novoselov K. S., The rise of grapheme [J], Nat Mater,2007,6,??183-191.[20]Williams J. R., DiCarlo L., Marcus C. M., Quantum hall effect in a gate-controlled p-n junction of grapheme [J], Science,2007,317,638-641[21]Service R. F., Carbon sheets an atom thick give rise to graphene dreams [J], Science,2009,324,875-877[22]Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J. H., Kim P., Choi J. Y., Hong B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes [J], Nature,2009,457,706-710.[23]Han W. Q., Wu L. J., Zhu Y. M., Watanabe K. J., Takashi T., structure of chemically derived mono-and few-atomic-layer boron nitride sheets [J], Appl. Phys. Lett.,2008,93,223103(1)-223103(3).[24]Watanabe K., Taniguchi T., Kanda H., Direct-band gap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal [J], Nat. Mater,2004,3,404-409.[25]Paine R. T., Narula C. K., Synthetic routes to boron nitride [J], Chem. Rev.,1990,90,73-91.[26]Chen Y., Zou J., Campbell S. J., Caer G. L., Boron nitride nanotubes:pronounced resistance to oxidation [J],Appl. Phys. Lett.,2004,84,2430-2432.[27]Javey A., Guo J., Wang Q., Lundstrom M., Dai H J., Ballistic Carbon Nanotube Field Effect Transistors [J], Nature,2003,424,654-657.[28]Li Y, Qian F., Xiang J., Lieber C. M., Nanowire Electronic and Optoelectronic Devices [J], Mater. Today,2006,9:18-27.[29]Tian B. Z., Zheng X. L., Kempa T. J., Fang Y., Yu N. F., Yu G. H., Huang J. L Lieber C. M., Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources [J], Nature,2007,449,885-890.[30]Wang Z. L., Song J. H., Piezolectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J], Science,2006,312,242-246.[31]Wang X. D., Song J. H., Liu J., Wang Z. L., Direct-Current Nanogenerator Driven by Ultrasonic Waves [J], Science,2007,316,102-105.[32]Wang X. D., Liu J., Song J. H., Wang Z. L., Intergrated Nanogenerators in Biofluid [J], Nano Lett.,2007,7,2475-2479.[33]Qin Y., Wang X. D., Wang Z. L., Microfibre-Nanowire Hybrid Structure for Energy??Scavenging [J], Nature,2008,451,809-813.[34]李德俊,由随机振动所驱动纳米发电机[J],吉首大学学报,2010,34,71-75[35]Wang X. D., Summers C. J., Wang Z. L., Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays [J], Nano Lett,2004,3,423-426.[36]Wang X. D., Song J. H., Li P., Ryou J. H., Dupuis R. D., Summers C. J., Wang Z. L., Growth of Uniformly Aligned ZnO Nanowire Heterojunction Arrays on GaN, AlN, and Alo.5Gao.5N Substrates [J], J. Am. Chem. Soc.,2005,127,7920-7923.[37]Song J. H., Wang X. D., Riedo E., Wang Z. L., Elastic Property of Vertically Aligned Nanowires [J], Nano Lett,2005,5,1954-1958.[38]Zhao M. H., Wang Z. L., Mao S. X., Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope [J], Nano Lett,2004,4,587-590.[39]Pierret R. F., Semiconductor Device Fundamentals (Addison-Wesley, Reading, MA,1996),14.[40]Park W. I., Yi G. C., Kim J. W., Park S. M., Schottky nanocontacts on ZnO nanorod arrays [J], Appl. Phys. Lett.,2003,82,4358-4361[41]Xian G. P., Song J. H., Liu J., Wang Z. L., Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices [J], Adv. Mater.,2007,19,67-72.[42]Wang X. D., Liu J., Song J. H., Wang Z. L., Integrated Nanogenerators in Biofluid [J], Nano Lett.,2007,7,2475-2479.[43]Yang R.S., Qin Y., Dai L.M., Wang Z. L., Power generation with laterally packaged piezoelectric fine wires [J], Nat. Nanotech.,2009,4,34-38.[44]Xu S., Qin Y., Xu C., Wei Y. G., Yang R. S., Wang Z. L., Self-powered nanowire devices [J], Nat. Nanotech.,2010,5,366-372.[45]Zhu G., Yang R. S., Wang S. H., Wang Z. L., Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array [J], Nano Lett.,2010,10,3151-3155.[46]Chang C., Tran V. H., Wang J. B., Fuh Y. K., Lin L. W., Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J], Nano Lett.,2010,10,726-731.[47]Cha S. N., Kim S. M., Kim H.J., Ku J. Y, Sohn J. I., Park Y. J., Song B. G., Jung M.??H., Lee E. K., Choi B. L., Park J. J., Wang Z. L., Kim J. M., Kim. K., Porous PVDF As Effective Sonic Wave Driven Nanogenerators [J], Nano Lett.,2011,11,5142-5147.[48]Chen X., Xu S. Y., Yao N., Shi Y,1.6V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J],Nano Lett,2010,10,2133-2137.[49]Huang C. T., Song J. H., Tsai C. M., Lee W. F., Lien D. H., Gao Z. Y., Hao Y., Chen L. J., Wang Z. L., Single-InN-Nanowire Nanogenerator with Upto1V Output Voltage [J], Adv. Mater.,2010,22,4008-4013.[50]刘政,赵元春,孙连峰,单壁碳纳米管:纳米发电机和纳米马达[J],物理,2010,39,251-259.[51]Smith B. W., Monthioux M., Luzzi D. E., Encapsulated C60in carbon nanotubes [J], Nature,1998,396,323-324.[52]Smith B. W., Monthioux M., Luzzi D. E., Carbon nanotube encapsulated fullerenes: a unique class of hybrid materials [J], Chemical Physics Letters,1999,315,31-36.[53]Smith B. W., Luzzi D. E., Formation mechanism of fullerene peapods and coaxial tubes:a path to large scale synthesis [J], Chemical Physics Letters,2000,321,169-174.[54]Chen J. Y., Kutana A., Collier C. P., Giapis K. P., Electrowetting in Carbon Nanotubes [J], Science,2005,310,1480-1483.[55]Meyer R. R., Sloan J., Dunin-Borkowski R. E., Kirkland A. I., Novotny M. C., Bailey S. R., Hutchison J. L., Green M. L. H., Discrete Atom Imaging of One-Dimensional Crystals Formed Within Single-Walled Carbon Nanotubes [J], Science,2000,289:1324-1326.[56]Sloan J., Kirkland A. I., Hutchison J. L., Green M. L. H., Integral atomic layer architectures of1D crystals inserted into single walled carbon nanotubes [J], Chem. Commun,2002,1319-1332.[57]Tsang S. C., Harris P. J. F., Green M. L. H., Thinning and opening of carbon nanotubes by oxidation using carbon dioxide [J], Nature,1993,362,520-522.[58]Ajayan P. M., Ebbesen T. W., Ichihashi T., Iijima S., Tanigaki K., Hiura H., Opening carbon nanotubes with oxygen and implications for filling [J], Nature,1993,362,522-525.[59]Ajayan P. M., Iijima S., Capillarity-induced filling of carbon nanotubes [J], Nature,1993,361,333-334[60]Dujardin E., Ebbesen T. W., Hiura H., Tanigaki K., Capillarity and Wetting of Carbon Nanotubes [J], Science,1994,265,1850-1852.[61]Ajayan P. M., Stephan O., Redlich P., Colliex C., Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures [J], Nature,1995,375,564-567.[62]Monthioux, M., Filling single-wall carbon nanotubes [J], Carbon,2002,40,1809-1823.[63]Koga K., Gao G. T., Tanaka H., Zeng X. C., Formation of ordered ice nanotubes inside carbon nanotubes [J], Nature,2001,412,802-805.[64]Dellago C., Naor M. M., Hummer G., Proton Transport through Water-Filled Carbon Nanotubes [J], Phys. Rev. Lett.,2003,90,105902-105905.[65]Hummer G., Rasaiah J. C., Noworyta J. P., Water conduction through the hydrophobic channel of a carbon nanotube [J], Nature,2001,414,188-190.[66]Liu Y. C., Wang Q., Transport behavior of water confined in carbon nanotubes [J], Phys. Rev. B,2005,72,085420-085423.[67]Berezhkovskii A., Hummer G., Single-File Transport of Water Molecules through a Carbon Nanotube [J], Phys. Rev. Lett.,2002,89,064503-064506.[68]Maniwa Y., Kataura H., Abe M., Udakaa A., Suzukic S., Achibac Y., Kiraa H., Matsudaa K., Kadowakia H., Okabe Y., Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes [J], Chem. Phys. Lett.,2005,401,534-538.[69]Ghosh S., Ramanathan K. V., Sood A. K., Water at nanoscale confined in single-walled carbon nanotubes studied by NMR [J], Europhys. Lett.,2004,65,678-684.[70]Matsuda K., Hibi T., Kadowaki H., Maniwa Y., Water dynamics inside single-wall carbon nanotubes:NMR observations [J], Phys. Rev. B,2006,74,073415-071318.[71]Mao S. H., Kleinhammes A., Wu Y., NMR study of water adsorption in single-walled carbon nanotubes [J], Chem. Phys. Lett.,2006,421,513-517.[72]Kolesnikov A. I., Zanotti J. M., Loong C. K., Thiyagarajan P., Anomalously Soft Dynamics of Water in a Nanotube:A Revelation of Nanoscale Confinement [J], Phys. Rev.Lett.,2004,93,035503-035506.[73]Souza N. R., Kolesnikov A. I., Burnham C. J., Loong C. K., Structure and dynamics of water confined in single-wall carbon nanotubes [J], J. Phys Condens. Mat.,2006,18, S2321-S2334.[74]Byl O., Liu J. C., Wang Y., Yim W. L., Johnson J. K., Jr Yates J.T., Unusual Hydrogen Bonding in Water-Filled Carbon Nanotubes [J], J. Am. Chem. Soc.,2006,128,12090-12097[75]Wenseleers W., Cambre S., Culin J., Goovaertsl E., Effect of Water Filling on the Electronic and Vibrational Resonances of Carbon Nanotubes:Characterizing Tube Opening by Raman Spectroscopy [J], Adv. Mater.,2007,19,2274-2278.[76]Majumder M., Chopra N., Andrews R., Hinds B. J., Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes [J], Nature,2005,438,44-44.[77]Holt J. K., Park H. G., Wang Y M., Stadermann M., Artyukhin A. B., Grigoropoulos C. P., Noy A., Bakajin O., Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes [J], Science,2006,312,1034-1037.[78]Maniwa Y., Matsuda K., Kyakuno H., Ogasawara S., Hib T., Kadowaki H., Suzuki S., Achiba Y., Kataura H., Water-filled single-wall carbon nanotubes as molecular nanovalves [J],Nat. Mater.,2007,6,135-141[79]Maiti A., Andzelm J., Tanpipat N., Allmen P. V., Effect of Adsorbates on Field Emission from Carbon Nanotubes [J], Phys. Rev. Lett.,2001,87,155502-155505.[80]Lu D. Y., Li Y., Rotkin S. V., Ravaioli U., Schulten K., Finite-Size Effect and Wall Polarization in a Carbon Nanotube Channel [J], Nano. Lett.,2004,4,2383-2387.[81]Yang J., Lu F. Z., Kostiuk L. W., Kwok D. Y., Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena [J], J. Micromech. Microeng.,2003,13,963-970.[82]Striolo A., The Mechanism of Water Diffusion in Narrow Carbon Nanotubes [J], Nano. Lett.,2006,6,633-639.[83]Kotsalis E. M., Walther J. H., Koumoutsakos P., Multiphase water flow inside carbon nanotubes [J], Int. J. Multiphas. Flow,2004,30,995-1010.[84]Liu Z., Zheng K.H., Hu L.J., Liu J., Qiu C. y., Zhou H. Q., Huang H.B., Yang H. F., Li M., Gu C. Z., Xie S. S., Qiao L.J., Sun L. F., Surface-Energy Generator of Single-Walled Carbon Nanotubes and Usage in a Self-Powered System [J], Adv. Mater.2010,22,999-1003.[85]Zhao Y C., Song L., Deng K., Liu Z., Zhang Z. X., Yang Y. L., Wang C., Yang H.??F., Jin A. Z., Luo Q., Gu C. Z., Xie S. S., SuL. F. n., Individual Water-Filled Single-Walled Carbon Nanotubes as Hydroelectric Power Converters [J], Adv. Mater.,2008,20,1772-1776.[86]Ghosh S., Sood A. K., Kumar N., Carbon Nanotube Flow Sensors [J], Science,2003,299,1042-1044[87]Kra '1P., Shapiro M., Nanotube Electron Drag in Flowing Liquids [J], Phys. Rev. Lett.,2001,86,131-134.[88]Dhiman P., Yavari F., Mi X., Gullapalli H., Shi Y. F., Ajayan P. M., Koratkar N., Harvesting Energy from Water Flow over Graphene [J], Nano Lett.,2011,11,3123-3127.[89]Park S., Ruo R. S., Chemical methods for the production of graphenes [J], Nat. Nanotechnol.2009,4,217-224.[90]Geim A. K., Novoselov K. S., The rise of graphene [J], Nat. Mater.,2007,6,183-191.[91]Amama P. B., Lan C., Cola B. A., Xu X., Reifenberger R. G.,Fisher T. S., Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown under Direct Current Bias Voltage [J], J. Phys. Chem. C,2008,112,19727-19733.[92]Mukherjee B., Maiti P. K., Dasgupta C., Sood A. K., Strongly Anisotropic Orientational Relaxation of Water Molecules in Narrow Carbon Nanotubes and Nanorings [J], ACS Nano,2008,2,1189-1196.[93]Mao Z. G., Sinnott S. B., A Computational Study of Molecular Diffusion and Dynamic Flow through Carbon Nanotubes [J], J. Phys. Chem. B,2000,104,4618-4624.[94]Au F. C. K., Wong K. W., Tang Y. H., Zhang Y. F., Bello I., Lee S. T., Electron field emission from silicon nanowires [J], Appl. Phys. Lett.,1999,75,1700-1702.[95]Li D.Y., Wu Y. Y., Kim P., Shi L., Yang P. D., Majumdar A., Thermal conductivity of individual silicon nanowires [J], Appl. Phys. Lett.,2003,83,2934-2936.[96]Kobayashia M., Hiramoto T., Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors [J], J. Appl. Phys.,2008,103,053709(1)-053709(6).[97]邢英杰,奚中和,俞大鹏,杭青岭,严涵斐,冯孙齐,薛增泉,硅纳米线的固-液-固热生长及升温特性研究[J],电子与信息学报,2003,25,259-262.[98]Laik B., Eude L., Pamos-Ramos J. P., Cojocaru C. S., Pribat. D., Rouviere E., Silicon nanowires as negative electrode for lithium-ion microbatteries [J], Electrochimica Acta,2008,53,5528-5532.[99]陈昌武,王卫乡,纳米结构硅研究的发展动态[J],华南师范大学学报,1998,1,106-111.[100]Zhang Y. F., Tang Y. H., Wang N., Yu D.P., Lee C. S., Bello I., Lee S.T.,Silicon nanowires prepared by laser ablation at high temperature [J], Appl. Phys. Lett.,1998,72,1835-1837.[101]Tang Y. H., Zhang Y. F., Lee C. S., Wang N., Yu D.P., Bello I., Lee S.T., Large scale synthesis of silicon nanowires by laser ablation [J], Mater. Res. Soc. Symp. Proc.,1998,526,73-77.[102]Shao M. W., Ma D. D. D., Lee S.T., Silicon Nanowires-Synthesis, Properties, and Applications [J], Eur. J. Inorg. Chem.,2010,4264-4278.[103]Morales A. M., Lieber C. M., A laser ablation method for the synthesis of crystalline semiconductor nanowires [J], Science,1998,279,208-211[104]Munoz D., Voz C., Fonrodona M., Garin M., Orpella A., Vetter M., Puigdollers J., Alcubilla R., Villar F., Bertomeu J., Andreu J., Characterization of bifacial heterojunction silicon solar cells obtained by hot-wire CVD [J], Journal of Non-Crystalline Solids,2006,352,1953-1957.[105]Hofmann S.,Ducati C., Neill R. J., Piscanec S., Ferrari A. C., Geng J., Dunin-Borkowski R. E., Robertson J.,.Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition[J], J. Appl. Phys.,2003,94,6005-6012.[106]Zeng X. B., Xu Y. Y., Zhang S. B., Hu Z. H., Diao H. W., Wang Y. Q., Kong G.L. Liao X. B., Silicon nanowires grown on a pre-annealed Si substrate [J], Journal of Crystal Growth,2003,247,13-16.[107]Hsu J. F., Huang B. R., The growth of silicon nanowires by electroless plating technique of Ni catalysts on silicon substrate [J], Thin Solid Films,2006,514,20-24.[108]Albuschies J., Baus M., Winkler O., Hadama B., Spangenberga B., Kurzb H., High-density silicon nanowire growth from self-assembled Au nanoparticles [J], Microelectronic Engineering,2006,83,1530-1533.[109]Wu Y., Cui Y., Huynh L., Barrelet C. J., Bell D. C., Lieber C. M., Controlled growth and structures of molecular-scale silicon nanowires [J], Nano Lett.,2004,4,433-436.[110]Li W. N., Ding Y. S., Yuan J., Gomez S., Suib S. L., Galasso F. S., Dicarlo J.F., Synthesis and characterization of silicon nanowires on mesophase carbon microbead substrates by chemical vapor deposition [J], J. Phys. Chem. B,2005,109,3291-3297.[111]Zhang Y. J., Zhang Q., Wang N. L., Yan Y. J., Zhou H. H., Zhu J., Synthesis of thin Si whiskers (nanowires) using SiCl4[J], Journal of Crystal Growth,2001,226,185-191.[112]Yan X. Q., Liu D. F., Ci L. J., Wang J.X., Zhou Z.P., Yuan H.J., Song L., Gao Y., Liu L.F., Zhou W.Y., Wang G., Xie S. S., H2-assisted control growth of Si nanowires[J], Journal of Crystal Growth,2003,257,69-74.[113]Hsu J. F., Huang B. R., The growth of silicon nanowires by electroless plating technique of Ni catalysts on silicon substrate [J], Thin Solid Films,,2006,,514,20-24.[114]Wang Y W., Schmidt V., Senz S., Gosele U., Epitaxial growth of silicon nanowires using an aluminium catalyst [J], nature nanotechnology,2006,1,186-189.[115]Ge S. P., Jiang K. L., Lu X. X., Wang R., Fan S., Orientation-controlled growth of single-crystal silicon-nanowire arrays [J], Adv. Mater.,2005,17,56-61.[116]Bogart T. E., Dey S., Lew K. K., Mohney S. E., Redwing J. M., Diameter-controlled synthesis of silicon nanowires using nanoporous alumina membranes [J], Adv. Mater.,2005,17,114-117.[117]Zhang X. Y., Zhang L. D., Meng G. W., Li G. H., Jin-Phillipp N. Y., Phillipp F., Synthesis of ordered single crystal silicon nanowire arrays [J], Adv. Mater.,2001,13,1238-1241.[118]Sakulchaicharoen N., Resasco D. E., Temperature dependence of the quality of silicon nanowires produced over a titania-supported gold catalyst [J], Chemical Physics Letters,2003,377,377-383.[119]Li C., Gu C., Liu Z. T., Mi J. X., Yang Y., Iron-catalytic growth of prism-shaped single-crystal silicon nanowires by chemical vapor deposition of silane [J], Chemical Physics Letters,2005,411,198-202.[120]Cui Y., Lauhon L. J., Gudiksen M. S., Wang J.F., Lieber C. M., Diameter-controlled synthesis of single-crystal silicon nanowires [J], Appl. Phys. Lett.,2001,78,2214-2216.[121]Wu Y., Cui Y., Huynh L., Barrelet C. J., Bell D. C., Lieber C. M., Controlled growth and structures of molecular-scale silicon nanowires [J], Nano Lett.,2004,4,433-436.[122]Niu J. J., Sha J., Yang D., Silicon nanowires fabricated by thermal evaporation of silicon monoxide [J], Physica E,2004,23,131-134.[123]Pan Z. W., Dai Z. R., Lee S. T., Wang Z. L., Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of SiO powders [J], J. Phys. Chem. B,2001,105,2507-2514.[124]Livisatos A. P., Semiconductor clusters, nanocrystals, and quantum dots[J], Science,1996,271,933-937.[125]Holmes J. D., Johnston K. P., Doty R C., Korgel B. A., Control of thickness and orientation of solution-grown silicon nanowires [J], Science,2000,287,1471-1473.[126]Hu J., Odom T. W., Lieber C. M., Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J], Acc. Chem. Res.,1999,32,435-445.[127]Lu X. M., Hanrath T., Johnston K. P., Korgel B. A., Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate [J], Nano Lett.2003,3,93-99.[128]杨娟玉,卢世刚,阚素荣,张向军,丁海洋,电化学法制备硅纳米线[J],无机化学学报,2009,25,756-760.[129]Yang J. Y., Lu S. G., Kan S. R., Zhang X. J., Ding H. Y., Preparation of silicon nanowires by electrochemical method [J], Chinese Journal of Inorganic Chemistry,2009,197-201.[130]Yu D. P., Xing Y J., Hang Q. L., Yan H. F., Xu J., Xi Z. H., Feng S. Q., Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism [J], Physica E,2001,9,305-309.[131]Peng K. Q., Hu J. J., Yan Y. J., Wu Y., Fang H., Xu Y., Lee S. T., Zhu J., Fabrication of single-crystalline silicon nanowires by scratching a silicon surface??with catalytic metal particles [J], Adv. Funct. Mater.,2006,16,387-394.[132]Peng K. Q., Lu A. J., Zhang R. Q., Lee S. T., Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching [J], Adv. Funct. Mater.,2008,18,3026-3035.[133]Chen H., Wang H., Zhang X. H., Lee C. S., Lee S. T., Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles [J], Nano Lett.2010,10,864-868.[134]Shao M. W., Hu H., Li M., Ban H. Z., Wang M. Y., Jiang J., Karman vortex street assisted patterning in the growth of silicon nanowires [J], Chem. Commun.,2007,793-794.[135]Liu L. Z., Wu X. L., Zhang Z. Y., Li T. H., Chu P. K., Raman investigation of oxidation mechanism of silicon nanowires [J], Appl. Phys. Lett.,2009,95,093109(1)-093109(3).[136]Jie J. S., Zhang W. J., Peng K. Q., Yuan G. D., Lee C. S., Lee S. T., Surface-Dominated Transport Properties of Silicon Nanowires [J], Adv. Funct. Mater.,2008,18,3251-3257.[137]Yuan G. D., Zhou Y. B., Guo C. S., Zhang W. J., Tang Y. B., Li Y. Q., Chen Z. H., He Z. B., Zhang X. J., Wang P. F., Bello I., Zhang R. Q., Lee C. S., Lee S. T., Tunable Electrical Properties of Silicon Nanowires via Surface-Ambient Chemistry [J], ACS Nano,2010,4,3045-3052.[138]Guo C. S., Luo L. B., Yuan G. D., Yang X. B., Zhang R. Q., Zhang W. J., Lee S. T., Surface Passivation and Transfer Doping of Silicon Nanowires [J], Angew. Chem. Int. Ed.,2009,48,9896-9900.[139]Zhang S. X., Hemesath E. R., Perea D. E., Wijaya E., Lensch-Falk J. L., Lauhon L. J., Relative Influence of Surface States and Bulk Impurities on the Electrical Properties of Ge Nanowires [J], Nano Lett.,2009,9,3268-3274.[140]Sun X. H., Li C. P., Wong N. B., Lee C. S., Lee S. T., Teo B. K., Templating Effect of Hydrogen-Passivated Silicon Nanowires in the Production of Hydrocarbon Nanotubes and Nanoonions via Sonochemical Reactions with Common Organic Solvents under Ambient Conditions [J], J. Am. Chem. Soc.,2002,124,14856-14857.[141]Li C. P., Teo B. K., Sun X. H., Wong N. B., Lee S. T., Hydrocarbon and Carbon Nanostructures Produced by Sonochemical Reactions of Organic Solvents on??Hydrogen-Passivated Silicon Nanowires under Ambient Conditions [J], Chem. Mater.,2005,17,5780-5788.[142]Sun X. H., Wang S. D., Wong N. B., Ma D. D. D., Lee S. T., Teo B. K., FTIR Spectroscopic Studies of the Stabilities and Reactivities of Hydrogen-Terminated Surfaces of Silicon Nanowires [J], Inorg. Chem.,2003,42,2398-2404.[143]Sun X. H., Li C. P., Wong N. B., Lee C. S., Lee S. T., Reductive Growth of Nanosized Ligated Metal Clusters on Silicon Nanowires [J], Inorg. Chem.,2002,41,4331-4336.[144]Shao M. W., ChenL. g, Zhang X. H., Ma D. D. D., Lee S. T., Excellent Photocatalysis of HF-Treated Silicon Nanowires [J], J. Am. Chem. Soc.,2009,131,17738-17739.[145]Shao M. W., Wang H., Zhang M. L., Ma D. D. D., Lee S. T., Ag-modified Silicon Nanowires Substrate for Ultra-sensitive Surface-Enhanced Raman Spectroscop [J], Appl. Phys. Lett.2008,93,243110(1)-243110(3).[146]Shao M. W., Wang H., Fu Y., Hua J., Ma D. D. D., Surface functionalization of HF-treated silicon nanowires [J], J. Chem. Sci.2009,121,323-327.[147]Sun X. H., Wong N. B., Li C. P., Lee S. T., Kim P. S. G., Sham T. K., Reductive Self-assembling of Pd and Rh Nanoparticles on Silicon Nanowire Templates [J], Chem. Mater.,2004,16,1143-1152.[148]Nolan M., O'Callaghan S., Fagas G., Greer J. C., Frauenheim T., Silicon Nanowire Band Gap Modification [J], Nano Lett.2007,7,34-38.[149]Haight R., Sekaric L., Afzali A., Newns D., Controlling the Electronic Properties of Silicon Nanowires with Functional Molecular Groups [J], Nano Lett.2009,9,3165-3170.[150]Bashouti M. Y., Stelzner T., Christiansen S., Haick H., Covalent Attachment of Alkyl Functionality to50nm Silicon Nanowires through a Chlorination/Alkylation Process [J], J. Phys. Chem. C2009,113,14823-14828.[151]Bashouti M. Y., Paska Y., Puniredd S. R., Stelzner T., Christiansen S., Haick H., Silicon nanowires terminated with methyl functionalities exhibit stronger Si-C bonds than equivalent2D surfaces [J], Phys. Chem. Chem. Phys.2009,11,3845-3848.[152]M. Y. Bashouti, T. Stelzner, A. Berger, S. Christiansen, H. Haick, Chemical Passivation of Silicon Nanowires with C1-C6Alkyl Chains through Covalent??Si-C Bonds [J], J. Phys. Chem. C2008,112,19168-19172.[153]Haick H., Hurley P. T., Hochbaum A. I., Yang P. D., Lewis N. S., Electrical Characteristics and Chemical Stability of Non-Oxidized, Methyl-Terminated Silicon Nanowires [J], J. Am. Chem. Soc.2006,128,8990-8991.[154]Zhang G. J., Chua J. H., Chee R. E., Agarwal A., Wong S. M., Buddharaju K. D., Balasubramanian N., Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors [J], Biosens. Bioelectron.2008,23,1701-1707.[155]Zhang G. J., Agarwal A., Buddharaju K. D., Singh N., Gao Z. Q., Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires [J], Appl. Phys. Lett.2007,90,233903(1)-233903(4).[156]Streifer J. A., Kim H., Nichols B. M., Hamers R. J., Covalent functionlization and biomolecular recognition properties of DNA-modified silicon nanowires [J], Nanotechnology2005,16,1868-1873.[157]Liang G. C., Huang W., Koong C. S., Wang J. S., Lan J. H., Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures [J], J. Appl. Phys.2010,107,014317(1)-014317(6).[158]Hochbaum A. I., Chen R., Delgado R. D., Liang W., Garnett E. C., Najarian M., Majumdar A., Yang P. D., Enhanced thermoelectric performance of rough silicon nanowires [J], Nature2008,451,163-165.[159]Boukai A. I., Bunimovich Y., Kheli J. T., Yu J. K., Goddard W. A., Heath J. R., Silicon nanowires as efficient thermoelectric materials [J], Nature2008,451,168-171.[160]Markussen T., Jauho A. P., Brandbyge M., Surface-Decorated Silicon Nanowires: ARoute to High-ZT Thermoelectrics [J], Phys. Rev. Lett.2009,103,055502.[161]He R. R., Yang P. D., Giant piezoresistance effect in silicon nanowires [J], Nat. Nanotechnol.2006,1,42-46.[162]Hu H., Shao M. W., Zhang W., Lu L., Wang H., Wang S., Synthesis of Layer-Deposited Silicon Nanowires, Modification with Pd Nanoparticles, and Their Excellent Catalytic Activity and Stability in the Reduction of Methylene Blue [J], J. Phys. Chem. C2007,111,3467-3470.[163]Hua J., Shao M. W., Cheng L., Fu Y., Ma D. D. D., The fabrication of??silver-modified silicon nanowires and their excellent catalysis in the decomposition of fluorescein sodium [J], J. Phys. Chem. Solids2009,70,192-196.[164]Tsang C. H. A., Liu Y, Kang Z. H., Ma D. D. D., Wong N. B., Lee S. T., Metal (Cu, Au)-modified silicon nanowires for high-selectivity solvent-free hydrocarbon oxidation in air [J], Chem. Commun.,2009,39,5829-5831.[165]Maiolo J. R., Kayes B. M., Filler M. A., Putnam M. C., Kelzenberg M. D., Atwater H. A., Lewis N. S.,High Aspect Ratio Silicon Wire Array Photoelectrochemical Cells [J], J. Am. Chem. Soc.,2007,129,12346-12347.[166]Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [J], J. Appl. Phys.,2005,97,114302(1)-114302(11).[167]Goodey A. P., Eichfeld S. M., Lew K. K., Redwing J. M., Mallouk T. E., Silicon Nanowire Array Photoelectrochemical Cells [J], J. Am. Chem. Soc.,2007,129,12344-12345.[168]Zhu J., Cui Y., Photovoltaics:More solar cells for less [J], Nature Mater.,2010,9,183-184.[169]Tsakalakow L., Balch J., Fronheiser J., Korevaar B. A., Sulima O., Rand J., Silicon nanowire solar cells [J], Appl. Phys. Lett.,2007,91,233117(1)-233117(3).[170]Peng K. Q., Xu Y., Wu Y., Yan Y. J., Lee S. T., Zhu J., Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications [J], Small,2005,1,1062-1067.[171]Stelzner T., Pietsch M., Andra G., Falk F., Ose E., Christiansen S., Silicon nanowire-based solar cells [J], Nanotechnology,2008,19,295203.[172]Tsakalakos L., Balch J., Fronheiser J., Shih M. Y., LeBoeuf S. F., Pietrzykowski M., Codella P. J., Korevaar B. A., Sulima O., Rand J., Davuluru A., Rapol U., Strong broadband optical absorption in silicon nanowire films [J], J. Nanophoto.,2007,1,013552(1)-013552(10).[173]Wu Z. J., Neaton J. B., Grossman J. C., Charge Separation via Strain in Silicon Nanowires [J], Nano Lett.,2009,9,2418-2422.[174]Lu S. Y., Lingley Z., Asano T., Harris D., Barwicz T., Guha S., Madhukar A., Photocurrent Induced by Nonradiative Energy Transfer from Nanocrystal Quantum Dots to Adjacent Silicon Nanowire Conducting Channels:Toward a New Solar Cell Paradigm [J], Nano Lett.,2009,9,4548-4552.[175]Yuan G. B., Zhao H. Z., Liu X. H., Hasanali Z. S., Zou Y., Levine A., Wang D. W.,??Synthesis and Photoelectrochemical Study of Vertically Aligned Silicon Nanowire Arrays [J], Angew. Chem.,2009,121,9860-9864.[176]Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells [J], J. Appl. Phys.,2005,97,114302(1)-114302(11).[177]Tian B.., Zheng X. L., Kempa T. J., Fang Y., Yu N. F., Yu G. H., Huang J. L. Liebe C. M., Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J], Nature,2007,449,885-889.[178]Kim W., Ng J. K., Kunitake M. E., Conklin B. R., Yang P. D., Interfacing silicon nanowires with mammalian cells [J], J. Am. Chem. Soc.,2007,129,7228-7229.[179]Kim W., Ng J. K., Kunitake M. E., Conklin B. R., Yang P. D., Interfacing silicon nanowires with mammalian cells [J], J. Am. Chem. Soc.,2007,129,7228-7229.[180]Park I., Li Z. Y., Li X. M., Pisano A. P., Williams R. S., Towards the silicon nanowire-based sensor for intracellular biochemical detection [J], Biosensor and Bioelect ronics,2007,22,2065-2070.[181]杨坤,陈欢,赵文超,等,硅纳米线阵列电极作为细胞色素c传感器的研究[J],影像科学与光化学,2009,27,9-16.[182]Fang C., Agarwal A., Widjaja E., Garland M. V., Wong S. M., Linn L., Khalid N. M., Salim S. M., Balasubramanian N., Metallization of Silicon Nanowires and SERS Response from a Single Metallized Nanowire [J], Chem. Mater.,2009,21,3542-3548.[183]Su S., He Y., Zhang M. L., Yang K., Song S. P., Zhang X. H., Fan C. H., Lee S. T., High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors [J], Appl. Phys. Lett.,2008,93,023113(1)-023113(3).[184]Shao M. W., Zhang M. L., Wong N. B., Ma D. D. D., Wang H., Chen W. W., Lee S. T., Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced raman spectroscopy [J], Appl. Phys. Lett.,2008,93,233118(1)-233118(3).[185]Zhang M. L., Yi C. Q., Fan X., Peng K. Q., Wong N. B., Yang M. S., Zhang R. Q., Lee S. T., A surface-enhanced Raman spectroscopy substrate for highly sensitive label-free immunoassay [J], Appl. Phys. Lett.,2008,92,043116(1)-043116(3).[186]Shao M. W., Lu L., Wang H., Luo S. Z., Ma D. D. D., Microfabrication of a new??sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering [J], Microchim. Acta2009,164,157-160.[187]Zhuo S. J., Shao, M. W., Cheng L., Que R. H., Ma D. D. D., Lee S. T., Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure [J], Appl. Phys. Lett.,2010,96,103108(1)-103108(3).[188]Zhou X. T., Hu J. Q., Li C. P., Ma D. D. D., Lee C. S., Lee S. T., Silicon nanowires as chemical sensors [J], Chem. Phys. Lett.,2003,369,220-224.[189]Elibol O. H., Morisette D., Akin D., Denton J. P., Bashir R., Integrated nanoscale silicon sensors using topdown fabrication [J], Appl. Phys. Lett.,2003,83,4613-4615.[190]Cui Y., Duan X. F., Hu J. T., Lieber C. M., Doping and electrical transport in silicon nanowires [J], J. Phys. Chem. B,2000,104,5213-5216.[191]Cui Y., Zhong Z. H., Wang D. L., Wang W. U., Lieber C. M., High performance silicon nanowire field effect transistors [J], Nano Lett.,2003,3,149-152.[192]Wong H. S. P., Beyond the conventional transistor [J], IBM Journal of Research and Development,2002,46,133-168.[193]Weber W. M., Geelhaar L., Graham A. P., Unger E., Liebau M., Riechert H., Lugli P., Kreupl F., Silicon-nanowire transistors with intruded nickel-silicide contacts [J], Nano Lett.,2006,6,2660-2666.[194]Luo L. B., Jie J. S., Zhang W. F., He Z. B., Wang J. X., Yuan G. D., Zhang W. J., Wu L. C. M., Lee S. T., Silicon nanowire sensors for Hg2+and Cd2+ions [J], Appl. Phys. Lett.2009,94,193101(1)-193101(3).[195]Hofheinz M., Jehl X., Sanquer M., Molas G., Vinet M., Deleonibus S., Simple and controlled single electron transistor based on doping modulation in silicon nanowires [J], Appl. Phys. Lett.,2006,89,143-504.[196]Kim D. R., Lee C. H., Zheng X. L., Probing Flow Velocity with Silicon Nanowire Sensors [J], Nano Lett.,2009,9,1984-1988.[197]Mu L. X., Shi W. S., She G. W., Chang J. C., Lee S. T., Fluorescent Logic Gates Chemically Attached to Silicon Nanowires [J], Angew. Chem. Int. Ed.2009,48,3469-3472.[198]Yang C., Barrelet C. J., Capasso F., Lieber C. M., Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors [J], Nano Lett.,2006,6,??2929-2934.[199]傅焰鹏,陈慧鑫,杨勇,锂离子电池硅纳米线负极材料研究[J],电化学,2009,15,59-64.[200]孙熙民,我国驻极体研究进展及其有关问题,物理,1991,20,355-360.[201]Roos J., Electrets:Semipermanently Charged Capacitors, J. Appl. Phys.1969,40,3135-3139.[202]夏钟福,丁亥,驻极体及其材料的研究发展现状,材料导报,1990,3,2-5.[203]谢慧,驻极体综述,电气应用,1983,7,29-33.[204]李沧浦,驻极体及其应用,电声技术,1981,1,63-66.[205]Geim A. K., Novoselov K. S., The rise of graphene [J], Nat Mater,2007,6,183-191.[206]Geim A. K., Graphene:Status and prospects [J], Science,2009,324,1530-1534.[207]Rao C. N. R., Biswas K., Subrahmanyam K. S., Govindaraj A., Graphene, the new nanocarbon [J], J Mater Chem,2009,19,2457-2469.[208]Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., The electronic properties of graphene [J], Rev Mod Phys,2009,81,109-162.[209]Lu X. K., Yu M. F., Huang H, Ruoff R. S., Tailoring graphite with the goal of achieving single sheets [J], Nanotechnol,1999,10,269-272.[210]Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films [J], Science,2004,306,666-669.[211]Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Two-dimensional atomic crystals [J], Proc. Natl. Acad. Sci.,2005,102,10451-10453.[212]Meyer J. C., Geim A. K., Katsnelson M. I., Novoselov K. S., Booth T. J., Roth S., The structure of suspended graphene sheets [J], Nature,2007,446,60-63.[213]Akcoltekin S., Kharrazi M. E., Kohler B., Lorke A., Schleberger M., Graphene on insulating crystalline substrates [J], Nanotechnology,2009,20,155601(1)-155601(6).[214]Hummers W. S., Offeman R. E., Preparation of Graphitic Oxide [J], J. Am. Chem. Soc.,1958,80,1339-1339.[215]Brodie B. C., On the Atomic Weight of Graphite [J], Phil. Trans. R. Soc. Lond.,??1859,149,249-259.[216]Staudenmaier L., Preparation of graphitic acid [J], Ber. Dtsch. Chem. Ges.,1898,31,1481-1487.[217]Zhang L., Liang J. J., Huang Y., Ma Y. F., Wang Y., Chen Y. S., Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation [J], Carbon,2009,47,3365-3368.[218]Shin H. J., Kim K. K., Benayad A., Yoon S. M., Park H. K., Jung I. S., Jin M. H., Jeong H. K., Kim J. M., Choi J. Y., Lee Y. H., Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance [J], Adv. Funct. Mater.,2009,19,1987-1992.[219]Zhou M., Wang Y. L., Zhai Y. M., Zhai J. F., Ren W., Wang F., Dong S. J., Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films [J], Chem. Eur. J.,2009,15,6116-6120.[220]Steurer P., Wissert R., Thomann R., Mulhaupt R., Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide [J], Macromol. Rapid Commun.,2009,30,316-327.[221]Hannes C. S., Li J. L., Michael J. M., Hiroaki, S., Margarita H. A., Douglas H. A., Robert K. P., Roberto C., Dudley A. S., Ilhan A. A., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide [J], J. Phys. Chem. B,2006,110,8535-8539.[222]Michael J. M., Li J. L., Adamson D. H., Schniepp H. C., Abdala A. A., Liu J., Margarita H. A., David L. M., Roberto C., Robert K. P., Ilhan A. A., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite [J], Chem. Mater.,2007,19,4396-4404.[223]Cote L. J., Cruz-Silva R., Huang J. X., Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite [J], J. Am. Chem. Soc.,2009,131,11027-11032.[224]Obraztsov A. N., Chemical vapour deposition:Making graphene on a large scale [J], Nat. Nanotechnol.,2009,4,212-213.[225]Reina A., Jia X. T., Ho J., Nezich D., Son H., Bulovic V., Dresselhaus M. S., Kong J., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition [J], Nano Lett.,2009,9,30-35.[226]Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J. H., Kim P.,??Choi J. Y., Hong B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes [J], Nature,2009,457,706-710.[227]Li X. S., Cai W. W., An J. H., Kim S. Y., Nah J., Yang D. X., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils [J], Science,2009,324,1312-1314.[228]Pan Y., Zhang H., Shi D., Sun J. T., Liu F., Gao H. J., Highly ordered, millimeter-scale, cont inuous, single-cryst alline graphene monolayer formed on Ru (0001)[J], Adv Mater,2009,21,2777-2780.[229]Berger C., Song Z., Li T., Li X., Ogbazghi A. Y., Feng R., Dai Z. T., Marchenkov A. N., Conrad E. H., First P. N., de Heer W. A., Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics [J], J. Phys. Chem. B,2004,108,19912-19916.[230]Berger C., Song Z., Li X., Wu X., Brown N., Naud C., Mayou D., Li T., Hass J., Marchenkov A. N., Conrad E. H., First P. N., de Heer W. A., Electronic Confinement and Coherence in Patterned Epitaxial Graphene [J], Science,2006,312,1191-1196.[231]Liu N., Luo F., Wu, H. X., Liu Y. H., Zhang C., Chen J., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite [J], Adv. Funct. Mater.,2008,18,1518-1525.[232]Subrahmanyam K. S., Panchakarla L. S., Govindaraj A., Rao C. N. R., Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method [J], J. Phys. Chem. C,2009,113,4257-4259.[233]Qian H. L., Negri F., Wang C. R., Wang Z. H., Fully Conjugated Tri(perylene bisimides):An Approach to the Construction of n-Type Graphene Nanoribbons [J], J. Am. Chem. Soc.,2008,130,17970-17976.[234]Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Two-dimensional atomic crystals [J]. PNAS,2005,102,10451-10456.[235]Avouris P., Chen Z., Perebeinos V., Carbon-based electronics [J]. Nature Nanotechnology,2007,2,605-615.[236]Novoselov K. S., Morozov S. V., Mohinddin T. M. G., Ponomarenko L. A., Black??P., Booth T. J., Jiang D., Giesbers J., Hill E. W., Geim A. K., Electronic properties of graphene [J], Phys Stat Sol(B),2007,244,4106-4111.[237]Echtermeyer T. J., LemmeM C., Bolten J., Baus M., Ramsteiner M., Kurz H., Graphene field-effect devices [J], Eur Phys J Special Topics,2007,148,19-26.[238]Sehedin F, Geim A. K., Morozov S. V., Hill E. W., Blake P., Katsnelson M. I., Novoselov K. S., Detection of individual gas molecules adsorbed on graphene [J], Nature Mater,2007,6,652-655.[239]Chen J. H., Jang C., Adam S., Fuhrer M. S., Williams E. D., Ishigami M., Charged impurity scattering in graphene [J], Science,2008,4,377-381.[240]Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Peres N. M. R., Geim A. K., Fine structure constant defines visual transparency of graphene [J], Science,2008,320,1308.[241]Stoller M. D., Park S., Zhu Y. W., An J., Ruoff R. S., Graphene-based ultracapacitors [J], Nano Lett,2008,8,3498-3502.[242]Lee C. G., Wei X. D., Kysar J. W., Hone J., Measurement of the elastic properties and intrinsic strength of monolayer graphene [J], Science,2008,321,385-388.[243]Steurer P., Wissert R., Thomann R., Mulhaupt R., Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide [J], Macromol Rapid Commun,2009,30,316-327.[244]Zhang Y. B., Tan Y. W., Stormer H. L., Kim P., Experimental observation of the quantum Hall effect and Berry's phase in graphene [J], Nature,2005,438,201-204.[245]Novoselov K. S., McCann E., Morozov S. V., Katsnelson M. I., Jiang D., Schedin F., Geim A. K., Unconventional quantum Hall effect and Berry's phase of27πin bilayer graphene [J]. Nature Physics,2006,2,177-180.[246]Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Dubonos S. V., Firsov A. A., Two-dimensional gas of massless dirac fermions in graphene [J], Nature,2005,438,197-200.[247]Di C. A., Wei D. C., Yu G., Liu Y. Q., Guo Y. L., Zhu D. B., Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors [J], AdvMater,2008,20,3289-3293.[248]Stoller M. D., Park S., Zhu Y. W., An J., Ruoff R. S., Graphene-based ultracapacitors [J], Nano Lett,2008,8,3498-3502.[249]Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Nguyen S. T.,??Ruoff R. S., Graphene-based composite materials [J], Nature,2006,442,282-286.[250]Stampfer C., Schurtenberger E.,Molitor F., Giittinger J. Ihn T., Ensslin K., Tunable graphene single electron transistor [J], Nano Lett,2008,8,2378-2383.[251]Blake P., Brimicombe P. D., Nair R. R., Booth T. J., Jiang D., Geim A. K., Novoselov K. S., Graphene-based liquid crystal device [J], Nano Lett,2008,8,1704-1708.[252]Park N., Hong S., Kim G., Jhi S. H., Computational study of hydrogenst orage characteristics of covalent-bonded graphenes [J], J Am Chem Soc,2007,129,8999-9003.[253]Xu Y. F., Wang Y, Liang J. J., Huang L., Ma Y F., Wan X. J., Chen Y S., A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency [J], Nano Res,2009,2,343-348.[254]Reina A., Jia X. T., Ho J., Nezich D., Son H., Bulovic V., Dresselhaus M. S., Kong J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition [J], Nano Lett,2009,9,30-35.[255]Dato A., Radmilovic V., Lee Z., Phillips J., Frenklach M., Substrate-free gas-phase synthesis of graphene sheets [J], Nano Lett,2008,8,2012-2016.[256]Wu J. B., Becerril H. A., Bao Z. N., Liu Z. F., Chen Y. S., Peumans P., Organic solar cells with solution-processed graphene transparent electrodes [J], Appl Phys Lett,2008,92,263302(1)-263302(3).[257]Wang X., Zhi L., Mullen K., Transparent, conductive graphene electrodes for dye-sensitized solar cells [J], Nano Lett,2008,8,323-327.[258]Wang Y., Chen X. H., Zhong Y. L., Zhu F. R., Loh K. P., Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices [J], Appl Phys Lett,2009,95,063302(1)-063302(3).[259]Hong W. J., Xu Y X., Lu G W., Li C., Shi G. Q., Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun [J],2008,10,1555-1558.[260]Liu Q., Liu Z. F., Zhang X. Y., Yang L. Y., Zhang N., Pan G. L., Yin S. G., Chen Y. S., Wei J., Polymer photovoltaic cells based on solution-processable graphene and P3HT [J], Adv Funct Mater,2009,19,894-904.[261]Liu Z. B., Tian J. G., Guo Z, Ren D. M., Du F., Zheng J. Y., Chen Y. S., Enhanced optical limiting effects in porphyrincovalently functionalized single-walled carbon??nanotubes [J], Adv Mater,2008,20,511-515.[262]Guo Z., Du F., Ren D. M., Zheng J. Y., Liu Z. B., Tian J. G., Covalently porphyrin-functionalized single-walled carbon nanotubes:A novel photoactive and optical limiting donor-acceptor nanohybrid [J], J Mater Chem,2006,16,3021-3030.[263]Liu Z. B., Wang Y, Zhang X. L., Xu Y. E., Chen Y. S., Tian J. G., Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes [J], Appl Phys Lett,2009,94,021902(1)-021902(4).[264]Liu Z. B., Xu Y. F., Zhang X. Y., Zhang X. L., Chen Y. S., Tian J. G., Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties [J], J Phys Chem B,2009,113,9681-9686.[265]Liu Y. S., Zhou J. Y., Zhang X. L., Liu Z. B., Wan X. J., Tian J. G., Wang T., Chen Y. S., Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material [J], Carbon,2009,47,3113-3121.[266]Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Electric Field Effect in Atomically Thin Carbon Films [J], Science,2004,306,666-669.[267]Wehling T. O., Novoselov K. S., Morozov S. V., Vdovin E. E., Katsnelson M. I., Geim A. K., Lichtenstein A. I., Molecular Doping of Graphene [J], Nano Lett.,2008,8,173-177.[268]Crevillen A. G., Pumera M., Gonzalez M. C., Escarpa A., The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains [J], Analyst,2009,134,657-662.[269]Wang Y., Li Y. M., Tang L. H., Lu J., Li J. H., Application of graphene-modified electrode for selective detection of dopamine [J], Electrochem Commun,2009,11,889-892.[270]Lu G., Ocola L. E., Chen J., Reduced graphene oxide for room-temperature gas sensors [J], Nanotechnol,2009,20,445502.[271]Ansari S., Giannelis E. P., Functionalized graphene sheet-poly (vinylidene fluoride) conductive nanocomposites [J], J Polym Sci B-Polym Phys,2009,47,888-897.[272]Xu Y. X., Zhao L., Bai H., Hong W. J., Li C., Shi G. Q., Chemically converted??graphene induced molecular flattening of5,10,15,20-tetrakis (1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium(II) ions [J], J Am Chem Soc,2009,131,13490-13497.[273]Shan C. S., Yang H. F., Han D. X., Zhang Q. X., Ivaska A., Niu L., Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine [J], Langmuir,2009,25,12030-12033.[274]Wang Z. J., Zhou X. Z., Zhang J., Boey F., Zhang H., Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase [J], J Phys Chem C,2009,113,14701-14705.[275]Rafiee M. A., Rafiee J., Wang Z., Song H. H., Yu Z. Z., Koratkar N., Enhanced mechanical properties of nanocomposites at low graphene content [J], ACS Nano,2009,3,3884-3890.[276]Stoller M. D., Park S. J., Zhu Y. W., An J., Ruoff R. S., Graphene-based ultracapacitors [J], Nano Lett,2008,8,3498-3502.[277]Yu D. S., Dai L. M., Self-assembled graphene/carbon nanotube hybrid films for supercapacitors [J], J Phys Chem Lett,2010,1,467-470.[278]Gnanaraj J. S., Levi M. D., Levi E., Salitra G., Aurbach D., Fischer J. E., Clayb A., Comparison between the electrochemical behavior of disordered carbons and graphite electrodes in connection with their structure [J], J Electrochem Soc,2001,148,525-536.[279]Hu Y., Adelhelm P., Smarsly B. M., Hore S., Antonietti M. Maier J., Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability [J], Adv Funct Mater,2007,17,1873-1878.[280]Chen J., Minett A. I., Liu Y., Lynam C., Sherrell P., Wang C., Wallace G. G., Direct growth of flexible carbon nanotube electrodes [J], Advan Mater,2008,20,566-570.[281]Wang C., Li D., Too C. O., Wallace G. G., Electrochemical properties of graphene paper electrodes used in lithium batteries [J], Chem Mater,2009,21,2604-2606.[282]Winter M., Besenhard J. O., Spahr M. E., Novak P., Insertion electrode materials for rechargeable lithium batteries [J], Advan Mater,1998,10,725-763.[283]Maier J., Nanoionics:Ion transport and electrochemical storage in confined systems [J], Nat Mater,2005,4,805-815.[284]Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries [J], Nature,2001,414,359-367.[285]Wang D., Choi D., Li J., Yang Z. G.,Nie Z. M., Kou R., Wang C. M., Saraf L. V., Aksay I. A., Liu J., Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-Ion insertion [J], ACS Nano,2009,3,907-914.[286]Zhang J., Sasaki K., Sutter E., Adzic R. R., Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters [J], Science,2007,315,220-222.[287]Shao Y., Liu J., Wang Y., Lin Y. H., Novel catalyst support materials for PEM fuel cells:Current status and future prospects [J], J Mater Chem,2009,19,46-59.[288]Kou R., Shao Y., Wang D., Kwak J. H., Wang C. M., Lin Y. H., Wang Y., Aksay I. A., Liu J., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction [J], Electrochem Commun,2009,11,954-957.[289]Yoo E. J., Okata T., Akita T., Kohyama M., Nakamura J., Honma I., Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface [J], Nano Lett,2009,9,2255-2259.[290]Scheuermann G. M., Rumi L., Steurer P., Bannwarth W., Mulhaupt R., Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction [J], J. Am. Chem. Soc.,2009,131,8262-8270.[291]Liu H., Gao J., Xue M. Q., Zhu N., Zhang M. N., Cao T. B., Processing of graphene for electrochemical application:Noncovalently functionalize graphene sheets with water-soluble electroactive methylene green [J], Langmuir,2009,25,12006-12010.[292]Liu Z., Robinson J. T., Sun X. M., Dai H. J., PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs [J], J. Am. Chem. Soc.,2008,130,10876-10877.[293]Yang X. Y., Zhang X. Y., Liu Z. F., Ma Y. F., Huang Y., Chen Y. S., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide [J], J. Phys. Chem. C,2008,112,17554-17558.[294]Ponomarenko L. A., Schedin F., Katsnelson M. I., Yang R., Hill E. W., Novoselov K. S., Geim A. K., Chaotic Dirac billiard in graphene quantum dots [J], Science,??2008,320,356-358.[295]Liang X. G., Fu Z. L., Chou S. Y., Graphene transistors fabricated via transfer-printing in device active-areas on large wafer [J], Nano Lett,2007,7,3840-3844.[296]Lin Y. M., Avouris P., Strong supp ression of electrical noise in bilayer graphene nanodevices [J], Nano Lett,2008,8,2119-2125.[1]Zhang Y. F., Tang Y. H., Wang N., Lee C.S., Bello I., Lee S.T., One-dimensional growth mechanism of crystalline silicon nanowires [J], J. Cryst. Growth,1999,197,136-140.[2]Zhang Y. F., Tang Y H., Lam C., Bulk-quantity Si nanowires synthesized by SiO??sublimation [J], J. Cryst. Growth,2000,212,115-118.[3]Dietz T., Duncan M., Liverman M., Resonance enhanced two-photon ionization studies in a supersonic molecular beam:bromobenzene and iodobenzene [J], J Chem Phys,1980,11,73,4816-4821.[4]Eleshall M. S., Edelstein A. S., Edelstein A. S., Nanomaterials:synthesis, properties and applications [J], Institute of Physics Publishing, Bristol and Philadelphia, PA,1996:13-54.[5]Zhang R. Q., Lifshitz Y., Lee S. T., Oxide-assisted growth of semiconducting nanowires [J], Adv. Mater.2003,15,635-640.[6]Wang, R. P., Zhou, G. W.;, Liu, Y. L., Pan, S. H., Zhang, H. Z., Yu, D. P., Zhang, Z., Raman spectral study of silicon nanowires:High-order scattering and phonon confinement effects [J], Phys. Rev. B2000,61,16827-16832.[7]Sun, X. H., Wang, S. D., Wong, N. B., Ma, D. D. D., Lee, S. T., FTIR Spectroscopic Studies of the Stabilities and Reactivities of Hydrogen-Terminated Surfaces of Silicon Nanowires [J], Inorg. Chem.2003,42,2398-2404.[8]Spitzer W. G., Kleinman D. A., Infrared Lattice Bands of Quartz [J], Phys.Rev.1961,121,1324-1331.[9]Tomlinson E. L., McMillan P. F., Zhang M., Jones A. P., Redfern S. A. T., Quartz-bearing C-O-H fluid inclusions diamond:Retracing the pressure-temperature path in the mantle using calibrated high temperature IR spectroscopy [J], Geochim. Cosmochim. Ac.2007,71,6030-6039.[10]Hore D. K., Hamamoto M. Y., Richmond G. L., Mid-infrared second-order susceptibility of a-quartz and its application to visible-infrared surface sum-frequency spectroscopy [J], J. Chem. Phys.2004,121,12589-12594.[11]Hardy J. D., Silverman S., An application of the resonance radiometer to the reflection spectrum of quartz [J], Phys. Rev.1931,37,176-181.[12]Hrostowski H. J., Kaiser R. H., Infrared Absorption of Oxygen in Silicon [J], Phys. Rev.1957,107,966-972.[13]Hrostowski H. J., Kaiser R. H., Infrared Absorption of Oxygen in Silicon [J], Phys. Rev.1957,107,966-972.[14]Hore D. K.; Hamamoto M. Y.; Richmond G. L., Mid-infrared second-order susceptibility of a-quartz and its application to visible-infrared surface??sum-frequency spectroscopy [J], J. Chem. Phys.2004,121,12589-12594.[15]Zhang R. Q.; Lifshitz Y.; Lee S. T., Oxide-assisted growth of semiconducting nanowires [J], Adv. Mater.2003,15,635-640.[16]Ma D. D. D., Lee C. S., Au F. C. K., Tong S. Y., Lee S. T., Small-Diameter Silicon Nanowire Surfaces [J], Science2003,299,1874-1877.[17]Holmes J. D., Johnston K. P., Doty R. C., Korgel B. A., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires [J], Science2000,287,1471-1473.[18]Wang X. D., Song J. H., Liu J., Wang Z. L., Direct-Current Nanogenerator Driven by Ultrasonic Waves [J], Science,2007,316,102-105.[19]McDevitt M. R., Ma D., Lai L. T., Simon J., Borchardt P., Frank R. K., Wu K., Pellegrini V., Curcio M. J., Miederer M., Bander N. H., Scheinberg D. A., Science2001,294,1537-1540.[20]Wang Z. L., Song J. H., Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays [J], Science,2006,312,242-246.[21]Shin, H. J., Choi W. M., Choi D., Han G. H., Yoon S. M., Park H. K., Kim S. W., Jin Y. W., Lee S. Y., Kim J. M., Choi J. Y., Lee Y. H., Control of Electronic Structure of Graphene by Various Dopants and Their Effects on a Nanogenerator [J], J. Am. Chem. Soc.2010,132,15603-15609.[22]Huang C. T., Song J. H., Tsai C. M., Lee W. F., Lien D. H., Gao Z. Y., Hao Y., Chen L. J., Wang Z. L., Single-InN-Nanowire Nanogenerator with Upto1V Output Voltage [J], Adv. Mater.2010,22,4008-4013.[23]Chen X., Xu S. Y., Yao N., Shi Y.,1.6V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J], Nano Lett.2010,10,2133-2137.[24]Chang C. E., Tran V. H., Wang J. B., Fuh Y. K., Lin L. W., Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J], Nano Lett.2010,10,726-731.[25]Lin, Y. F., Song, J., Ding, Y., Lu, S. Y., Wang, Z. L., Alternating the Output of a CdS Nanowire Nanogenerator by a White-Light-Stimulated Optoelectronic Effect [J], Adv. Mater.2008,20,3127-3130.[26]Gross B., Denard L. F., On Permanent Charges in Solid Dielectrics I. Dielectric Absorption and Temperature Effects in Carnauba Wax [J], Phys. Rev.1945,67,253-259.[27]Broadhurst M. G., Davis G. T., McKinney J. E., Collins R. E.J., Piezoelectricity and pyroelectricity in polyvinylidene fluoride-A model [J], J. Appl. Phys.1978,49,4992-4997.[28]Qiu X. L., Patterned piezo-, pyro-, and ferroelectricity of poled polymer electrets [J], J. Appl. Phys.2010,108,011101-011119.[1]Roos J., Electrets:Semipermanently Charged Capacitors [J], J. Appl. Phys.1969,40,3135-3139.[2]李全禄,驻极体的研究及应用[J],压电与声光,1992,14,32-36.[3]Latour M., A study of the formation conditions of electrets [J], J. Appl. Phys.,1975,46,42-48.[4]Suspene C., Barattin R., Caroline C., Alexandre C., Simonato J. P., Chemical Functionalization of Silicon Nanowires by an Electroactive Group:A Direct??Spectroscopic Characterization of the Hybrid Nanomaterial [J], J. Phys. Chem. C,2010,114,3924-3931.[5]Simon I., Mcmahon H. O., Study of the structure of quartz, cristobalite, and vitreous silica by reflection in Infrared [J], J. Chem. Phys.,1953,21,23-30.[6]Sun X. H., Wang S. D., Wong N. B., Ma D. D. D., Lee S. T., FTIR Spectroscopic Studies of the Stabilities and Reactivities of Hydrogen-Terminated Surfaces of Silicon Nanowires [J], Inorg. Chem.2003,42,2398-2404.[7]Tomlinson E. L., McMillan P. F., Zhang M., Jones A. P., Redfern S. A.T., Quartz-bearing C-O-H fluid inclusions diamond:Retracing the pressure-temperature path in the mantle using calibrated high temperature IR spectroscopy [J], Geochimica et Cosmochimica Acta,2007,71,6030-6039.[8]Wong P. T. T., Baudais F. L., Moffatt D. J., Hydrostatic pressure effects on To-LO splitting and softening of infrared active phonons in a-quartz [J], J. Chem. Phys.,1986,84,671-674.[9]Hrosrowski H. J., Kaiser R. H., Infrared Absorption of Oxygen in Silicon [J], Phys. Rev.,1957,107,966-972.[10]Hore D. K., Hamamoto M. Y., Richmond G. L., Mid-infrared second-order susceptibility of a-quartz and its application to visible-infrared surface sum-frequency spectroscopy [J], J. Chem. Phys.2004,121,12589-12594.[11]Wang R. P., Zhou G. W., Liu Y. L., Pan S. H., Zhang Z., Raman spectral study of silicon nanowires:High-order scattering and phonon confinement effects [J], Phys. Rev. B,2000,61,16827-16832.[12]Sharma S. K., Mammone J. F., Nicol M. F., Raman investigation of ring configurations in vitreous silica [J], Nature,1981,292,140-141.[13]Mcmillan P., Piriou B., A Raman study of pressure-densified vitreous silica [J], J. Chem. Phys.1984,81,4234-4236.[1]Lucas C. H., Peinado A. J. L., Gonzalez J. D. D., Cervantes M. L. R., Aranda R. M. M., Study of oxygen-containing groups in a series of graphite oxides:physical and chemical characterization [J], Cabon,1995,33,1585-1592.[2]Ruess G., Uber das Graphitoxyhydroxyd (Graphitoxyd)[J], Monasch. Chem.,1947,76,381-417.[3]Clauss A., Plass R., Boehm H. P., Hofmann U., Z. Anorg.,[J] Allg. Chem.,1957,291,14.[4]Scholz W., Boehm H. P., Untersuchungen am graphitoxid. Ⅵ. Betrachtungen zur??struktur des graphitoxides [J], Z. Anorg. Allg. Chem.,1969,369,327-340.[5]He H. Y., Klinowski J., Forster M., Lerf A., A new structural model for graphite oxide [J], Chem. Phys. Lett.1998,287,53-56.[6]Cote L. J., Kim F., Huang J. X., Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J], J. Am. Chem. Soc.,2009,131,1043-1049.[7]Wilson N. R., Pandey P. A., Beanland R., Young R. J., Kinloch I. A., Gong L., Liu Z., Suenaga K., Rourke J. P., York S. J., Sloan J., Graphene Oxide:Structural Analysis and Application as a Highly Transparent Support for ElectronMicroscopy [J], ACS Nano,2009,3,2547-2556.[8]Gomez.N. C., Weitz R. T., Bittner A. M., Scolari M., Mews A., Burghard M., Kern K., Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets [J], Nano Lett.,2007,7,3499-3503.[9]Wang S., Pu J., Chan D. S. H., Cho B. J., Loh K. P., Wide memory window in graphene oxide charge storage nodes [J], Appl. Phys. Lett.2010,96,143109-3.[10]Huang, C. T., Song J. H., Lee W. F., Ding Y., Gao Z. Y., Hao Y., Chen L. J., Wang Z. L., GaN nanowire arrays for high-output nanogenerators [J], J. Am. Chem. Soc.2010,132,4766-4771.[11]Xu S., Qin Y, Xu C., Wei Y G., Yang R. S., Wang Z. L., Self-powered nanowire devices [J], Nature Nanotech.2010,5,366-373.[12]Liu Z., Robinson J. T., Sun X. M., Dai H. J., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs [J], J. Am. Chem. Soc.2008,130,10876-10877.[13]Wilson N. R., Pandey P. A., Beanland R., Young R. J., Kinloch I. A., Gong L., Liu Z., Suenaga K., Rourke J. P., York S. J., Sloan J., Graphene oxide:structural analysis and application as a highly transparent support for electron microscopy [J], ACS Nano2009,3,2547-2556.[14]Kudin K. N., Ozbas B., Schniepp H. C., Prud'homme R. K., Aksay I. A., Car R., Raman spectra of graphite oxide and functionalized graphene sheets [J], Nano Lett.2008,8,36-41.[15]Zhu, Y W., Murali S., Cai W. W., Li X., Suk J. W., Potts J. R., Ruoff R. S., Graphene and graphene oxide:synthesis, properties, and applications [J], Adv. Mater.2010,22,3906-3924.[16]Tuinstra, F., Koenig, J. L. Raman spectrum of graphite [J], J. Chem. Phys.1970,53,1126-1130.[17]Eda G, Chhowalla M., Chemically derived graphene oxide:towards large-area thin-film electronics and optoelectronics [J], Adv. Mater.2010,22,2392-2415.[18]Xie Y. M., Sherwood P. M. A., X-ray photoelectron-spectroscopic studies of carbon fiber surfaces.11. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly(acrylonitrile) and pitch and comparison with various graphite samples [J], Chem. Mater.1990,2,293-299.[19]Gardner S. D., Singamsetty C. S. K., Booth G. L., He G. R., Pittman C. U., Surface characterization of carbon fibers using angle-resolved XPS and ISS [J], Carbon,1995,33,587-595.[20]Becerril H. A., Mao J., Liu Z., Stoltenb R. M., Bao Z., Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J], ACS Nano,2008,2,463-470.[21]Schniepp H. C., Li J. L., Mcallister M. J., Sai H., Alonso M. H., Functionalized single graphene sheets derived from splitting graphite oxide [J], J. Phys. Chem. B2006,110,8535-8539.[22]Hasan S. A., Rigueur J. L., Harl R. R., Krejci A. J., Juan I. G., Rogers B. R., Dickerson J. H., Transferable Graphene Oxide Films with Tunable Microstructures [J], ACS Nano.2010,4,7367-7372.[23]Lee D. W., Hong T. K., Kang D., Lee J., Heo M., Kim J. Y., Kim B. S., Shin H. S., Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides [J], J. Mater. Chem.2011,21,3438-3442.[24]Wang, S., Pu, J., Chan, D. S. H., Cho, B. J., Loh, K. P., Wide memory window in graphene oxide charge storage nodes [J], Appl. Phys. Lett.2010,96,143109-143111.[25]Zhao W., Song C., Pehrsson P. E., Water-Soluble and Optically pH-Sensitive Single-Walled Carbon Nanotubes from Surface Modification [J], J. Am. Chem. Soc.2002,124,12418-12419.[26]Ramesh S., Ericson L. M., Davis V. A., Hauge R. H., Smalley R. E., Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct Protonation [J], J. Phys. Chem. B2004,108,8794-8798.[27]Lee I. Y., Kannan E. S., Kim G. H., Capacitance-voltage and current-voltage characteristics of graphite oxide thin films patterned by ultraviolet photolithography [J], Appl. Phys. Lett.2009,95,263308-363310.[28]Wang S., Pu J., Chan D. S. H., Cho B. J., Loh K. P., Wide memory window in graphene oxide charge storage nodes [J], Appl. Phys. Lett.2010,96,143109-143111.[29]Jia, Y. F., Thomas, K. M., Adsorption of cadmium ions on oxygen surface sites in activated carbon [J], Langmuir2000,16,1114-1122.[30]Kubicki, J. D., Schroeter, L. M., Itoh, M. J., Nguyen, B. N., Apitz, S. E. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces [J], Geochim. Cosmochim. Ac.1999,63,2709-2725.[31]Nabedryk, E., Breton J., Hienerwadel R., Fogel C., Maentele W., Paddock M. L. Okamura M. Y., Fourier transform infrared difference spectroscopy of secondary quinone acceptor photoreduction in proton transfer mutants of Rhodobacter sphaeroides [J], Biochemistry1995,34,14722-14732.[32]Zhang, J. Zou H. L, Qing Q., Yang Y. L., Li Q. W., Liu Z. F., Guo X. Y., Du Z. L. Effect of chemical oxidation on the structure of single-walled carbon nanotubes [J]. J. Phys. Chem. B2003,107,3712-3718.[33]Peng, H., Alemany, L. B., Margrave, J. L., Khabashesku, V. N., Sidewall carbonxylic acid functionalization of single-walled carbon nanotubes [J], J. Am. Chem. Soc.2003,125,15174-15182.[34]Kubicki, J. D., Schroeter, L. M., Itoh, M. J., Nguyen, B. N., Apitz, S. E. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces [J], Geochim. Cosmochim. Ac.1999,63,2709-2725.[1]Song L., Ci L.J., Lu H., Sorokin P. B., Jin C. H., Ni J., Kvashnin A. G., Kvashnin D. G., Lou J., Yakobson B. I., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers [J], Nano Lett.2010,10,3209-3215.[2]Hernandez E., Goze C., Bernier P., Rubio A., Elastic Properties of C and BxCyNz Composite Nanotubes [J], Phys. Rev. Lett.1998,80,4502-4505.[3]Kim P., Shi L., Majumdar A., McEuen P. L., Thermal Transport Measurements of Individual Multiwalled Nanotubes [J], Phys. Rev. Lett.2001,87,215502-215505.[4]Watanabe K., T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal [J], Nat. Mater.2004,3,404-409.[5]G. Lee, M. Park, J. Kim, Lee J. I., Yoon H. G., Enhanced thermal conductivity of polymer composites filled with hybrid filler [J], Composties:Part A2006,37,727.[6]Han W. Q., Wu L. J., Zhu Y. M., Watanabe K., Taniguchi T., Structure of chemically derived mono-and few-atomic-layer boron nitride sheets [J], Appl. Phys. Lett.2008,93,223103-3.[7]Terrones M., Grobert N., Terrones H., Synthetic Routes to Nanoscale BxCyNz Architectures [J], Carbon2002,40,1665-1684.[8]Koi N., Oku T., Narita I., Suganuma K., Synthesis of Huge Boron Nitride Cages [J], Diamond Relat. Mater.2005,14,1190-1192.[9]Golberg D., Bando Y., Tang C. C., Zhi C. Y., Boron Nitride Nanotubes [J], Adv. Mater.2007,19,2413-2432.[10]Watanabe K., Taniguchi T., Kanda H., Direct-Bandgap Properties and Evidence for??Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal [J], Nat. Mater.2004,3,404-409.[11]Paine R. T., Narula C. K., Synthetic Routes to Boron Nitride [J], Chem. Rev.1990,90,73-91.[12]Chen Y., Zou J., Campbell S. J., Caer G. L., Boron Nitride Nanotubes:Pronounced Resistance to Oxidation [J]. Appl. Phys. Lett.2004,84,2430-2432.[13]Song L., Ci L., Lu H., Sorokin P. B., Jin C., Ni J., Kvashnin A. G., Kvashnin D. G., Lou J., Yakobson B. I., Ajayan P. M., Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers [J], Nano Lett.2010,10,3209-3215.[14]Eisenstein J. P., MacDonald A. H., Bose-Einstein condensation of excitons in bilayer electron systems [J], Nature2004,432,691-694.[15]Min H., Bistritzer R., Su J. J., MacDonald A. H., Room-temperature superfluidity in graphene bilayers [J], Phys. Rev. B2008,78,121401-121404.[16]Lin Y., Williams T. V., Connell J. W., Soluble Exfoliated Hexagonal Boron Nitride Nanosheets [J], J. Phys. Chem. Lett.2010,1,277-283.[17]Zeng H., Zhi C. Y., Zhang Z., Wei X., Wang X., Guo W., Bando Y., Golberg D.,"White Graphenes":Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping [J], Nano Lett.2010,10,5049-5055.[18]Han W. Q., Wu L. J., Zhu Y M., Watanabe K., Taniguchi T., Structure of Chemically Derived Mono-and Few-Atomic-Layer Boron Nitride Sheets [J], Appl. Phys. Lett.2008,93,223103(1)-223103(3).[19]Ci L., Song L., Jin C., Jariwala D.,Wu D., Li Y., Srivastava A., Wang Z. F., Storr K., Balicas L., Liu F., Ajayan P. M., Atomic layers of hybridized boron nitride and graphene domains [J], Nat. Mater.2010,9,430-435.[20]Shi Y., Hamsen C., Jia X., Kim K. K., Reina A., Hofmann M., Hsu, A. L., Zhang K., Li H., Juang Z.-Y., Dresselhaus M. S., Li L.-J., Kong J., Synthesis of Few-Layer Hexagonal Boron Nitride Thin Film by Chemical Vapor Deposition [J], Nano Lett.2010,10,4134-4139.[21]Pakdel A., Zhi C., Bando Y., Nakayama T., Golberg D., Boron Nitride Nanosheet Coatings with Controllable Water Repellency [J], ACS Nano,2011,5,6507-6515.[22]Yu J., Qin L., Hao Y. F., Kuang S. Y., Bai X. D., Chong Y. M., Zhang W. J., Wang E. G., Vertically Aligned Boron Nitride Nanosheets:Chemical Vapor Synthesis, Ultraviolet Light Emission, and Superhydrophobicity [J], ACS Nano,2010,4,??414-422.[23]Chatterjee S., Luo Z. T., Acerce M., Yates D. M., Johnson A. T. C., Sneddon L. G., Chemical Vapor Deposition of Boron Nitride Nanosheets on Metallic Substrates via Decaborane/Ammonia Reactions [J], Chem. Mater.2011,23,4414-4416.[24]Pacile D., Meyer J. C., Girit C. O., Zettl A., The two-dimensional phase of boron nitride:Few-atomic-layer sheets and suspended membranes [J], Appl. Phys. Lett.2008,92,133107(1)-133107(3).[25]Han W. Q., Wu L., Zhu Y., Watanabe K., Taniguchi T., Structure of chemically derived mono-and few-atomic-layer boron nitride sheets [J], Appl. Phys. Lett.2008,93,223103(1)-223103(3).[26]Lin Y., Williams T. V., Xu T.-B., Cao W., Elsayed-Ali H. E., Connell J. W., Aqueous Dispersions of Few-Layered and Monolayered Hexagonal Boron Nitride Nanosheets from Sonication-Assisted Hydrolysis:Critical Role of Water [J], J. Phys. Chem. C2011,115,2679-2685.[27]Zhi C., Bando Y., Tang C., Kuwahara H., Golberg D., Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties [J], Adv. Mater.2009,21,2889-2893.[28]Lin Y., Williams T. V., Cao W., Elsayed-Ali H. E., Connell J. W., Defect Functionalization of Hexagonal Boron Nitride Nanosheets [J], J. Phys. Chem. C2010,114,17434-17439.[29]Nag A., Raidongia K., Hembram K. P. S. S., Datta R., Waghmare U. V., Rao C. N. R., Graphene Analogues of BN:Novel Synthesis and Properties [J], ACS Nano2010,4,1539-1544.[30]Pacile D., Meyer J. C., Girit C. O., Zettl A., The Two-Dimensional Phase of Boron Nitride:Few-Atomic-LayerSheets and Suspended Membranes [J], Appl. Phys. Lett.2008,92,133107.[31]Zhu, Y.; Bando, Y.; Yin, L.; Golberg, D. Field Nanoemitters:Ultrathin BN Nanosheets Protruding from Si3N4Nanowires [J], Nano Lett.2006,6,2982-6.[32]Zhi C. Y., Bando Y., Tang C. C., Honda S., Sato K., Kuwahara H., Golberg D., Characteristics of Boron Nitride Nanotube-Polyaniline Composites [J], Angew. Chem., Int. Ed.2005,44,7929-7932.[33]Loiseau A., Willaime F., Demoncy N., Hug G., Pascard H., Boron Nitride??Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge [J], Phys. Rev. Lett.1996,76,4737-4740.[35]Ma R. Z., Bando Y., Zhu H. W., Sato T., Xu C. L., Wu D. H., Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature [J], J. Am. Chem. Soc.2002,124,7672-7673.[36]Wang J. S., Kayastha V. K., Yap Y. K., Fan Z. Y., Lu J. G., Pan Z. W., Ivanov I. N., Puretzky A. A., Geohegan D. B., Low Temperature Growth of Boron Nitride Nanotubes on Substrates [J], Nano Lett.2005,5,2528-2532.[37]Nakhmanson S. M., Calzolari A., Meunier V., Bernholc J., Nardelli M. B., Spontaneous Polarization and Piezoelectricity in Boron Nitride Nanotubes [J], Phys. Rev. B2003,67,235406(1)-235406(5).[38]Blase X., Charlier J. C., Vita A. De, Car R., Theory of Composite BxCyNz Nanotube Heterojunctions [J], Appl. Phys. Lett.1997,70,197-199.[39]Choi J., Kim Y. H.;, Chang K. J., Tomanek D., Itinerant Ferromagnetism in Heterostructured C/BN Nanotubes [J], Phys. Rev. B2003,67,125421-1-125421-5.[40]Zeng H., Zhi C. Y., Zhang Z., Wei X., Wang X., Guo W., Bando Y., Golberg D.,"White Graphenes":Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping [J], Nano Lett.2010,10,5049-5055.[41]Terrones M.; Charlier J. C.; Gloter A.; Cruz-Silva E.; Terres E.; Li Y. B.; Vinu A. Zanolli Z.; Dominguez J. M.; Terrones H.; Bando Y.; Golberg D., Experimental and Theoretical Studies Suggesting the Possibility of Metallic Boron Nitride Edges in Porous Nanourchins [J], Nano Lett.2008,8,1026-1032.[42]Mohai I.; Mohai M.; BertOti I.; Sebestyen Z.; Nemeth P.; Babievskaya I. Z.; Szepvolgyi J., Formation of Thin Boron Nitride Coating on Multiwall Carbon Nanotube Surfaces [J], Diam. Relat. Mater.2011,20,227-231.[43]Li J. S.; Zhang C. R.; Li B., Preparation and Characterization of Boron Nitride Coatings on Carbon Fibers from Borazine by Chemical Vapor Deposition [J], Appl. Surf. Sci.2011,257,7752-7757.[44]WangW. L.;Bi J.Q.; Sun W. X.; Zhu H. L.; Xu J. J.; Zhao M. T.; Bai Y. J., Facile Synthesis of Boron Nitride Coating on Carbon Nanotubes [J], Mater. Chem. Phys.2010,122,129-132.[45]Gomathi A.; Ramya Harika M.; Rao C. N. R., Urea Route to Coat Inorganic??Nanowires, Carbon Fibers and Nanotubes by Boron Nitride [J], Mater. Sci. Eng., A2008,476,29-33.[46]Chen L.; Ye H.; Gogotsi Y., Carbothermal Synthesis of Boron Nitride Coatings on Silicon Carbide [J], J. Am. Ceram. Soc.2003,86,1830-1837.[47]Chen L.; Ye H.; Gogotsi Y., Synthesis of Boron Nitride Coating on Carbon Nanotubes [J], J. Am. Ceram. Soc.2004,87,147-151.[48]Nag A., Raidongia K., Hembram K. P. S. S., Datta R., Waghmare U. V., Rao C. N. R., Graphene Analogues of BN:Novel Synthesis and Properties [J], ACS Nano,2010,4,1539-1544.[49]Wu J.; Han W. Q.; Walukiewicz W.; Ager Ⅲ J. W.; Shan W.; Haller E. E.; Zettl A., Raman Spectroscopy and Time-Resolved Photoluminescence of BN and BxCyNz Nanotubes [J], Nano Lett.2004,4,647-650.[50]Gorbachev R. V.; Riaz I.; Nair R. R.; Jalil R.; Britnell L.; Belle B. D.; Hill E.W.; Novoselov K. S.; Watanabe K.; Taniguchi T., Hunting for Monolayer Boron Nitride:Optical and Raman Signatures [J], Small,2011,7,465-468.[1]Angus J. C., Hayman C. C., Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases [J], Science,1988,241,913-921.[2]Yang W. S., Auciello O., Butler J. E., Cai W., Carlisle J. A., Gerbi J., Gruen D. M., Knickerbocker T., Lasseter T. L., Russell J. N., Smith L. M., Hamers R. J., DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates [J], Nature Mater.,2002,1,253-257.[3]J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D.J. Twitchen, A.J. Whitehead, S.E. Coe and GA. Scarsbrook, High carrier mobility in single-crystal plasma-deposited diamond [J], Science,2002,297,1670-1672.[4]Manus L. M., Mastarone D.J., Waters E. A., Zhang X. Q., Schultz-Sikma E. A., MacRenaris K. W., Ho D., Meade T.J., Gd(Ⅲ)-Nanodiamond Conjugates for MRI Contrast Enhancement [J], Nano Lett.,2010,10,484-489.[5]Jiang J., Sun L. A., Gao B., Wu Z. Y, Lu W., Yang J. L., Luo Y., Structure dependent quantum confinement effect in hydrogen-terminated nanodiamond clusters [J], J. Appl. Phys.,2010,108,094303-094310.[6]Dimitrov D. A., Busby R., Cary J. R., Ben-Zvi I., Rao T., Smedley J., Chang X., Keister J. W., Wu Q., Muller E., Multiscale three-dimensional simulations of charge gain and transport in diamond [J], J. Appl. Phys.,2010,108,073712-073725.[7]Shames A. I., Panich A. M., Osipov V. Y., Aleksenskiy A. E., Vul A. Y., Enoki T., Takai K., Structure and magnetic properties of detonation nanodiamond chemically modified by copper [J], J. Appl. Phys.,2010,107,014318-014327.[8]Jiang T., Xu K., FTIR study of ultradispersed diamond power synthesized by explosive detonation [J], Carbon,1995,33,1663-1671.[9]Rakha S. A., Yu G. J., Cao J. Q., He S. X., Zhou X. T., Influence of CH4on the morphology of nanocrystalline diamond films deposited by Ar rich microwave plasma [J], J. Appl. Phys.,2010,107,114324-114327.[10]Frenklach M., Kematick R., Huang, D. Howard W., Spear K. E., Phelps A. W., Koba R., Homogeneous nucleation of diamond powder in the gas phase [J], J. Appl. Phys.,1989,66,395.[11]Novikov N. V., New trends in high-pressure synthesis of diamond [J], Diam. Relat. Mater.,1999,8,1427-1432.[12]Shao M. W., Li Q., Wu J., Xie B., Zhang S. Y., Qian Y T., Benzene-thermal route to carbon nanotubes at a moderate temperature [J], Carbon,2002,40,2961.[13]Marshall C. P., Mar G. L., Nicoll R. S, Wilson M. A., Organic geochemistry of artificially matured conodonts [J], Org. Geochem.,2001,32,1055-1071.[14]Xie Y M., Sherwood P. M. A., X-ray photoelectron-spectroscopic studies of carbon fiber surfaces.11. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly(acrylonitrile) and pitch and comparison with various graphite samples [J], Chem. Mater.,1990,2,293-299.[15]Gardner S. D., Singamsetty C. S. K., Booth G. L., He G. R., Surface characterization of carbon fibers using angle-resolved XPS and ISS [J], Carbon,??1995,33,587-595.[16]Chang I. P., Hwang K. C., Chiang C. S., Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging, Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging [J], J. Am. Chem. Soc.,2008,130,15476-15481.[17]Huang L. C. L., Chang H. C., Adsorption and Immobilization of Cytochrome c on Nanodiamonds, Langmuir [J],2004,20,5879-5884.[18]Chung P. H., Perevedentseva E., Tu J. S., Chang C. C., Cheng C. L., Spectroscopic study of bio-functionalized nanodiamonds [J], Diam. Relat. Mater.,2006,15,622-625.[19]Dong Y. W., Tu Z. H., Zhu D. Z., Liu Y. W., Wang Y. N., Huang J. L., Sun B. L. Fan Z. N., Feasibility of using NIR spectroscopy to detect melamine in milk [J], Spectrosc. Spect. Anal.,2009,29,2934-2938.[20]Lejosne J., Mercier G., Mamane V., Fort Y., Mareche J. F., Mcrae E., Valsaque F., Vigolo B., Low degree of functionalization of Single-Walled Carbon Nanotubes probed by highly sensitive characterization techniques [J], Carbon,2011,49,3010-3018.[21]Tsao C. S., Chen C. Y., Small-angle X-ray scattering of carbon-supported Pt nanoparticles for fuel cell [J], Phys.Rev. B,2004,353,217-222.[22]Terrill R. H., Postlethwaite T. A., Chen C. H., Poon C. D., Terzis A., Chen A. D., Hutchison J. E., Clark M. R., Wignall G., Londono J. D., Superfine R., Falvo M., Johnson C. S., Samulski E. T., Murray R. W., Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters [J], J. Am. Chem. Soc.,1995,117,12537-12548.[23]Schaefer D. W., Martin J. E., Wiltzius P., Cannell D. S., Fractal Geometry of Colloidal Aggregates [J], Phys. Rev. Lett.1984,52,2371-2374.[24]Siddaramaiah, Souza F. G., Soares B. G., Parameswara P., Somashekar R., Microstructural behaviors of polyaniline/CB Composites by SAXS [J], J. Appl. Polym. Sci.,2010,116,673-679.[25]Magdassi S., Grouchko M., Berezin O., Kamyshny A., Triggering the sintering of silver nanoparticles at room temperature [J], ACS Nano,2010,4,1943-1948.