回转式微动压电电动机及其驱动电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微驱动、定位技术是当今世界各国研究的热点问题,是纳米测量及加工技术中的关键技术之一,而微位移致动器则是微驱动、定位系统中的重要组成部分。压电陶瓷致动器是目前微位移技术中比较理想的驱动元件,它的出现开创了精度进入纳米级的新时代。
     本文研究的课题是:回转式微动压电电动机及其驱动电源的研究。其主要内容和创新点包括:
     1、系统地介绍了压电陶瓷的性能参数、压电元件等内容。
     2、着重阐述了回转式微动压电电动机的运动原理、柔性铰链的基本概念、直圆单轴柔性铰链绕z轴的转动刚度、总体机械结构设计、驱动电源设计、控制系统设计以及性能测试实验。结构设计方面,采用压电微驱动器结合柔性铰链的结构,加大了推力和夹紧力,同时放大了压电晶体的位移,实现了单步微角度回转运动;根据尺蠖运动(Inchworm motion)原理,采用“推—拉”接力运动原理,配以适当的四路驱动信号,使压电电动机实现连续平稳的转动。系统控制方面,通过单片机系统产生四路信号,经驱动电源直流放大后加载到压电陶瓷微位移器上。控制程序采用C51软件编程,以中断方式实现波形控制。
     3、对压电陶瓷驱动器电源的作用原理、设计特点及分类进行了介绍,并给出了压电陶瓷驱动器的电源设计要求、方法、电路及实验波形以及驱动能力测试实验数据。该电源放大倍数为63倍,输出电流60mA。同时对压电陶瓷进行的动态驱动实验表明,在输入三角波、方波等动态信号时,该驱动电源可以很好地跟随输入波形的变化,实现了输入电压为0~5V时,输出电压在0~280V范围内连续可调。具有1.575V的分辨率和较为理想的静特性。并且该电源在100KHz范围内具有良好的频响特性。该电源输出电压稳定,分辨率高,静态纹波低,动态性能好,同时PA85及其外围电路具有过压、过流、短路保护等功能。其电路结构简单,可靠性高,具有很高的实用价值。
     4、实验结果表明:微角度压电电动机的运动位移是线性的,最小步距优于3",在160V的驱动电压下速度达到430.4"/s。
Micro-driving and positioning are one of the hottest research topics all over the world and the key of nano-measurement and nano-fabrication. Micro-displacement actuator is the important part of the system of micro-driving and micro-positioning. At present, piezoelectric ceramic actuator is relatively perfect driving element in micro-displacement technology. Its appearance inaugurates new times of precision of nanometer.
     In this dissertation, study on the rotatory piezoelectric motor with micro-angle and its driving power. The main contents innovative points include:
     1. Piezoelectric effect, piezoelectric equation and performance parameter of piezoelectric ceramic are introduced.
     2. The principle of rotary piezoelectric motor, the basic conception of flexible joint, the running inflexibility of straight or round flexible joint, the mechanical structure design, the design of driving power, the controlling system and character testing experiments of piezoelectric micro-angle motor are expatiated in emphasis. In structure design, the structure of rotary motor model which adopts compliant mechanisms, not only increases thrust and clamp force, but also magnifies the displacement of piezoelectric ceramic. In this way, the micro-angle with single step comes true. With the principle of push-and-pull relay movement which is improved from the principle of inchworm motion and proper four-channel driving signals, PZT platform can move continuously and smoothly. As to controlling system, the four-channel signals from MCU are output to DC amplifier to be amplified and then loaded to PZT platform. The software is programmed with C51 and the period of waveform is controlled in the interrupt mode.
     3. The principle, design point and sort of power supply of piezoelectric ceramic are also introduced. Design demand, method, circuit, experiment wave and testing parameters of power supply are given. In the design of power supply of PZT, the supply magnifies and stabilizes voltage directly, which has a amplification of 63 and the current is 60 mA. Experiments show that when input signals are dynamic, such as triangle wave or square wave, its output can follow input very well. The supply may adjust the voltage output continuously from 0~280V when the input ranges from 0V to 5V, with the resolution of 1.575V. The frequency response of the driving power is 100KHz. All these show that the power supply has a stable voltage output, with high
引文
[1]孙宝玉,林洁琼,梁淑卿,王登月,压电式微定位机构及其控制系统的研究,压电与声光,2005(4),27(2):139~141
    [2]高思田,王春艳,叶孝佑,徐毅,纳米技术与纳米测量,现代计量测试,2000.1:3~12
    [3]王建林,纳米定位机构及其控制系统的研究,机械设计与研究,2001,17(2): 34~35
    [4]褚祥诚,李龙土,国外压电陶瓷声马达的发展近况,材料导报,2001,15(6):24~27
    [5]Higuchi T.,yamagata Y.,Micro impact drive mechanism,Int J. Japan Soc Eng.1999,33(2),75~78
    [6]王建林,胡小唐,纳米定位技术研究现状,机械设计与研究,2000(1):43~44
    [7]J.Park,etal,Design of miniature parallel manipulators for integration in a self-propelling endoscope,Sensors and actuators,A 90,2001,192~202
    [8]Lianna He,etal,Nanoscale positioning for magnetic recording,Sensors and actuators,A 81 ,2000,192~202
    [9]李勇,蠕动式压电/电致伸缩微进给定位机构的研究进展,中国机械工程, 1999,10(12):1410~1412
    [10]陈大任,压电陶瓷微位移驱动器概述,电子元件与材料,1994,13(1):2~7
    [11]徐永利,李尚平,陶瓷驱动器的发展与展望,功能材料,2000,31(B05): 28~31
    [12]Ryu J W,Lee S Q,Gweon D G,et a1,Inverse Kinematics Modeling of a Coupled Flexure Hinge Mechanism,Mechatronics,l999,9:657~674
    [13]张福学等,现代压电学(中、下),北京:科学出版社,2001,105~200,304~306
    [14]谭永琳,孙涛,压电陶瓷微驱动器用于超精定位的技术研究,压电与声光,1999,21(6):493~497
    [15]费继承,王庆康,万永中,段智勇,压电线性马达与纳米马达,压电与声光,2003,25(4):295~298
    [16]Yasuhiro Takaya et al., Fundamental Study on the New Probe Technique,Measurement,1999,25(1):9~18
    [17]Wei Gao, Robert J. Hochen ,et al., Construction and testing of a nanomachining instrument, Precision Engineering,2000,24:320~328
    [18]Mike Holmes, Robert Hocken, David Trumper, The long-range scanningstage:a novel platforn for scanned-probe microscopy, Precision Engineering, 2000,24:191~209
    [19]过蝶农,尺蠖型压电微位移驱动器—一种新型的线性步进马达,上海硅酸盐,1990,(3):162~166
    [20]Michele Pozzi, Tim King, Piezoelectric Actuators in Micro-positioning, Engineering Science and Education Journal, February 2001:31~36
    [21]Shuxiang Dong, Longtu Li, A New Type of Linear Piezoelectric Stepper Motor, IEEE 1995, Vol.18, No.2:257~260
    [22]R.Le Letty, F.Claeyssen, New Linear Piezomotors for Force/Precise Positioning Applications,IEEE 1998:214~216
    [23]王建林等,压电陶瓷用于纳米定位系统的研究,航空精密制造技术,Vol.32,No.2,1997:8~9
    [24]刘品宽,孙立宁,曲东升等,新型二维纳米级微动工作台的动力学分析,光学精密工程,2002,10(2):143~147
    [25]万德安,刘春节,汲长志,精密小转矩加载机构的研制,机械设计,2004,8,21(8):20~22
    [26]杨志刚,刘建芳,程光明,范尊强,王忠伟,压电型步进旋转精密驱动器研究,压电与声光,2004,12,26(4):454~456
    [27]张玉祥,大行程纳米级驱动压电马达的研究,天津大学硕士学位论文,2002
    [28]赵美蓉,温丽梅,林玉池等,大行程纳米级步距压电电动机,机械工程学报,2004,40(8):119~122
    [29]龚芙,回转式微角度装置,天津大学学士论文,1994
    [30]吴大方,刘安成,麦汉超,房元鹏,压电智能柔性梁振动主动控制研究,北京航空航天大学学报,2004,2,30(2):160~163
    [31]郑伟智,辛洪兵,赵罘,压电驱动微位移放大机构的设计,机械科学与技术,2003,11,22(6):966~967
    [32]吴鹰飞,周兆英,柔性铰链转动刚度计算公式的推导,仪器仪表学报,2004,25(1):125~128
    [33]陈晓南,袁丛清,杨培林,庞宣明,微柔顺装置及其力学分析,应用力学学报,2004,12,21(4):122~124
    [34]王纪武,典型柔性铰链精度性能的研究[J],清华大学学报,2001,41(11):49-52
    [35]薛实福, 李庆祥,精密仪器设计,北京: 清华大学出版社, 2000
    [36]李玉和,李庆祥,陈璐云,白立芬,单轴柔性铰链设计方法研究[J],清华大学学报,2002,42(2)
    [37]Ma Haoquan,Hu Dejin,Zhang Kai,Micro-displacement amplifying mechanism driven by piezoelectric actuator,76~79
    [38]王洪福,曲东升,孙立宁,祝宇虹,两自由度柔性臂压电陶瓷抑振方案优化设计,压电与声光,2003,4,25(2):118~121
    [39]于思远,林滨,韩雪松等,纳米级压电陶瓷微位移系统的研究,天津大学学报,2000 年 7 月第 33 卷第 4 期:537~540
    [40]Newnhan R E,Gregory R R,Electromechanical properties of smart materials,Journal of Intelligent Material Systems and Structures,4(7):289~294
    [41] [英]J.范兰德拉特,R.E.塞德林顿,压电陶瓷,北京:科学出版社.1981,4~17
    [42] [英]J.范兰德拉特,R.E.塞德林顿,压电陶瓷,北京:科学出版社.1981,4~17
    [43]温丽梅,大行程压电电动机驱动控制系统的研究,天津大学硕士学位论文,2005
    [44]李华,MCS-51 系列单片机实用接口技术,北京航空航天大学出版社,1993
    [45]齐永岳,大范围二维纳米检测系统的设计研究,天津大学硕士学位论文,2003
    [46]马忠梅,籍顺心,张凯,马岩,单片机的 C 语言应用程序设计,北京航空航天大学出版社,1999
    [47]尹德芹,颜国正,颜德田等,压电陶瓷动态应用的新型驱动电源研究,压电与声光,2000 年 4 月第 22 卷第 2 期:86~89
    [48]刘放,张士邈,陈明,压电陶瓷驱动电源及其在激光陀螺扫模中的应用,理论与实践,2001年第21卷第2期:6~13
    [49]赵建伟,孙徐仁,田莳,低频压电陶瓷驱动器驱动电源研制,压电与声光,2002年4月第24卷第2期:107~110
    [50]Precision high-voltage regulator, National Semiconductor, Linear Applications Handbook, 1991:1158
    [51]荣伟彬,曲东升,祝宇虹等,集成式微操作器控制系统的研制,电气自动化,2003 年第 25 卷第 2 期,13~16
    [52]荆阳,雒建斌,杨文言, 压电陶瓷微致动器的制作及驱动行为研究,兵工学报,2005,1,26(1):77~81
    [53]李福良,张辉,基于PA85的新型压电陶瓷驱动电源,电子质量,集成电路与元器件卷,2004,1
    [54]李云燕,胡传荣,试验设计与数据处理,化学工业出版社,2005,3