高振荡问题的高效数值算法研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高振荡问题广泛出现于科学工程计算诸多领域.它同时也是一类被公认为非常难的国际热点前沿研究课题,存在许多挑战性问题.近几十年来,这类问题也获得了众多专家学者的极大关注.本篇博士论文由两部分组成.第一部分研究几类高振荡奇异积分的计算问题,为了克服奇异性和高振荡特征带来的困难,我们在现有方法的基础上采用不同的变换或技巧,设计可行的方法来获取高效的积分法则;第二部分我们利用微分方程技巧推导了几类超几何函数关于参数的导数,这些导数不仅在高振荡奇异积分的计算中有着重要的应用,而且在数学、物理或相关领域中扮演着非常重要的角色.鉴于此,本文具体工作组织如下:
     第一章分别从高振荡积分、高振荡常微分或偏微分方程、高振荡积分方程几个方面简单介绍了高振荡问题的研究背景和研究意义.
     第二章对于几类高振荡积分,我们回顾了迄今为止发展的数值积分方法,如渐近方法、Filon方法、Filon型方法、Levin方法、Levin型方法、广义积分法则、数值最速下降法以及其它数值方法.
     第三章,我们给出三种方法计算一类高振荡代数奇异积分.一种是先把这类积分通过换元转化为区间[1,∞)上的无穷积分,然后根据极限和复积分法的思想,将数值最速下降法推广到这类无穷积分的计算,并作出了误差分析和给出了相应的渐近阶.这种方法具有成本低收敛速度快的优势.然而,它的不足在于要求函数f(x)在某个区域内解析.接下来我们考虑放宽这种限制条件.我们首先把原积分经过两次代换转化到标准区间[-1,1]上,然后将转化后的积分展开为关于w的负幂次的渐近级数.基于这个渐近级数,我们提出两种方法.一种是Filon型方法.另一类是借用特殊Hermite插值(只需在端点1上导数插值,其它Clenshaw-Curtis点上线性插值)以及递推关系式的Clenshaw-Curtis-Filon型方法,并讨论了这类方法的收敛性和误差阶.这种Clenshaw-Curtis-Filon型方法可经过O(N log N)次运算量快速稳定实现.后两种方法只需f(x)在区间[0,1]上光滑即可.这些方法具有共同特点:精度会随着频率w的增加迅速提高.
     第四章,针对含有端点弱奇异性的高振荡积分,我们分别提出了三种数值计算方法.第一种是在渐近展开式的基础上,以x-a,b-x或两者结合为底的幂函数作为基函数的Filon型方法.第二种,我们利用Chebyshev多项式作为基函数,应用特殊的Hermite插值(需要在两个端点α,b上导数插值,其它Clenshaw-Curtis点上线性插值),给出相应的Clenshaw-Curtis-Filon型方法,并作出了收敛性分析和给出了误差界.第三种方法是基于解析延拓,首先设计合适的最速下降路径,然后利用广义Gauss Lagurre积分法则来高效实现的数值最速下降方法.这三种方法各有优劣,相互补充.
     第五章,我们设计一种Chebyshev展开式法计算一类振荡或奇异积分.它们的核函数G(x)是代数型或对数型奇异性因式的乘积.这类方法是基于f的Chebyshev展开式,Chebyshev多项式的一些性质以及振荡因子eiwx的Bessel-Chebyshev展开式提出来的.由于修正矩的递推关系的向前递推和向后递推都是数值稳定的,这使得算法的实现相当简单.特别地,我们考虑了许多不同的核函数G(x),这凸显了这种方法应用广泛的优势.
     第六章,基于对高斯超几何微分方程和合流超几何函数微分方程分别取参数的导数,我们提出一种有效的微分方程方法来推导高斯超几何函数和Kummer合流超几何函数关于参数的导数公式.特别地,借助这种微分方程方法,通过使用对s的数学归纳法,我们推导出了对参数的任意s阶导数的通用解析表达式.而且,我们获得两个非齐次线性微分方程,再联合一些作为初始条件的低阶混合导数,可递归产生高阶混合导数.进一步来说,我们将这种微分方程方法推广到更为复杂的广义超几何函数mFn(a1,...,am;b1,...,bn;z)的形式,并推导出其对参数的任意s阶导数的公式.最后简要介绍了这些导数在数学、物理中的一些应用.
Highly oscillatory problems arise in wide and many areas of sci-ence and engineering. They are widely perceived as not only extremely challenging significant research topics, but also frontier and hot sub-jects around the world. And, they receive significant attention of the experts and scholars in recent decades. This doctoral thesis consists of two parts. The first one is devoted to the problems of computing several types of highly oscillatory singular integrals. The singularities and possible high oscillations of the integrands make these integrals very difficult to approximate accurately. In order to overcome some problems that usually appear in the case when the integrands are both singular and oscillating, we shall design feasible methods and obtain efficient integration rules, owing to existing methods and dif-ferent techniques. In the second part, based on differential equations, we will propose a general method to derive some derivatives of lower or high order of several types of hypergeometric functions with respect to parameters. Such derivatives play important roles in the calculation of highly oscillatory singular integrals and other mathematics, physics and related fields. The outline of this thesis is organized as follows.
     In Chapter1, the research background and significance is intro-duced on highly oscillatory problems from aspects of highly oscillatory integrals, ODEs, PDEs and integral equations.
     In the second chapter, for several types of highly oscillatory inte-grals, we mainly review some efficient numerical methods developed so far, such as Asymptotic methods, Filon methods, Filon-type methods, Levin methods, Levin-type methods, generalized quadrature rules, nu-merical steepest descent methods and other numerical methods.
     Chapter3is concerned with the numerical evaluation of a class of oscillatory singular integrals. We presents some quadrature meth-ods for such integrals. The integrals can be first transformed into the infinite integral without algebraic singularity by a change of variable. A numerical steepest descent method can be generalized to the highly oscillatory integral on a infinite range by choosing limit of proper inte-gral. Meanwhile, we provide error analysis for the first method. The method has several merits, such as low cost and fast convergent rate. However, the method requires that f(x) is analytic in a small neigh-borhood. Then, we relax the strict requirement until more general applicable approaches can be obtained for just sufficiently smooth f on [0,1]. We first expand such integrals derived by two transforma-tions, into asymptotic series in inverse powers of the frequency ω. Then, based the asymptotic series, two methods are presented. One is the Filon-type method. The other is the Clenshaw-Curtis-Filon-type method which is based on a special Hermite interpolation polyno-mial in the Clenshaw-Curtis points and can be evaluated efficiently in O(N log N) operations, where N+1is the number of Clenshaw-Curtis points in the interval of integration. Also, we give error and convergence analysis of the latter two methods. All these methods complement each other but share the advantageous property that their accuracy improves greatly when w increases.
     In Chapter4, we design some quadrature methods for a class of highly oscillatory integrals whose integrands may have singularities at the two endpoints of the interval. One is a Filon-type method based on the asymptotic expansion. The other is a Clenshaw-Curtis-Filon-type method which is based on a special Hermite interpolation polynomial. In addition, we derive the corresponding error bound in inverse powers of the frequency ω and show uniform convergence for the Clenshaw-Curtis-Filon-type method for the class of highly oscillatory integrals. The third method is a numerical steepest descent method based on substituting the original interval of integration by the paths of steepest descent, which can be efficiently computed by using the generalized Gauss Laguerre quadrature rule. These methods have relative merits and disadvantages and can complement each other.
     In the fifth chapter, we present a general method for computing oscillatory integrals, whose kernel function G is a product of singu-lar factors of algebraic or logarithmic type. Based on a Chebyshev expansion of f and the properties of Chebyshev polynomials, the pro-posed method for such integrals is constructed with the help of the expansion of the oscillatory factor eιωχ. What is more important, the required moments satisfy recurrence relations that are stable in either forward or backward direction, which makes the whole algorithm quite simple. We consider many different kernel functions G(x), which is a big advantage of the presented approach.
     Chapter6first shows a method to derive some differentiation for-mulas of both the Gauss hypergeometric function2F1(μ,ν;λ;z) and the Kummer confluent hypergeometric function1F1(μ;ν;z) with re-spect to all parameters. A differential equation method can be con-structed, which is based on differentiating the hypergeometric differen-tial equation and the confluent hypergeometric (Kummer) differential equation with respect to parameters. In particular, thanks to the differential equation method, some general analytical expressions of any s-th derivatives with respect to single parameter can be deduced by induction in s. Moreover, we obtain the resulting two nonhomo-geneous linear differential equations which together with the initial conditions being supplied by some mixed derivatives of lower order, can recursively generate all the mixed derivatives of higher order very conveniently. Furthermore, the differential equation method can be extended to obtain any s-th derivatives of generalized hypergeomet-ric functions mFn(α1,...,αm;b1,...,bn;z) with respect to parameters. Meanwhile, a study of such derivatives is motivated by the occurrence of these problems in mathematics, physics and other related fields.
引文
[1]M.J. Ablowitz and A.S. Fokas, Complex Variables:Introduction and Appli-cations, Cambridge University Press, Cambridge,2003.
    [2]M. Abramowitz and LA. Stegun, Handbook of Mathematical Functions, Washington, DC:National Bureau of Standards,1964.
    [3]A.D. Alhaidari, E.J. Heller, H.A. Yamani and M.S. Abdelmonem, The J-Matrix Method:Developments and Applications, Springer,2008.
    [4]B.K. Alpert and V. Rokhlin, A Fast Algorithm for the Evaluation of Leg-endre Expansions, SIAM, J. Sci. Statist. Comput.12 (1991),158-179.
    [5]S. Altinbasak, M. Condon, A. Deano and A. Iserles, Highly oscillatory diffusion-type equations, DAMTP Tech. Rep.2011/NA14.
    [6]G. Ariel, B. Engquist and R. Tsai, A multiscale method for highly oscillatory ordinary differential equations with resonance, Math. Comp.78 (2009),929-956.
    [7]A. Asheim and D. Huybrechs, Local solutions to high frequency 2D scatter-ing problems, J. Comput. Phys.229 (2010) 5357-5372.
    [8]A. Averbuch, E. Braverman, R. Coifman, M. Israeli and A. Sidi, Efficient computation of oscillatory integrals via adaptive multiscale Local Fourier Bases, Applied and Computational Harmonic Analysis 9 (2000),19-53.
    [9]A. Averbuch, E. Braverman, M. Israeli and R. Coifman, On efficient com-putation of multidimensional oscillatory integrals with local Fourier bases, Nonlinear Analysis 47 (5) (2001),3491-3502.
    [10]NIST Handbook of Mathematical Functions, Digital Library of Mathemati-cal Functions, Chapter 8:Incomplete Gamma and Related Functions, Sub-section 8.19:Generalized Exponential Integral.
    [11]A.W. Babister, Transcendental Functions Satisfying Nonhomogeneous Lin-ear Differential Equations, Macmillan, New York,1967.
    [12]C.T.H. Baker, A perspective on the numerical treatment of Volterra equa-tions, J. Comput. Appl. Math.125 (2000),217-249.
    [13]N.S. Bakhvalov and L.G. Vasil'eva, Evaluation of the integrals of oscillating functions by interpolation at nodes of Gaussian quadrature, USSR Comput. Math. Math. Phys.8 (1968),241-249.
    [14]G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput.27 (2005),553-574.
    [15]N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston,1975.
    [16]J.P. Boyd, Chebyshev and Fourier Spectral Methods, New York:Dover Pub-lications,2000.
    [17]H. Brunner, A. Iserles and S.P. Nφsett, Open problems in the computational solution of Volterra functional equations with highly oscillatory kernel. Isaac Newton Institute:HOP 2007:Effective Computational Methods for Highly Oscillatory Solutions,2007.
    [18]Y. A. Brychkov, Handbook of special functions:derivatives, integrals, series and other formulas, CRC Press,2008.
    [19]H. Brunner, P.J. Davies and D.B. Duncan, Discontinuous Galerkin approx-imations for Volterra integral equations of the first kind, IMA J. Numer. Anal.29 (2009),856-881.
    [20]H. Brunner, On the numerical solution of first-kind Volterra integral equa-tions with highly oscillatory kernels, Isaac Newton Institute, HOP 13-17, September,2010:Highly Oscillatory Problems:From Theory to Applica-tions.
    [21]H. Buchholz, The Confluent Hypergeometric Function, Springer-Verlag, Berlin,1969.
    [22]M.P. Calvo and J.M. Sanz-Serna, Heterogeneous multiscale methods for mechanical systems with vibrations, SIAM J. Sci. Comput.32 (2010),2029-2046.
    [23]S.N. Chandler-Wilde and D.C. Hothersall, Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane, J. Sound Vibration 180 (1995),705-724.
    [24]P. Chartier, A. Murua and J.M. Sanz-Serna, Higher-order averaging, formal series and numerical integration I:B-series, Found. Comp. Math.10 (2010), 695-727.
    [25]Y.K. Chembo, L. Larger and P. Colet, Nonlinear dynamics and spectral sta-bility of optoelectronic microwave oscillators, IEEE J. Quantum Electronics 44 (2008),858-866.
    [26]R. Chen and S. Xiang, Note on the homotopy perturbation method for mul-tivariate vector-value oscillatory integrals, Appl. Math. Comput.215 (2009), 78-84.
    [27]R. Chen and S. Xiang, A parameter method for computing highly oscillatory integrals, Comput. Math. Appl.58 (2009) 1830-1837.
    [28]R. Chen, S. Xiang and Y. Zhou, A parameter method for computing highly oscillatory integrals, Comput. Math. Appl.58 (2009),1830-1837.
    [29]R. Chen and S. Xiang, Note on the homotopy perturbation method for mul-tivariate vector-value oscillatory integrals, Appl. Math. Comput.215 (2009), 78-84.
    [30]R. Chen, Numerical approximations to integrals with a highly oscillatory Bessel kernel, Appl. Numer. Math.62 (2012),636-648.
    [31]K.C. Chung, G.A. Evans and J.R. Webster, A method to generate gen-eralized quadrature rules for oscillatory integrals, Appl. Numer. Math.34 (2000),85-93.
    [32]C.W. Clenshaw and A.R. Curtis, A method for numerical integration on an automatic computer, Numer. Math.2 (1960),197-205.
    [33]D. Cohen, T. Jahnke, K. Lorenz, and C. Lubich, Numerical integrators for highly oscillatory Hamiltonian systems:a review.
    [34]D. Cohen, E. Hairer and C. Lubich, Modulated Fourier expansions of highly oscillatory differential equations, Found. Comput. Math.3 (2003),327-345.
    [35]D. Cohen, Analysis and numerical treatment of highly oscillatory differential equations, Doctoral Thesis, Univ. de Geneve (2004).
    [36]D. Cohen, E. Hairer and C. Lubich, Numerical energy conservation for multi-frequency oscillatory differential equations, BIT Numer. Math.45 (2005), 287-305.
    [37]D. Cohen, Conservation properties of numerical integrators for highly oscil-latory Hamiltonian systems, IMA J. Numer. Anal.26 (2006),34-59.
    [38]D. Cohen and M. Sigg, Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations, Numer. Math.121 (2012), 1-29.
    [39]M. Condon, A. Deano and A. Iserles, On asymptotic-numerical solvers for differential equations with highly oscillatory forcing terms, DAMTP Tech. Rep.2009/NA05.
    [40]M. Condon, A. Deano and A. Iserles, On highly oscillatory problems arising in electronic engineering, M2AN 43 (2009),785-804.
    [41]M. Condon, A. Deano and A. Iserles, On second order differential equations with highly oscillatory forcing terms, Proc. Royal Soc. A.466 (2010),1809-1828.
    [42]M. Condon, A. Deano and A. Iserles, On systems of differential equations with extrinsic oscillation, Discr. and Cont. Dynamical Sys.28 (2010),1345-1367.
    [43]M. Condon, A. Deano, J. Gao and A. Iserles, Asymptotic solvers for ordi-nary differential equations with multiple frequencies, DAMTP Tech. Rep. 2011/NA11.
    [44]M. Condon, A. Deano, A. Iserles and K. Kropielnicka, Efficient computa-tion of delay differential equations with highly oscillatory terms, M2AN 46 (2012),1407-1420.
    [45]M. Condon, A. Deano, J. Gao and A. Iserles, Asymptotic solvers for second-order differential equation systems with multiple frequencie, DAMTP Tech. Rep.2012/NA03.
    [46]A.B. Olde Daalhuis, "Confluent Hypergeometric Functions" and "Hyper-geometric function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press,2010.
    [47]G. Dahlquist and A. BjOrck, Numerical Methods in Scientific Computing, Philadelphia, PA:SIAM,2007.
    [48]K.T.R. Davies, M.R. Strayer, and G.D. White, Complex-plane methods for evaluating highly oscillatory integrals in nuclear physics,I. J. Phys. G:Nucl. Phys.14(7) (1988),961-972.
    [49]P.J. Davies and D.B. Duncan, Stability and convergence of collocation schemes for retarded potential integral equations, SIAM J. Numer. Anal. 42 (2004),1167-1188.
    [50]P.J. Davis and P. Rabinowitz, Methods of Numerical Integration, Second Edition, Academic Press,1984.
    [51]F. De Hoog and R. Weiss, On the solution of Volterra integral equations of the first kind, Numer. Math.21 (1973),22-32.
    [52]A. Deano and D. Huybrechs, Complex Gaussian quadrature of oscillatory integrals, Numer. Math.112 (2009),197-219.
    [53]P. Debye, Naherungsformeln fur die Zylinderfunktionen fur grosse Werte des Arguments und unbeschrankt veranderliche Werte des Index, Math. Anal. 67 (1909),535-558.
    [54]V. Dominguez, I.G. Graham and V.P. Smyshlyaev, A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scatter-ing, Numer. Math.106 (2007),471-510.
    [55]V. Dominguez, I.G. Graham and V.P. Smyshlyaev, Stability and error esti-mates for Filon-Clenshaw-Curtis rules for highly-oscillatory integrals, IMA J. Numer. Anal.31(4) (2011),1253-1280.
    [56]D. Elliott, Error analysis of an algorithm for summing certain finite series, J. Australian Math. Soc.8 (1968),213-221.
    [57]B. Engquist, Y.T. Hou, Particle method approximation of oscillatory so-lutions to hyperbolic differential equations, SIAM J. Numer. Anal.26(2) (1989),289-319.
    [58]B. Engquist and J.G. Liu, Numerical methods for oscillatory solutions to hyperbolic problems, Comm. Pure Appl. Math.46(10) (1993),1327-1361.
    [59]B. Engquist, E.R. Luo, New coarse grid operators for highly oscillatory coefficient elliptic problems, J. Comput. Phys.129(2) (1996),296-306.
    [60]B. Engquist, E.R. Luo, Convergence of a multigrid method for elliptic equations with highly oscillatory coefficients, SIAM J. Numer. Anal.34(6) (1997),2254-2273.
    [61]B. Engquist and O. Runborg, Computational high frequency wave propa-gation, Acta Numer.12 (2003),181-266.
    [62]B. Engquist and L.X. Ying, Fast directional multilevel algorithms for oscil-latory kernels, SIAM J. Sci. Comput.29(4) (2007),1710-1737.
    [63]B. Engquist and L.X. Ying, A fast directional algorithm for high frequency acoustic scattering in two dimensions, Comm. Math. Sci.7 (2009),327-345.
    [66]A. Erdelyi, Asymptotic representations of Fourier integrals and the method of stationary phase, J. Soc. Ind. Appl. Math.3 (1955),17-27.
    [65]A. Erdelyi, Asymptotic Expansions, Dover, New York,1956.
    [66]A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Trascendental Functions Vols. Ⅰ-Ⅲ, McGraw-Hill, New York,1953.
    [67]G.A. Evans and K.C. Chung, Some theoretical aspects of generalised quadrature methods, J. Complexity 19 (2003),272-285.
    [68]G. A. Evans and J.R. Webster. A high order, progressive method for the evaluation of irregular oscillatory integrals, Appl. Numer. Math.23 (1997), 205-218.
    [69]G. A. Evans and J. R. Webster, A comparison of some methods for the evaluation of highly oscillatory integrals, J. Comput. Appl. Math.112 (1999), 55-69.
    [70]E. Fatemi, B. Engquist and S. Osher, Numerical solution of the high fre-quency asymptotic expansion for the scalar wave equation, J. Comput. Phys. 120(1) (1995),145-155.
    [71]X. Feng and H. Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave number, SI AM J. Numer. Anal.47 (2009),2872-2896.
    [72]X. Feng and H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comput.80 (2011),1997-2024.
    [73]http://mathworld.wolfram.com/BetaFunction.html
    [74]L.N.G. Filon, On a quadrature formula for trigonometric integrals, Proc. Royal. Soc. Edinburgh.49 (1928),38-47.
    [75]E.A. Flinn, A Modification of Filon's Method of Numerical Integration. J. Assoc. Comput. Mach.7 (1960),181-184.
    [76]S. Flugge, Practical Quantum Mechanics I, Berlin:Springer,1971.
    [77]J. Froehlich, Parameter derivatives of the Jacobi polynomials and Gaus-sian hypergeometric function, Integral Transforms and Special Functions 2 (1994),252-266.
    [78]http://en.wikipedia.org/wiki/Fourier-series
    [79]http://en.wikipedia.org/wiki/Fourier
    [80]F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press,2010.
    [81]http://en.wikipedia.org/wiki/Hypergeometric-function
    [82]http://en.wikipedia.org/wiki/Generalized-hypergeometric-series
    [83]W. Gautschi, Computational aspects of three-term recurrence relations, SI AM Rev.9 (1967),24-82.
    [84]W. Gautschi, Orthogonal polynomials:Computation and Approximation, Oxford University Press, New York,2004.
    [85]W. Gautschi, Computing polynomials orthogonal with respect to densely os-cillating and exponentially decaying weight functions and related integrals, J. Comput. Appl. Math.184 (2005),493-504.
    [86]W.M. Gentleman, Algorithm 424, Clenshaw-Curtis quadrature, Comm. ACM.15 (1972),353-355.
    [87]A. Gil, N. Temme and J. Segura, Numerical Methods for Special Functions, SIAM,2008.
    [88]G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp.23 (1969),221-230.
    [89]I.S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed, Academic Press, New York,2007.
    [90]E. Hairer and C. Lubich, Long-time energy conservation of numerical meth-ods for oscillatory differential equations, SIAM J. Numer. Anal.38 (2000), 414-441.
    [91]M.A. Hamed and B. Cummins, A numerical integration formula for the solution of the singular integral equation for classical crack problems in plane and antiplane elasticity, J. King Saud Univ. (Eng. Sci. (2)),3 (1991), 217-231.
    [92]T. Hasegawa and T. Torii, Indefinite integration of oscillatory functions by the Cheby-shev series expansion, J. Comp. Appl. Math.17 (1987),21-29.
    [93]T. Hasegawa and T. Torii, Application of a modified FFT to product type integration, J. Comp. Appl. Math.38 (1991),157-168.
    [94]A.I. Hascelik, On numerical computation of integrals with integrands of the form f(x)sin(ω/xT) on [0,1], J. Comput. Appl. Math.223 (2009),399-408.
    [95]A.I. Hascelik, Suitable Gauss and Filon-type methods for oscillatory inte-grals with an algebraic singularity, Appl. Numer. Math.59 (2009),101-118.
    [96]M. Hazewinkel, Encyclopaedia of Mathematics, Springer,2003.
    [97]P. Henrici, Applied and Computational Complex Analysis, Volume I, Wiley & Sons,1974.
    [98]http://en.wikipedia.org/wiki/Helmholtz-equation
    [99]http://functions.wolfram.com/HypergeometricFunctions/ Hypergeometric2F1/20/01/
    [100]M. Hochbruck and C. Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math.83 (1999),403-426.
    [101]D. Huybrechs, J. Simoens and S. Vandewalle, A note on wave number depen-dence of wavelet matrix compression for integral equations with oscillatory kernel, J. Comput. Appl. Math.172(2) (2004),233-246.
    [102]D. Huybrechs and S. Vandewalle, A two-dimensional wavelet packet trans-form for matrix compression of integral equations with highly oscillatory kernel, J. Comput. Appl. Math.197(1) (2006),218-232.
    [103]D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation, SI AM J. Numer. Anal.44 (2006),1026-1048.
    [104]D. Huybrechs and S. Vandewalle, The construction of cubature rules for multivariate highly oscillatory integrals, Math. Comp.76 (2007),1955-1980.
    [105]D. Huybrechs and S. Vandewalle, A sparse discretisation for integral equa-tion formulations of high frequency scattering problems, SIAM J. Sci. Com-put.29(6) (2007),2305-2328.
    [106]M. Honnor, J. Trevelyan and D. Huybrechs, Numerical evaluation of 2D partition of unity boundary integrals for Helmholtz problems, J. Comput. Appl. Math.234 (2010),1656-1662.
    [107]A. Iserles, On the global error of discretization methods for highly-oscillatory ordinary differential equations, BIT Numer. Math.42 (2002),561-599.
    [108]A. Iserles, Think globally, act locally:solving highly-oscillatory ordinary differential equations, Appl. Numer. Anal.43 (2002),145-160.
    [109]A. Iserles, On the method of Neumann series for highly oscillatory equations, BIT 44 (2004),473-488.
    [110]A. Iserles and S.P. Nφrsett, On quadrature methods for highly oscillatory integrals and their implementation, BIT Numer. Math.44 (2004),755-772.
    [111]A. Iserles, On the numerical quadrature of highly-oscillating integrals I: Fourier transforms, IMA J. Numer. Anal.24 (2004),365-391.
    [112]A. Iserles, On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators, IMA J. Numer. Anal.25 (2005),25-44.
    [113]A. Iserles and S.P. Nφrsett, Efficient quadrature of highly oscillatory inte-grals using derivatives, Proc. Royal Soc. A.461 (2005),1383-1399.
    [114]A. Iserles, S.P. Norsett and S. Olver, Highly oscillatory quadrature: The story so far, Proceedings of ENuMath, Santiago de Compostela, A. Bermudez de Castro etal, (eds), Springer-Verlag, Berlin,2006,97-118.
    [115]A. Iserles and S.P. Norsett, Quadrature methods for multivariate highly oscillatory integrals using derivatives, Math. Comp.75 (2006),1233-1258.
    [116]A. Iserles and S.P. Norsett, On the computation of highly oscillatory multi-variate integrals with critical points, BIT Numer. Math.46 (2006),549-566.
    [117]A. Iserles, A fast and simple algorithm for the computation of Legendre coefficients, Numer. Math.117 (2011),529-553.
    [118]A. Iserles and K. Kropielnicka, Effective approximation for linear time-dependent Schrodinger equation, DAMTP Tech. Rep.2011/NA15.
    [119]S. Jin, Recent computational methods for high frequency waves in hetero-geneous media, Industrial and Applied Mathematics in China,49-64, Ser. Contemp. Appl. Math. CAM,10, Higher Ed. Press, Beijing,2009.
    [120]S. Jin, P.A. Markowich and C. Sparber, Mathematical and Computa-tional Methods for Semiclassical Schrodinger Equations, Acta Numer.20 (2011),121-210.
    [121]H. Kang and S. Xiang, On the calculation of highly ocillatory integrals with an algebraic singularity, Appl. Math. Comput.217 (2010),3890-3897.
    [122]H. Kang and S. Xiang, Efficient integration for a class of highly oscillatory integrals, Appl. Math. Comput.218 (2011),3553-3564.
    [123]H. Kang, S. Xiang and G. He, Computation of integrals with oscillatory and singular integrands using Chebyshev expansions, J. Comp. Appl. Math.242 (2013),141-156.
    [124]H. Kang and S. Xiang, Fast computation of singular oscillatory Fourier transforms, submitted to Journal.
    [125]H. Kang and S. Xiang, Efficient quadrature of highly oscillatory integrals with algebraic singularities, J. Comp. Appl. Math.237 (2013),576-588.
    [126]H. Kang and S. Xiang, Differentiation formulas of some hypergeometric functions with respect to all parameters, submited to Journal.
    [127]P. Keller, A method for indefinite integration of oscillatory and singular functions, Numerical Algorithms 46 (2007),219-251.
    [128]P. Keller and P. Wozny, On the convergence of the method for indefinite integration of oscillatory and singular functions, Appl. Math. Comput.216 (2010),989-998.
    [129]P. Keller, A practical algorithm for computing Cauchy principal value inte-grals of os-cillatory functions, Appl. Math. Comput.218 (2012),4988-5001.
    [130]K.J. Kim, R. Cools and L.G. Ixaru, Quadrature rules using first derivatives for oscillatory integrands, J. Comput. Appl. Math.140 (2002),479-497.
    [131]K.J. Kim, R. Cools and L.G. Ixaru, Extended quadrature rules for oscilla-tory integrands, Appl. Numer. Math.46 (2003),59-73.
    [132]A.R. Krommer and C.W. Ueberhuber, Computational Integration, SIAM, Philadelphia,1998.
    [133]P.K. Kythe and M.R. Schaferkotter, Handbook of Computational Methods for Integration, Chapman and Hall/CRC, Boca Raton, FL,2005.
    [134]L.D. Landau and E.M. Lifshitz, Quantum Mechanics:Non-Relativistic The-ory, Third eidtion, Pergamon press,1977.
    [135]S. Langdon and S.N. Chandler-Wilde, A wavenumber independent boundary element method for an acoustic scattering problem, SIAM J. Numer. Anal. 43 (2006),2450-2477.
    [136]D. Levin, Procedures for computing one-and-two dimensional integrals of functions with rapid irregular oscillations, Math. Comp.38 (1982),531-538.
    [137]D. Levin, Fast integration of rapidly oscillatory functions, J. Comput. Appl. Math.67 (1996),95-101.
    [138]D. Levin, Analysis of a collocation method for integrating rapidly oscillatory functions, J. Comput. Appl. Math.78 (1997),131-138.
    [139]S. Lewanowicz, Construction of a recurrence relation for modified moments, J. Comp. Appl. Math.5 (1979),193-206.
    [140]J.B. Li, W. S. Song and T. Wang, A universal solution to one-dimensional oscillatory integrals, Science in China Series F:Information Sciences,51 (2008),1614-1622.
    [141]M.L. Lighthill, Introduction to Fourier Analisis and Generalized Functions, Cambrige University Press, New York (1958) (1960, MR 19,1066; MR 22 # 5888).
    [142]P. Linz, Product integration methods for Volterra integral equations of the first kind, BIT 11 (1971),413-421.
    [143]I.M. Longman, Note on a method for computing infinite integrals of oscil-latory functions, Proc. Cambridge Phil. Soc.52 (1956),764.
    [144]I.M. Longman, Tables for the rapid and accurate numerical evaluation of certain infinite integrals involving Bessel functions, MTACll (1957),166.
    [145]I.M. Longman, A method for numerical evaluation of finite integrals of os-cillatory functions, Math. Comp.14 (69) (1960),53-59.
    [146]Lord Kelvin (W. Thomson), On the wave produced by a single impulse in water of any depth or in a dispersive medium, Philos. Mag.23 (1887),252-255.
    [147]D.W. Lozier, Numerical solution of linear difference equations, Report NB-SIR 80-1976 (1980), National Bureau of Standerds, Washington, D. C.
    [148]S. Lu, A Class of Oscillatory Singular Integrals, International Journal of Applied Mathematical Sciences,2 (2005),47-64.
    [149]Y.L. Luke, On the computation of oscillatory integrals, Pro. Cambridge Philos. Soc.50 (1954),269-277.
    [150]Y.L. Luke, Integrals of Bessel Functions, McGraw-Hill Book Company, New York,1962.
    [151]J.N. Lyness, Adjusted forms of the Fourier coefficient asymptotic expansion and application in numerical quadrature, Math. Comput.25 (1971),87-104.
    [152]J.N. Lyness, Numerical evaluation of a fixed-amplitude variable-phase inte-gral, Numer. Algor.49 (2008),235-249.
    [153]J.N. Lyness and J.W. Lottes, Asymptotic expansions for oscillatory integrals using inverse functions, BIT Numer. Math.49 (2009),397-417.
    [154]J.C. Mason and D.C. Handscomb, Chebyshev Polynomials, Chapman and Hall/CRC,2003.
    [155]K.N. Melnik and R.V.N. Melnik, Optimal-by-order quadrature formulae for fast oscillatory functions with inaccurately given a priori information, J. Comp. Appl. Math.110 (1999),45-72.
    [156]K.N. Melnik and R.V.N. Melnik, Optimal cubature furmulae and recovery of fast-oscillating functions from an interpolational class, BIT Numer. Math. 41(4) (2001),748-775.
    [157]K.N. Melnik and R.V.N. Melnik, Optimal-by-accuracy and optimal-by-order cubature formulae in interpolational classes, J. Comput. Appl. Math. 147(2002),233-262.
    [158]L.M. Milne-Thomson, The calculus of finite differences, Macmillan and Co., London,1965.
    [159]G.V. Milovanovic, Numerical calculation of integrals involving oscillatory and singular kernels and some applications of quadratures, Comput. Math. Appl.36 (1998),19-39.
    [160]S.L. Moshier, Methods and Programs for Mathematical Functions, Ellis Hor-wood,1989.
    [161]A. Nikiforov and V.B. Uvarov, Special Function of Mathematical Physics, Birkhaser,1988.
    [162]J. Oliver, The numerical solution of linear recurrence relations, Numer. Math.11 (1968),349-360.
    [163]J.F. Oliveira and J.C. Pedro, An efficient time-domain simulation method for multirate RF nonlinear circuits, IEEE Trans. on Microwave Theory and Tech.55 (2007),2384-2392.
    [164]F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York,1974.
    [165]S. Olver, Moment-free numerical integration of highly oscillatory functions, IMA. J. Numer. Anal.26 (2006),213-227.
    [166]S. Olver, On the quadrature of multivariate highly oscillatory integrals over non-polytope domains, Numer. Math.103 (2006),643-665.
    [167]S. Olver, Numerical approximation of vector-valued highly oscillatory inte-grals, BIT Numer. Math.47 (2007),637-655.
    [168]S. Olver, Numerical Approximation of Highly Oscillatory Integrals, PhD Thesis, University of Cambridge (2008).
    [169]S. Olver, GMRES for oscillatory matrix-valued differential equations, Spec-tral and High Order Methods for Partial Differential Equations, J.S. Hes-thaven and E. M. Ronquist (eds.), Springer, Heidelberg,267-274,2011.
    [170]T.N.L. Patterson, On high precision methods for the evaluation of Fourier integrals with finite and infinite limits, Numer. Math.,24 (1976),41-52.
    [171]R.L. Petzold, O.J. Laurent, and Y. Jeng, Numerical solution of highly os-cillatory ordinary differential equations, Acta Numer.6 (1997),437-483.
    [172]D.H. Phong and E.M. Stein, Singular integrals related to the Radon trans-form and boundary value problems, Proc. Nat. Acad. USA.80 (1983), 7697-7701.
    [173]R. Piessens and M. Branders, The evaluation and application of some mod-ified moments, BIT Numer. Math.13 (1973),443-450.
    [174]R. Piessens, Computation of Legendre series coefficients, Algorithm 473, Comm. ACM.17 (1974),25.
    [175]R. Piessens and M. Branders, Modified Clenshaw-Curtis method for the computation of Bessel function integrals, BIT Numer. Math.23 (1983), 370-381.
    [176]R. Piessens, Computing integral transforms and solving integral equations using Chebyshev polynomial approximations, J. Comput. Appl. Math.121 (2000),113-124.
    [177]R. Piessens and M. Branders, Computation of Fourier transform integrals using Chebyshev series expansions, Computing 32 (1984),177-186.
    [178]R. Piessens and M. Branders, On the computation of Fourier transforms of singular functions, J. Comput. Appl. Math.43 (1992),159-169.
    [179]A.D. Polyanin and V.F. Zaitsev, Handbook of exact solutions for ordinary differential equations, Second edition, Chapman and Hall/CRC,2003.
    [180]M.J.D. Powell, Approximation Theory and Methods, Cambridge University Press, Cambridge,1981.
    [181]R. Pulch and M.Gunther, A method of characteristics for solving multirate partial differential equations in radio frequency application, Appl. Numer. Math.42 (2002),397-409.
    [182]J. Qian and L. Ying, Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation, SIAM Multiscale Model. Simul.8 (2010),1803-1837.
    [183]E.D. Rainville, Special functions, The Macmillan Company, New York,1960.
    [184]T. Sauter, Computation of irregularly oscillating integrals, Appl. Num. Math.35 (2000),245-264.
    [185]J. Shen and L. Wang, Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains, SIAM J. Numer. Anal.45 (2007), 1954-1978.
    [186]A. Sidi, A user-friendly extrapolation method for oscillatory infinite inte-grals, Math. Comp.51 (183) (1988),249-266.
    [187]L.J. Slater, Confluent Hypergeometric Functions, Cambridge University Press, London,1960.
    [188]I.H. Sloan and W.E. Smith, Product-integration with the Clenshaw-Curtis and related points, Numer. Math.30 (1978),415-428.
    [189]I.H. Sloan and W.E. Smith, Product integration with the Clenshaw-Curtis points:implementation and error estimates, Numer. Math.34 (1980),387-401.
    [190]H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Ellis Horwood, Chichester,1978.
    [191]E.M. Stein, Harmonic analysis:Real-variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton,1993.
    [192]G.G. Stokes, On the numerical calculation of a class of definite integrals and infinite series, Camb. Philos. Trans.9 (1856),166-187.
    [193]A. Talbot, The accurate numerical inversion of Laplace transforms. J. Inst. Math. Appl.23(1) (1979),97-120.
    [194]I.J. Thompson, "Coulomb Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press,2010.
    [195]L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev.50 (2008),67-87.
    [196]P. Tsuji and L. Ying, A fast directional algorithm for high-frequency elec-tromagnetic scattering, J. Comput. Phys.230 (2011),5471-5487.
    [197]H.A. Yamani and W.P. Reinhardt, L2 discretizations of the continuum: Radial kinetic energy and Coulomb Hamiltonian, J. Phys. Rev. A, V.11, Issue 4 (1975),1144-1156.
    [198]http://www.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadrature-weights-and-nodes/content/lgwt.m
    [199]H. Wang and S. Xiang, Uniform approximations to Cauchy principal value integrals of oscillatory functions, Appl. Math. Comput.215 (2009) 1886-1894.
    [200]H. Wang and S. Xiang, On the evaluation of Cauchy principal value integrals of oscillatory functions, J. Comput. Appl. Math.234 (2010),95-100.
    [201]H. Wang, and S. Xiang, Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel, IMA J. Numer. Anal.31 (2010),469-490.
    [202]H. Wang and S. Xiang, On the convergence rates of Legendre approximation, Math. Comput.81 (2012),861-877.
    [203]G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge,1952.
    [204]R. Wong, Asymptotic approximation of integrals, SIAM, Philadephia,2001.
    [205]S. Xiang, On quadrature of Bessel transformations, J. Comput. Appl. Math. 177 (2005),231-239.
    [206]S. Xiang, Numerical analysis of a fast integration method for highly oscil-latory functions, BIT Numer. Math.47(2007),469-482.
    [207]S. Xiang, Efficient Filon-type methods for ∫a/b f(x)eiωg(x)dx, Numer. Math. 105 (2007),633-658.
    [208]S. Xiang and W. Gui, On Generalized Quadrature Rules for Fast Oscillatory Integrals, Appl. Math. Comp.197 (2008),60-75.
    [209]S. Xiang, W. Gui and P. Mo, Numerical quadrature for Bessel transforma-tions, Appl. Numer. Math.58 (2008) 1247-1261.
    [210]S. Xiang, X. Chen and H. Wang, Error bounds for approximation in Cheby-shev points, Numer. Math.116 (2010),463-491.
    [211]S. Xiang and H. Wang, Fast integration of highly oscillatory integrals with exotic oscillators, Math. Comp.79 (2010),829-844.
    [212]S. Xiang, Y. Cho, H. Wang and H. Brunner, Clenshaw-Curtis-Filon-type Methods for Highly Oscillatory Bessel Transforms and Applications, IMA J. Numer. Anal.31(4) (2011),1281-1314.
    [213]S. Xiang and H. Brunner, Efficient Methods for Volterra Integral Equations with Highly Oscillatory Bessel Kernels, accepted to appear in BIT Numer. Math.
    [214]S. Xiang and K. He, Discontinuous Galerkin method for weakly singular Volterra integral equations with highly oscillatory Bessel kernels, accepted to appear in Appl. Math. Comp.
    [215]S. Xiang, Efficient methods for some highly oscillatory integrals and integral equations (in Chinese), Sci. Sin. Math.42(6) (2012),651-670.
    [216]K. Zotsenko and R. Melnik, Optimal minimax algorithm for integrating fast oscillatory functions in two dimensions, Engineering Computations:Int. J. Computer-Aided Engineering,21 (8) (2004),834-847.