SOI光波导与光功率分配器的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年,随着通信技术的发展,用户终端通信容量的需求迅猛增长。人们对信息量、带宽的需求将不断增加。光功率分配器是光通信系统与光信息处理系统中的关键器件。因为它在光通信系统、光纤用户网、光纤CATV、光无源网络(PON)、光局域网等领域中被广泛应用。本文围绕SOI脊形光波导Y分支型、多模干涉型光功率分配器进行设计与模拟。
     SOI光波导采用脊形波导结构可实现大截面尺寸的单模传输。采用有效折射率方法分析了大截面尺寸SOI脊形光波导的波导参数与波导单模特性的关系。
     Y分支结构不仅结构简单、可重复性生产而且其两分支输出稳定。我们用SOI晶片设计了一种新型的Y分支型功率分配器,此结构通过改变中心轴线的位移值即可实现不同的功率分配的功能。用BPM方法模拟的结果表明,此结构实现了50%-94%的不对称分支比,并且具有低的附加损耗的特点。
     基于自镜像效应的多模干涉型集成光学器件具有结构紧凑、插入损耗低、频带宽、制作工艺简单、容差性好、输出功率均衡和光功率损耗低等特点,应用前景非常广泛。本文介绍了矩形多模干涉耦合器的基本原理,采用有效折射率方法和导模传输分析方法模拟了多模波导中的光场分布,设计并模拟1×2,1×4对称干涉型光功率分配器、2×2配对干涉型光功率分配器,得到了比较均衡的功率输出。
The growth of communication with new service and increasing subscribers requires increasing data rates and channels. Optical splitter is one of the key devices in integrated optics. They are usually applied to optical signal distribution systems. Such as cable television , broadcasting systems and PON systems . In this thesis, Y-branch and multimode interference in SOI technology are studied and simulated.
    The SOI single mode wave-guide with large cross-section can be realized by rib structure. The single mode condition for SOI wave-guide is obtained by the numerical method of effective index method (EIM).
    Y-branch has a simple structure and high reproducibility, it is possible to fabricate compact branching devices with stable branching rations. We propose a novel and simple Y-branch configuration with SIMOX SOI wafers in order to achieve an asymmetric branching ration and low excess loss. The proposed structure only deviate the center axes of input taper wave-guides. Using the beam propagation method (BPM) simulation, we confirm that wide controllability of the branching ratio and low excess loss can be realized by this structure. We also describe 1 X 2 Y-branch splitters with an asymmetric branching ratio from 50 to 94%.
    Multimode interference (MMI) couplers based on the self-imaging effect are rapidly getting popular because of the advantage of low loss, compact size and large fabrication tolerance .The thesis studied the principle of the MMI coupler .The optical field distribution in the multimode wave-guide is modeled by EIM and mode propagation analysis method (MPA). we present the design and simulation of an integrated 1 X 2,1 X 4 SI-MMI ,2 X 2 PI-MMI splitters with SOI technology. The devices realized the function of the coupler and show uniform output.
引文
1 胡台光.光接入网与光器件,光通信技术,1988:22(2):79—85
    2 张煦.光纤通信技术最新动向,光通信研究,1988:(1):1—4
    3 I.Yamashita et al., NTT REVIEW, Vol.9 NO.5 Sep. 1997.
    4 Y.Yamashiita et al., Optical Fiber Communication Conference OFC'95),PD 15 1995
    5 D.B.Keck,et al, J.Lightwave Technology, vol.7,pp. 1623-1633, 1989.
    6 H. Uno and N.Aragaki, J,Lightwave Technol,vll.7.pp. 1849-1858,1989.
    7 J.Yoshida,et al, Proc,3rd IEEE Workshop on Local Optical Network,1991.
    8 C.A.Eldering,et al, Proc,3rd IEEE Workshop on Local Optical Network,1991.
    9 D.Snyder.et al, Proc.4th IEEE Workshop on Local Optical Network ,1992.
    10 I.Ikushima,et al., in Proc,4th IEEE Workshop on Local Optical Network,1992.
    11 I.Imoto,H.Sano and M.Miyazaki, Appt Optics,vol.26,no.19,pp.4214-4219,1987.
    12 L.Soldano, et al. J.lightwave technol. 1992;(10):1843-1849
    13 H.Yajima. Appl. Phys. Lett., 1973; 222:647
    14 O.Hanaizumi,M.Miyagi,and S.Kawakami, Opt.Commum.,vol.51,pp.236-238,sept. 1984.
    15 Claude Rolland,et aI,IEEE Photonics Technology Letters, vol.2.NO.6.June 1990.
    16 C. Rolland, et al, Electron.Lett.,vol.25,pp. 1256-1257,1989.
    17 H.Takahashi, Y.Ohmori,et al. Electron.Lett, 1991;27(23):2131-2133
    18 C.Dragone. J. of Lightwave Technol., 1989;7(3):479-489
    19 M.Zirngbl,C. Dragone,et al. electron. Lett.,1992;28(13): 1212-1213.
    20 M.Tabiani, and M. Kavehrad. J. of Lightwave technol., 1991; 9(4):448-455
    21 M.Tabiani,et al.,IEEE photo. Technol.Lett., 1992:4(9) 1032-1935
    22 D S Levy, et al. [J].IEEE Photon. Technol.Lett., 1998,10(1);96-98
    23 Q Lai, M Bachmann,W Hunziker, et al. [J]. Electron. Lett., 1996,32(17): 1576-1577
    24 L. Soldano,et al., J. of Lightwave technol., 1992 10): 1843-1849
    25 Thomas Rasmussen.,et al. J.Lightwave technol., 1995; 13(10):2069-2074
    26 刘育梁,刘恩科,光学学报,vol.11,p.727,1991
    27 马春生等.中国激光,vol.18,p,677,1991
    28 赵策洲、高勇.半导体硅基材料及其光波导,电子工业出版社.1998。
    
    
    29 M. J. Robertson, E C. Kendall. Simon Ritchie, et al, J. Lightwave Technology, 77 (12), 2105 (1999)
    30 R. A. Soref, J. Schmidtchen, K.petermann,IEEE J. Quant.Electron,27,1971 (1997).
    31 魏红振,余金中,张小峰等,光学学报,2001,2001, 21 (5): 556-558
    32 S.P.Pogossian,et al., J.Lightwave Technol., 1988,16(10): 1851-1853
    33 A.G.Richman,et al, J.of Lightwave Tech., 12 (10). 1771 (1994).
    34 J. Schmidtchen et al., Electron.Left, 27, 1486 (1991).
    35 Feit M.D and Fleck J.A, Appl.Opt, 1978, vol. 18,No. 10,3990~3998
    36 Feit M.D and Fleck J.A, Appl. Opt, 1980, vol. 19, 1154~1164
    37 Anams M.J, John Wile, New York, 1981
    38 Youngchul C and Nadir D., IEEE J.Quantum Electron, 1990, vol.26, 1335~1338
    39 W.P. Huang and S.T.Chu, IEEE Photonics Technology Letters, 1991,vol, 3,910-148
    40 W.P.Huang,C.L.Xu,and S.T, chu, IEEE J.Lightwave Technology, 1992,vol. 10,295-304
    41 范崇澄,彭吉虎,导波光学,笫一版,北京:北京理工大学出版社,1988
    42 魏红振,余金中,张小峰等.红外与毫米波学报,2001,20(5):398-400
    43 Januar I,Mickelson A R., J.Lightwave Technol., 1993,11(12):2044-2051
    44 Sasaki H,Anderson I. IEEE J Quantum Elecronics,1978,14(11):883-892
    45 Tsutsumi K,Imada Y, Hirai H,Yuba Y.J Lightwave Technol, 1988,6(4):590-600
    46 Jajima H,Appl Phys Lett,1973,22(12):647-649
    47 Jajima H.IEEE J Quantum Electronics, 1978,14(10):749-755
    48 Burns W, Milton A F.IEEE J Quantum Electronics,1975, 11(11):32-39
    49 杨建义,冯浩,王明华,光子学报vol.23 no.4 Aug.1994
    50 William K.Burns et al.,IEEE Journal of Quantum Electronics,voI.QE11, No. 1, 1975
    51 H.Yajima, Appl Phys. Lett., vol.22,pp.647-649,1973.
    52 H.Yajima proc.symp.Optical and Acoustical Micro-Electronics
    53 赵策洲 半导体导波光学器件理论与技术 第一版 北京 国防工业出版社
    54 Hiroshi Sasaki,et al,IEEE Jorunal of Quantum Electronics,vol.QE-17.NO.6,June 1981
    55 William K.Burns et al. IEEE J.Quantum Electron., vol.QE-16,PP.446-454,Apr.1980
    56 H.Sasaki et al., IEEE J.Quantum Electron., vol.QE-14,pp.883-892, Nov. 1978.
    57 D.Marcuse, Bell Syst.Tech.J.,vol.49,pp.273-290,1970.
    
    
    58 W.H.Louisell, Bell Syst.Tech, J.,pp.853-870,1985
    59 Liou K.Y.,et al.IEEE Journal.Quantum Electronics, 1990,26(8):pp. 1376-1383
    60 KOBAYASHI,S.,et al,M: Electron.Lett., 1990,26(11), 707-708
    61 HIBINO,et al, J. Lightwave Technol., 1995,13,pp. 1728-1735
    62 THURSTON,R.N., and KAPON,E., Appl. Opt., 1988,27,pp. 1349-1352
    63 R.Ulrich, Optics Commum. 13(3),259(1975).
    64 R.Ulrich and T.Kamiya,J.Opt.Soc.Am., 68(5),583(1978)
    65 Lucas B.Soldana, et al., J.of Lightwave Technology, 10(12), 1843(1992).
    66 T.Rasmussen,A.Bachmann,W.Hunziker, et al., Electron.Lett., 32(17). 1576 (1996)
    67 R.M.Jenkins.J.M.Heaton,D.R.Wight,et al., Appl.Phys.Lett,64(6),684(1994).
    68 Lucas B.Soldano and E.C.M.Pennings,J.of Lightwave Technol., 13(4),615(1995)
    69 R.M.Jenkins,et al., Opt.Lett,VOL. 17.NO.14. PP.991-993, 1992.
    70 J.M.Heaton,et al,Appl.phys.Lett., vol.61,no. 15,pp. 1754-1756,1992
    71 R.Ulrich and T.Kamiya, J.Opt.Soc.Amer., vo168.no.5.pp.583-592,1978
    72 A.Ferreras,et al, Proc.Integer Phot.Research(IPRC),Palm Springs,CA. Mar. 1993, pp, 151-154.paper IME4
    73 A.Ferreras,et al.,IEEE Photon.Technol.Lett., vol.5,no. 10,pp. 1224-1227.1993.
    74 L.B.Soldano,et al, Proc.Integr.Phot.Research (IPRC).Monterey, CA.Apr. 1991, p. 13, paper TuDl.
    75 B.Soldano,et al, Proc.European Conf.Opt.Commun(ECOC).Paris, France,Sept. 1991. pp.225-228. paper TUB5-2