基于螺旋电极扭转驱动器的冲击式旋转压电马达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电马达是通过压电体的压电振动把电能转化为机械能的新型换能机构,与传统电机相比,它具有尺寸小、力矩大、结构紧凑、低速、无电磁干扰、断电自锁等优点。它的这些特点适应了当今工业和高科技领域对高精密自动化控制的需求。压电马达从20世纪80年代了兴起到现在,新原理新结构层出不穷开,已成为当前世界范围内的一门新兴前沿课题。本文在研究了一种绕有螺旋电极的新型的压电纤维扭转驱动器的基础上,设计了一种冲击式旋转压电马达结构。
     本文从压电理论出发,理论上研究了压电陶瓷的特性和新型压电纤维扭转驱动器的性能。在深入分析和理解压电扭转驱动器工作机理和冲击式压电马达原理基础上,结合实验,设计了压电马达的机械结构。对冲击式压电马达的结构进行了动力学建模和仿真分析,更深入的理解冲击式压电马达的工作过程以及参数对马达的影响。最后搭建了实验测试平台,对压电马达的特性进行了测量和分析。
     冲击马达原型中使用的扭转驱动器长15mm,直径1mm。马达原型使用锯齿波驱动,可以实现正反转。实验结果表明,当驱动电压的频率在1kHz以下时,马达的转速和驱动频率以及驱动电压幅度成正比。当驱动频率较大时,马达原型呈现较大的非线性,这主要受马达原型中部分机械结构的共振频率影响。实验测得马达在驱动电压幅度峰-峰值为600V、驱动频率为8kHz时获得最大转速,最大转速为90rmp,在1000V、3kHz时获得最大堵转力矩80μNm。
The piezomotor is a newly developed transducer who transforms the electrical energy into mechanical energy through the vibration of piezo element. Compared with tradi-tional motors, it advances in small size, large torque, compact structure, low-speed, free of electromagnetic interference, power-off self-lock and so on. It characteristics adapts to the demand for high precision automatic control in realm of industry and high-tech areas. Piezomotor is birthed in 1970 and progressed up to now, varieties of piezomotor prototypes with new principle and structure keep emerging. It has become a new leading edge of modern world. In this paper, we designed an impact rotary pie-zomotor based on pre-research of a newly developed torsional piezoelectric fiber ac-tuator with helical electrodes on its outer surface.
     In this paper, piezoelectric theory is reviewed at first; then characteristics of pie-zo ceramic and the new torsional piezoelectric fiber actuator is investigated theoreti-cally. Based on the analysis and comprehend to the working mechanism of piezoelec-tric torsional actuator and the principle of impact motor and combined with experi-ments, the mechanical structure of our prototype motor is designed. The dynamic model of the prototype motor is built and its working process is simulated, a new point of view in-depth on the working principle of impact motor and the influence on the output performance of the motor from various parameters could be achieved this way. Finally, an experimental test platform is built up and characteristics of the proto-type piezomotor were measured and analyzed.
     The torsional actuator used in our prototype impact motor is 15mm in length and 1mm in diameter. A saw-shaped signal is used to drive the motor and both clockwise and counter-clockwise rotation could be achieved. Based on the experimental data, the rotational speed of motor is proportional to both driving frequency and amplitude only if the driving frequency is below 1kHz. Nonlinear output performance of prototype motor appears with high frequency drive since mechanical resonant phenomena come out. The maximum rotational speed of motor in experiment which is 90 rpm is achieved with driving frequency of 8kHz and Vpp 600V. The maximum stall torque which is 80μNm is achieved with driving frequency of 3kHz and Vpp 1kV.
引文
[1].赵淳生,朱华. 2008.超声电机技术的发展和应用[J].机械制造与自动化,2008年03期,1-9.
    [2].张福学,王丽坤. 2002.现代压电学(下册)[M].北京:科学出版社. 227.
    [3]. Kenji Uchino,2007,Piezoelectric actuators 2006 [J]. J. Electroceram. DOI 10.1007/s1083 2- 007- 9196 -1.
    [4]. K. Uchino, S. Cagatay, B. Koc, S. Dong, P. Bouchilloux, M. Strauss. 2004. Micro piezoelec-tric ultrasonic motors[J]. Journal of electroceramics. VOL. 13,393-401.
    [5]. T. Hemsel,J. Wallaschek. 2000. State of the art and development trends of ultrasonic linear motor[C]. Proceedings of 2000 IEEE Ultrasonic Symposium, 663-666.
    [6]. Kenji Uchino. 1994. Piezoelectric actuators/ ultrasonic motors - their developments and markets[C]. Proceedings of the IX IEEE International Symposium on Applications of Fer-roelectrics, 319-324.
    [7].陈维山,赵学涛,刘军考,郝铭. 2006.压电超声波马达发展现状及研究方向[J].电机与控制学报.第10卷第5期, 498-502.
    [8].褚祥诚,李龙士. 2001.国外压电陶瓷声马达的发展近况[J].材料导报,第15卷第6期,24-27.
    [9].褚祥诚,严仁博,董蜀湘,李龙士,桂治轮. 2001.国内压电陶瓷声马达的研究现状[J].材料导报,第15卷第5期, 26-29.
    [10]. A. L. W. Williams and W. J. Brown. 1942. Piezoelectric motor [P]. US Patent No. 2439499 (Aug. 20,1942)
    [11]. Takeshi Morita. 2003. Miniature piezoelectric motors[J]. Sensors and Actuators. Vol. 103, No. 3, 291-300.
    [12]. Kenji Uchino. 1998. Piezoelectric ultrasonic motors: overview[J]. Smart Mater. Struct. A Vol. 7, 273-285.
    [13]. Jorg Wallaschek. 1995. Piezoelectric ultrasonic motors[J]. Journal of Intelligent Material Systems and Atructures, Vol. 6, 71-83
    [14]. K. Spanner. 2006. Survey of the various operating principles of ultrasonic piezomotors [C]. Proc. Actuator conference in Bremen Germany, 2006.
    [15].曾平. 2006.摩擦力变化式压电惯性机构的研究[D].吉林大学,机械设计制造及其自动化, 2-10.
    [16].刘建芳. 2005.压电步进精密驱动理论及实验研究[D].吉林大学,机械设计及理论, 2-7.
    [17]. Osamu Koyama, Daisuke Koyama, Kentaro Nakamure, and Sadayuki Ueha. 2008. Ultrasoniclinear motor using traveling vibration on fine ceramic twin ridges [J]. Acoust. Sci. &Tech. Vol. 29, No.1, 95-98.
    [18]. Takeshi Morita, Minoru Kuribayashi Kurosawa, and Toshiro Higuchi. 1998. A cylindrical micro ultrasonic motor using PZT thin film deposited by single process hydrothermal method (φ2.4 mm, L=10 mm stator transducer) [J]. IEEE Transactions on ultrasonics, Ferroelec-trics, and Frequency Control, Vol. 45, No. 5, 1178-1187.
    [19]. Takeshi Morita, Minoru K. Kurosawa, Toshiro Higuchi. 2000. A cylindrical micro-ultrasonic motor (stator transducer size: 1.4mm in diameter and 5.0mm long) [J]. Ultrasonics, Vol. 38, 33-36.
    [20]. Xiangcheng Chu, Li Yang and Longtu Li. 2004. Characteristic analysis of an ultrasonic mi-cromotor using a 3 mm diameter piezoelectric rod [J]. Smart Materials and Structures, Vol.13, 17-23.
    [21]. Takefumi Kanda, Akira Makino, Tomohisa Ono, Koichi Suzumori, Takeshi Morita, Minoru Kuribayashi Kurosawa. 2006. A micro ultrasonic motor using a micro-machined cylindrical bulk PZT transducer [J]. Sensors and Actuators A, Vol. 127, 131-138
    [22]. Hui Zhang, Shu-xiang Doing, Shu-yi Zhang, Tian-hua Wang, Zhong-ning Zhang, Li Fan. 2006. Ultrasonic micro-motor using miniature piezoelectric tube with diameter of 1.0 mm [J]. Ultrasonics, Vol. 44, 603-606.
    [23]. Xiangcheng Chu, Long Ma, Longtu Li. 2006. A disk-pivot structure micro piezoelectric actu-ator using vibration mode B11 [J]. Ultrasonics, Vol. 44, 561-564.
    [24]. Laihui Luo, Hua Zhu and Chunsheng Zhao, Haixia Wang and Haosu Luo. 2007. Cylind-er-shaped ultrasonic motors 4.8 mm in diameter using electroactive piezoelectric materials [J]. Applied Physics Letters 90,052904(2007)
    [25]. Siyuan He, Weishan Chen, Xie Tao, and Zaili Chen. 1998. Standing wave bi-directional li-nearly moving ultrasonic motor [J]. IEEE Transactions on ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 5, 1133-1139.
    [26]. Yongrae Roh, Jaehwa kwon and Susung Lee. 2002. Development of a new standing wave type ultrasonic linear motor [C]. Proc. SPIE, Vol. 4701, 345-352.
    [27]. Yongrae Roh, Jaehwa kwon. 2004. Development of a new standing wave ultrasonic linear motor [J]. Sensors anf Actuators A, Vol. 112, 196-202.
    [28]. Bo Wang, J. Y. Dai, Jifeng Guo. 2007. Standing Wave-type bi-directional linear moving ul-trasonic motor using plates and weak links [C]. Proc. SPIE, Vol. 6423, 64232G1-8.
    [29]. Takehiro Takano, Yoshiro Tmoikawa, and Chiharu Kusakabe. 1992. Same phase drive-type ultrasonic motors using two degenerate bending vibration modes of a disk [J]. IEEE Transac-tions on ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 2, 180-186.
    [30]. J. T. Leinvuo, S. A. Wilson, R. W. Whatmore, M. G. Cain. 2007. A new flextensional piezoe-lectric ultrasonic motor—design, fabrication and characterization [J]. Sensors and Actuators A, Vol. 133, 141-151.
    [31]. Timothy Galante, Jeremy Framk, Julien Bernard, Weiching Chen, George A. Lesieutre and Gary H. Koopmann. 1999. Design, Modeling, and performance of a high force piezoelectric inchworm motor [J]. Journal of Intelligent Material Systems and Structures, Vol. 10, 962-972.
    [32]. Jaehwan kim and Jin-Ho Lee. 2005. Self-moving cell linear motor using piezoelectric stack actuators [J]. Smart Materials and Structures, Vol. 14, 934-940.
    [33]. Weisong Wang, Svetlana Tatic-Lucic, Walter Brown, Jason Iceman, Seungmin Hyun, Richard Vinci. 2008. Precision in-package positioning with a thermal inchworm [J].Sensors and Acturators A,Vol. 142, 316-321.
    [34]. Sang-Chae Kim and Soo Hyun Kim. 1999. Precise rotary motor by inchwrom motion using dual wrap belts [J].Review of Science Instruments, Vol. 70, No. 5. 2546-2550.
    [35].范尊强,吴博达,杨志刚,程光明. 2005.电磁箝位型压电精密步进旋转驱动器[J].吉林大学学报(工学版),Vol.35, No. 6, 601-605.
    [36]. T. Higuchi, Y. Yamagata, K. Furutani, and K. Kudoh. 1987. Precise positioning mechanism utilizing rapid deformation of piezoelectric elements [C]. IEEE, 222-226.
    [37]. J. Mendes, M. Nishimura, K. Tomizawa, Y. Yamagata, and T. Higuchi. 1996. Printed board positioning system using impact drive mechanism [C]. Proceedings of the SICE Annual Conference, 1123-1128.
    [38]. Hyun-Phill Ko, Sangsig Kim, Sergjus N. Borodinas, Piotr E. Vasilijev, Chong-Yun Kang, Seok-Jin Yoon. 2006. A noval tiny ultrasonic linear motor using the radial mode of a bimorph [J]. Sensors and Actuators A, Vol. 125, 477-481.
    [39]. Kyong-Jae Lee, Hyun-Phill Ko, Chong-Yun Kang, Hyun-Jai Kim, Seok-Jim Yoon, Sahn Nahm. 2006. A study on the friction and thrust force of the shaft and mobile element in the impact typed piezoelectric ultrasonic linear motor [J]. J. Electroceram, Vol. 17, 499-503.
    [40]. Kee-Joe Lim, Jong-Sub Lee, Seong-Hee Park, Seong-Hwa Kang, Hyun-Hoo Kim. 2007. Fa-brication and characteristics of impact type ultrasonic motor [J]. Journal of the European Ce-ramic Society, Vol. 27, 4159-4162.
    [41].姜楠,刘俊标,方光荣,韩立. 2007.惯性冲击式压电微电机的研究[J].压电与声光,第29卷第2期,187-189.
    [42].金家楣,时运来,李玉宝,赵淳生. 2008.新型惯性式直线超声压电电机的运动机理及实验研究[J].光学精密工程,第16卷第12期, 2371-2377.
    [43]. Takeshi Morita, Ryuichi Yoshida, Yasuhiro Okamoto, Minoru Kuribayashi Kurosawa, and Toshiro Higuchi. 1999. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator [J]. IEEE Transactions on ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, No. 6, 1439-1445.
    [44]. C. L. Pan, Z. H. Feng, Y. T. Ma, and Y. B. Liu. 2008. Small torsional piezoelectric fiber actuators with helical electrodes [J]. Applied Physics Letters 92, 012923 (2008).
    [45]. C. L. Pan, Y. T. Ma, Y. B. Liu, Q. Zhang, Z. H. Feng. 2008. Trosical displacement of piezoe-lectric fiber actuator with helical electrodes [J]. Sensors and Actuators A, Vol. 148, 250-258.
    [46].赵淳生. 2007.超声电机技术及应用[M].北京:科学出版社,130-136.
    [47]. IEEE Standard on Piezoelectricity.1988.The Institute of Electrical and Electronic Engineers, Inc.
    [48]. C. Kim, T. Jessen, V. DeGiorgi, B. Bender, C. C. Wu. 1997. Composite Piezoelectric Assem-blies for Torsional Actuators [R]. Report number: NRL/MR/6308-97-7997.
    [49]. Yoshiaki Fuda, and Tetsuo Yoshida. 1994. Piezoelectric torsional actuator [J]. Ferroelectrics, Vol. 160, 323-330.
    [50]. A. E. Glazounov, Q. M. Zhang, C. Kim. 2000. Torsional actuator based on mechanically am-plified shear piezoelectric response. Sensors and Actuators, Vol. 79, 22-30.
    [51]. Dean Karnopp. 1985. Computer simulation of stick-slip fraction in mechanical dynamic systems [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. Vol. 107, No. 1, 100-103.
    [52]. D. A. Haessig, Jr., B. Friedland. 1991. On the modeling and simulation of frication [J]. Transactions of the ASME, Vol. 113, 354-362.
    [53]. Sang-Chae Kim, Soo Hyun Kim. 2000. A precision linear actuator using piezoelectrically dricen friction force. Mechatronics, Vol. 11, 969-985.
    [54].杨世文,郑慕侨. 2002.摩擦力非线性建模与仿真[J].系统仿真学报,第14卷第10期,1365-1368.
    [55].王毅,何朕,苏宝库. 2004.摩擦模型的Simulink仿真[J].电机与控制学报,第8卷第1期,60-62.
    [56].段智勇,王庆康,费继承. 2004.一种压电纳米马达的运动动力学分析[J].机器人,第26卷第4期,306-309.
    [57].卢秋红,颜国正. 2004.基于粘-滑摩擦力模型的微型压电驱动器动力学分析[J].第38卷第8期,1328-1330.