盐芥TsVP启动子核心区域的鉴定及其上游调控蛋白的功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对高等植物非生物胁迫应答的分子机制的研究具有重要的意义。拟南芥是一种典型的甜土植物,它在耐盐耐早机制研究方面有其自身的局限性。盐芥是拟南芥的近缘种,是一种高度耐盐耐旱的盐生植物,且具有基因组小,cDNA序列与拟南芥相似程度高等优点,已成为人们研究植物非生物胁迫响应的模式植物。
     基因表达调控发生在染色体、转录、转录后、翻译、翻译后多个水平上,其中转录水平的调控尤为重要。启动子作为控制基因转录的顺式作用因子调控基因转录的起始,在基因表达调控中发挥重要作用,而且其调控作用的实施需要转录因子蛋白的参与。本研究以盐芥液泡焦磷酸酶基因TsVP的启动子为实验材料,通过对该启动子核心元件的鉴定及其上游结合蛋白的功能分析,揭示了TsVP基因对盐胁迫诱导响应的部分机制。
     本实验室高峰等发现,尽管在酵母和烟草中过表达TsVP和AVP1都可以提高宿主的耐盐性,但它们在盐胁迫条件下表达模式不同:TsVP的表达受盐胁迫诱导,而AVP1则对盐诱导不发生反应。为了研究造成这种差异的原因,本工作克隆出这两个基因的启动子区域并进行生物信息学分析,发现二者在顺式作用元件的种类,数量以及分布存在明显的差异。
     为了较深入了解TsVP启动子的结构和特性,构建了一系列的5’端缺失突变体,将它们分别与报告基因gus连接,用于转化拟南芥。在转基因拟南芥中,全长TSVP启动子(2200bp)在正常条件下高强度启动报告基囚的表达,其GUS表达强度与CaMV 35S启动子驱动的GUS表达强度差异不大;在盐胁迫下,其GUS表达活性在根部和叶中受到明显的诱导作用,升高到未胁迫时的3倍左右。PT1(全长TsVP启动子连接GUS报告基因)和PA1(全长AVP1启动子连接GUS报告基因)在正常生长条件下具有相似的表达模式,几乎在种子外的每一个组织中都具有活性。但在盐胁迫处理后,PT1在根、叶中的表达受到明显的诱导,在根部高强度表达主要出现在根尖处,而在PA1中未发现这种诱导现象。PT1启动子的高驱动能力表明该启动子在植物基因工程中有很好的应用价值。
     在5’系列缺失突变体中,PT2与PT1相比缺少了一段856bp的区域(-2200至-1344),导致PT2的活性要明显低于PT1的,我们推测在-2200到-1344这段区域存在着可以明显提高启动子活性的增强子元件。此外,PT2在花中表现出明显的花药特异性表达模式。这种表达模式同样出现在缺失突变体PT3到PT6的转基因植株中,但在PT7到PT9中消失。我们推测一个AAATGA元件可能在花的花药特异表达模式中起关键作用。
     通过对系列缺失突变体在正常条件以及盐胁迫条件下的GUS基因表达分析,最终鉴定得到一段130bp(-667至-538)的核心序列。该序列对于TsVP启动子的盐胁迫诱导响应具有重要的作用。农杆菌介导的烟草叶片GUS瞬时表达分析也表明这130bp区域可以很好的响应盐胁迫环境。在该区域尚未发现与盐胁迫响应相关的已知作用元件,因此对该区域进行进一步分析,找到其中存在的核心序列,并找到调控该元件的功能蛋白,无疑具有重要的学术意义。
     以这段核心序列为诱饵,通过酵母单杂交系统筛选得到了与之相互作用的两个蛋白,命名为TsNacl和TsVOZ1。
     TsNac1的ORF全长918bp,与拟南芥RD26(AT4G27410)具有86%的核苷酸相似性,92%的氨基酸相似性。RT-PCR检测表明,TsNac1基因在正常生长条件下的表达量在根中远小于叶中的,但在盐胁迫、干旱胁迫和ABA处理后,根中表达量的变化幅度高于叶中的。TsNac1基因的表达受盐胁迫、干旱胁迫和ABA胁迫的诱导。在这三种胁迫条件下该基因表达强度的变化幅度有不同,对ABA诱导的响应最明显,尤其是在根中,处理12小时后其表达量上升了1000多倍。在盐胁迫条件下TsNac1基因的表达水平可上调60多倍,而对干旱诱导的响应相对较弱,尤其在叶中。这些结果表明该基因有可能是盐芥耐盐机制的重要成员,与ABA信号传导有重要联系。
     构建TsNac1原核表达载体并转化大肠杆菌BL21,诱导转化菌表达重组蛋白。利用已获得的TsNac1重组蛋白,与上述130bp的启动子序列进行体外结合试验。EMSA试验的结果表明,TsNac1蛋白可以很好的与该片段在体外结合,而且这种结合具有良好的特异性。
     鉴于TsNac1与TsVP启动子中的盐诱导响应区域特异性结合,而且其本身的表达受到盐、干旱以及ABA的诱导,推测TsNac1很可能就是我们要寻找的调控TsVP表达的上游转录因子,对其进行深入研究以揭示TsNac1的生物学功能以及其调控的下游基因网络具有重要的意义。
     通过在拟南芥中过表达和抑制表达TsNac1,初步分析了该基因在植物耐盐性方面的作用。TsNac1基因的过表达提高了转基因拟南芥的耐盐性,而抑制该基因则明显增加了转基因拟南芥的盐敏感性。
     鉴定TsNac1在TsVP启动子上的结合位点可以为了解其作用机制提供有价值的参考资料,也可以为植物基因工程改良提供具有使用价值的启动子元件,因此鉴定TsNac1在TsVP启动子上的靶位点具有重要的意义。利用不同的过量非标记竞争性DNA来竞争标记DNA与TsNac1蛋白的结合,鉴定出一段20bp的DNA序列(GAATATACCATGGA TAAGC A)为该蛋白的结合位点。在这段DNA序列中包含CATG元件。目前认为NAC家族蛋白的结合位点为CACG,但是Trans等研究表明拟南芥中NAC家族的蛋白也可结合一段MYC-like CATGTG位点。推测CATG可能是TsNac1蛋白结合的核心位点,其结合也需要周围的几个甚至十几个核苷酸序列。
     利用CHIP-on-chip技术对该蛋白在拟南芥染色体中的结合位点进行了详细的分析,并利用RT-PCR对实验结果进行了验证。结果表明在拟南芥中该蛋白与284个基因的启动子区域有结合作用,这284个基因参与了众多的生物学过程,包括了代谢,发育,细胞定位,刺激响应,生殖,蛋白磷酸化,氧化还原等生物学过程。值得注意的是在这284个基因中,有大约70个属于转录因子类基因,占25%左右,而拟南芥中转录因子只占全部基因数量的5%左右。也就是说在TsNac1的靶基因中,转录因子所占的比例大概是正常比例的5倍,而且其靶基因中包括了像DREB这种公认的与植物抗逆有关的转录因子,这也表明在TsNac1基因在植物抗逆中的重要调控作用。此外该基因还可以通过调节一些小分子转运体基因,结构基因以及一些结合蛋白基因的表达来调控下游功能基因的表达,而且该基因也可以直接调控一些功能基因的表达水平。这些结果表明TsNac1在基因调控网络中应该处于一个较为上游的位置。此外,TsVP在拟南芥中的同源基因AVP1并不在这些靶基因中,通过前面启动子分析的工作我们知道AVP1虽然属于抗逆相关基因,但是其本身的表达并不受盐胁迫的诱导,这一结果表明TsNac1并没有参与AVP1基因的调控,这与我们的预期是相符合的。
     另外,利用酵母单杂交系统还鉴定出与基于TsVP启动子构建的诱饵相结合的TsVOZ1蛋白。该蛋白与拟南芥中的AVOZ1具有85%的核苷酸相似性,90%的氨基酸相似性,其表达受盐胁迫的诱导,但是却不受干旱以及ABA的诱导,而且其受盐胁迫响应的程度远不如TsNac1明显。根据Mitsuda N等人对AVOZ1的研究结果,我们在TsVP启动子区域中,我们找到了一段GCGTNx7ACGC回文序列,即GCGTCGGCTGCACGC (-274到-259),但是这段序列并不在上述我们鉴定得到的130bp核心序列中。通过在拟南芥中对TsVOZ1基因进行过表达和抑制表达,得出TsVOZ1的过表达以及基因敲除并没有明显影响转基因拟南芥的耐盐性。TsVOZ1虽然与该启动子有结合,然而并没有参与该基因盐胁迫响应的调控。
     这些工作通过对盐芥中TsVP启动子及其上游调控蛋白的功能分析,不仅为植物基因工程提供具有自主知识产权的调控元件和耐盐基因,而且为植物盐胁机制的深入探讨提供了新资料,可望为我国大面积盐碱地的开发利用做贡献。
It is meaningful to obtain more in-depth understanding of the molecular mechanisms of abiotic stress responses in higher plants. Arabidopsis is a salt-sensitive plant. It has some limitations in the salt and drought tolerance mechanism research. Thellungiella halophila, the relative species of Arabidopsis thaliana, is a highly salt-tolerant and drought-tolerant plant. It has the advantages such as having a small genome and sharing high cDNA sequence similarity with Arabidopsis. It is now becoming the model plant for the study of the plant stress response mechanisms.
     Regulation of gene expression could occur in the chromosome, transcription, post-transcription, translational and post-translational levels. Especially, the regulation in the transcription level is more important. Promoters containing the cis-acting elements play a very important role in the regulation of the gene transcription and the role of this regulation requires the participation of the upstream transcription factor proteins. In this study, the TsVP gene promoter from Thellungiella halophila was studied in detail. The identification of the core promoter region and the functional analysis of its upstream binding protein revealed parts of the salt stress response mechanisms of the TsVP gene.
     Gao et al found the TsVP and AVP1 genes had different expression profiles under salt stress condition although they had the same salt stress tolerance function in both the yeast and tobacco. The TsVP was salt stress inducible while the AVP1 was not. In order to investigate the reasons, we cloned and analyzed the promoter regions of these two genes, the result indicated that the categories, number and distribution of the cis-acting elements in these two promoters were different.
     Seried of 5'-deleted promoter-GUS mutants were constructed and transformed into Arabidopsis to study this promoter in detail. For the full-length TsVP promoter (2200bp), it could drive the expression of GUS reporter gene and its activity was almost the same as the well used CaMV 35S promoter under normal condition. While treated with salt stress, its activity was obviously induced up to about 3-fold level both in the leaves and roots. PT1 and PA1 had similar expression pattern under normal condition, but the activity of PT1 was induced especially in the root tips while PA1 was not. PT1 had strong activity in almost all the tissues except the seeds. All these results indicated that this promoter had a bright application prospect in the plant genetic engineering.
     By analyzing different 5'deletion mutants of the TsVP1 promoter, we found the activity of PT2 was much less than PT1. A 856bp region (-2200 to-1344) was found to contain enhancer element that increased gene expression levels. Two AAATGA motifs, which may be the key elements for the anther specific expression profile, in the deleted TsVP1 promoters (PT2 to PT6) were also identified.
     A 130bp region (-667 to -538) was finally identified which may be the key sequence for the salt stress response by analyzing the different mutants both with and without salt stress. Agrobacterium-mediated GUS transient assay in tobacco leaves suggested that this 130bp region was sufficient for the salt stress response. Bioinformatic analysis also revealed that there may be novel motifs in this region that were the key elements for the salt stress responsive activity of the TsVP1 promoter. Therefore, further research on this region would be important to reveal the salt stress response mechanism of this promoter.
     Using this 130bp region as the bait, we identified two proteins which could bind to this region by a yeast one-hybrid system. The two proteins were named as TsNacl and TsVOZ1, respectively.
     TsNacl has a ORF with 918bp length and share about 86% similarity with RD26 (AT4G27410) in the nucleotide level and 92% similarity in the amino acid level. RT-PCR results indicated that TsNacl was induced by salt, drought and ABA treatment, although there was some differences in the fold change levels. First, its expression in the roots was much less than the leaves under normal condition, but the change folds after stress treatment in the roots was much more than leaves. Second, it was sensitive to ABA treatment, especially in the roots. Its expression could increase to 1000-folds after 12 hours of ABA treatment. In contrast, its expression was not sensitive to drought stress, especially in the leaves. These results showed that TsNacl may be involved in the response to salt stress in Thelhngiella halophila, and ABA was related to this response.
     The TsNacl protein was expressed in E.coli strain BL21 and was used in the EMSA experiment. The expressed protein could bind to the 130bp region in vitro and this binding was specific. Further study to reveal the relationship of TsNacl and its target genes would be of great importance.
     According to the EMSA experiment we know that TsNacl protein could bind to the 130bp region. RT-PCR results showed that the expression level of TsNacl could be induced by salt stress. All these results indicated that TsNacl may be the upstream TF we were looking for.
     In the subsequent experiment, we constructed the over-expression and RNAi constructions of these two genes and transformed both Arabidopsis and Thelhmgiella halophila to study their function in the plant salt tolerance. The increased expression level of TsNacl in Arabidopsis could increase the plant salt-tolerance while the decreased expression level of TsNacl could increase the salt-sensitivity of transgenic plants.
     Identifying the TsNacl binding sites in TsVP promoter could provide a valuable reference for understanding the plant salt stress response mechanisms, and it may also provide a useful promoter element for the plant genetic engineering. So it was meaningful to identify the TsNacl binding site in the TsVP promoter. Using excessive different non-labeled DNA to compete with the TsNacl protein binding DNA, we identified a 20bp sequence (GAATATACCATGGATAAGCA) which may be the protein binding site. This DNA sequence contains a CATG element. NAC family protein binding site was thought to be CACG, but Trans et al shows that the protein family in Arabidopsis also binds to a MYC-like CATGTG sites. We speculated that CATG may be the core sites for TsNacl protein binding, but the combination of several nucleotides around should also be needed. Further mutations combined with the EMSA experiment to find the specific binding of the protein sites will be important.
     Based on this analysis, we did some further research on TsNacl. The binding site in the whole genome of Arabidopsis was analyzed by CHIP-on-chip. The results showed that the protein could bind to the promoter region from 284 genes in Arabidopsis. These 284 genes involved in many biological processes, including metabolism, development, localization, stimulus response, reproduction, protein phosphorylation, redox and the regulation of biological processes. It was noteworthy that in these 284 genes, about 70 genes encoded transcription factors, accounting for 25%, while the proposed Arabidopsis transcription factors represent only about 5% of the number of all the genes. This meaned that in the TsNacl target genes, the transcription factors share ratio was around 5 times of the normal ratio, and its target genes included some well studied genes such as the DREB gene that was recognized as stress tolerance-related transcription factors. This also showed that TsNacl genes played an important role in plant stress tolerance. TsNacl could control the expression of functional genes by direct regulation or through some little molecular transporters, structure protein or binding protein. This result indicated this transcription factor may be a key protein in the regulation net and it may have a rather upstream position. In addition, AVP1, the TsVP homologous gene in Arabidopsis was not included in these target genes. According to the previous promoter analysis, we know AVP1 was not induced by salt stress although it was related to stress resistance. The results showed that the TsNacl was not involved in the AVP1 gene regulation, which was consistent with our expectation.
     In addition, we also identified another protein TsVOZ1 which could bind to the bait plasmid based on the sequence of TsVP promoter in yeast. TsVOZ1 shared about 85% necleotide similarity and 90% amino acid similarity with AVOZ1. Its expression was induced by salt stress, but not by drought or ABA treatment. And the change folds were much less than that of TsNacl. According to the research results of Mitsuda et al., we found a "GCGTCGGCTGCACGC(-274 to-259)" sequence in the TsVP promoter region which may be the binding site of TsVOZl protein. This sequence was not included in the 130bp region we identified before. Changing the expression level of TsVOZl did not change the salt tolerance of transgenic Arabidopsis. This result indicated that TsVOZ1 could bind to the TsVP promoter, but it was not involved in the salt stress response regulation of this gene.
     In this study we analyzed the function of TsVP promoter and its upstream binding protein. This result would provide new cis-elements and salt-tolerant genes for plant transgenic engineering and also important information for further understanding of the difference in the salt-tolerance machanisms between Arabidopsis thaliana and Thelhungiella halophila.
引文
1.赵可夫,范海,宋杰,等(2002)中国盐生植物的种类、类型、植被及其经济潜势[A].刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[C].北京气象出版社,:1-9.
    2. Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Research,15:6643-6653.
    3. Bucher P (1990) Weight matrix descriptions of four eukaryotic RNA polymerase Ⅱ promoter elements derived from 502 unrelated promoter sequences. J Mol Biol.212(4):563-578.
    4. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature,313(6005):810-812.
    5. Sanders PR, Winter JA, Barnason AR, Rogers SG, Fraley RT (1987) Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res,15 (4):1543-1558.
    6. Benfey PN, Ren L, Chua NH (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J,9(6):1685-1696.
    7. Benfey IN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer Subdomainsin early stages of plant development. EMBO J,9(6):1677-1684.
    8. Angenon G, Van Montagu M, Depicker A (1990) Analysis of the stop codon context in plant nuclear genes. FEBS letters,271(1-2):144-146.
    9. Seagull RW (1989) The Plant cytoskeleton. Critical reviews in plant sciences.8:131-167.
    10. Mueller WC, von Deimling A (2009) Gene regulation by methylation. Recent Results Cancer Res.171:217-39.
    11.南兰,林葱馨,关育成,陈凡(2002)根特异性表达顺式激活序列在转基因烟草中的功能分析.科学通报,47(1):49-53.
    12. Suzuki H, Fowler TJ, Tierney ML (1993) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Molecular Biology,21(1):109-119.
    13. Yang J, Showalter AM (2007) Expression and localization of AtAGP 18, a lysine-rich arabinogalactan-protein in Arabidopsis. Planta,226(1):169-179.
    14. Tittarelli A, Milla L, Vargas F, Morales A, Neupert C, Meisel LA, Salvo-G H, Penaloza E, Munoz G, Corcuera LJ, Silva H (2007) Isolation and comparative analysis of the wheat TaPT2 promoter:identification in silico of new putative regulatory motifs conserved between monocots and dicots. Journal of experimental botany,58(10):2573-2582.
    15. Chen AP, Zhong NQ, Qu ZL, Wang F, Liu N, Xia GX (2007) Root and vascular tissue-specific expression of glycine-rich protein AtGRP9 and its interaction with AtCAD5, a cinnamyl alcohol dehydrogenase, in Arabidopsis thaliana. Journal of plant research,120(2): 337-343.
    16.刘良式(1997)《植物分子生物学》.科学出版社,147-231.
    17. Puente P, Wei N, Deng XW (1996) Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis. The EMBO journal. 15(14): 3732-3743.
    18. Harrak H, Lagrange T, Bisanz-Sever C, Lerbs-Mache S, Mache R (1995) The expression of nuclear genes encoding plastid ribosomal proteins precedes the expression of chloroplast genes during early phases of chloroplast development. Plant Physiology. 108(2): 685-692.
    19. Lagrange T, Gauvin S, Yeo HJ, Mache R (1997) S2F. a leaf-specific trans-acting factor, binds to a novel cis-acting element and differentially activates the RPL21 gene.The Plant Cell. 9(8): 1469-1479.
    20.刘昱辉,王志兴,贾士荣(2001)拟南芥profilin2启动子5′端缺失对维管束特异表达的影响科学通报,46(10):835-838
    21. Hatton D, Sablowski R, Yung MH, Smith C, Schuch W, Bevan M (1995) Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. The Plant journal. 7(6): 859-876.
    22. Keller B, Baumgartner C (1991) Vascular-specific expression of the bean GRP 1.8 gene is negatively regulated. The Plant Cell 3(10): 1051-1061.
    23.Freitas RL, Carvalho CM, Fietto LG,Loureiro ME, Almeida AM, Fontes EP (2007) Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs. Plant Molecular Biology, 65(5): 603-614.
    24. Koltunow AM, Truettncr J, Cox KH, Wallroth M, Goldberg RB (1990) Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. The Plant Cell 2(12): 1201-1224.
    25. Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant molecular biology, 37(5): 859-869.
    26.郎志宏(2003)马铃薯(Solatium tuberosum L)花粉特异表达基因SBLR的克隆、分析及对玉米的遗传转化中国农业大学年博士学位论文
    27. 27 Lu S, Gu H, Yuan X, Wang X, Wu AM, Qu L, Liu JY (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic research. 16(2): 177-191.
    28.Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewes A, Ezcurra I, Rask L, Baumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. The Plant journal, 21(5): 401-408.
    29. Pater S, Pham K, Chua NH, Memelink J, Kijne J (1993) A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed-specific gene expression. The Plant Cell. 5(8): 877-886.
    30. Chandrasekharan MB, Bishop KJ, Hall TC (2003) Module-specific regulation of the beta-phaseolin promoter during embryogenesis. The Plant Journal 33(5): 853-866.
    31. Marzabal P, Busk PK, Ludevid MD, Torrent M (1998) The bifactorial endospenn box of gamma-zein gene: characterisation and function of the Pb3 and GZM cis-acting elements. The Plant Journal.16(1): 41-52.
    32. Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proceedings of the National Academy of Sciences of the United Slates of America. 94(14): 7685-7690.
    33. Takaiwa F, Yamanouchi U, Yoshihara T, Washida H, Tanabe F, Kato A, Yamada K (1996) Characterization of common cis-regulatory elements responsible for the endospenn-specific expression of members of the rice glutelin multigene family. Plant molecular biology,30(6): 1207-1221.
    34. Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F (1999) Identification of cis-regulatory elements required for endospenn expression of the rice storage protein glutelin gene GluB-1. Plant molecular biology, 40(1): 1-12.
    35. Wu C, Washida H, Onodera Y, Harada K, Takaiwa F (2000) Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. The Plant journal, 23(3): 415-421.
    36. Digeon JF, Guiderdoni E, Alary R, Michaux-Ferriere N, Joudrier P, Gautier MF (1999) Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds. Plant molecular biology, 39(6): 1101-1112.
    37. Wiley PR, Tosi P, Evrard A, Lovegrove A, Jones HD, Shewry PR (2007) Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endospenn cells of wheat grain. Plant molecular biology, 64(1-2): 125-136.
    38.王关林,方宏筠(2002)《植物基因工程》(第二版)[M].科学出版社,347-351.
    39. Krebs JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcription changes for Arabidopsis in response to salt osmotic, and cold stress. Plant Physiol, 130:2129-2140.
    40. Kurkela S and Franck M (1990) Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol, 15:137-144.
    41 Hajela RK, Horvath DP, Gilmour SJ , Thomashow MF (1990) Molecular cloning and expression of cor(cold- regulated)genes in Arabidopsis thaliana. Plant Physiol, 93 :1246-1252.
    42. Nordin K, Heino P. Palva ET (1991) Separate signal pathways regulate the expression of a low -temperature-induced gene in Arabidopsis thaliana. Plant Mol Biol,16:1061-1072.
    43. Baker SS, Wilhelm KS, Thomashow MR (1994) The 5'-region of Arabidopsis thaliana corl5a has cis-acting elements that confer cold, drought and ABA- regulated gene expression. Plant Mol Biol.24:701-713.
    44. Anus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA.93:13404-13409.
    45. Jiang C, Iu B and Singh J (1996) Requirement of a CCGAC cis-acting element for cold in duction of the BN115 gene from winter Brassica napus. Plant Mol Biol,30:679-684.
    46. Capel J, Jarillo JA, Salinas J, Mattinez-Zapater, JM (1997) Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydro phobic proteins. Plant Physiol,115:569-576.
    47. Medina J, Catald R and Salinas J (2001) Developmental and stress regulation of RC12A and RC12B,two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant physicl,125:1655-1666.
    48. Houde M, Danyluk J, Lalibertb JF, Rassart E, Dhindsa RS and Sarhan F (1992) Cloning characterization and expression of a Cdna encoding a 50 kilodalton protein specifically induced by cold acclimation in wheat. Plant Physicl,99:1381-1387.
    49. Tsvetanov S, Ohno R,Tsuda K, Takumi S, Mori N, Atanassov A, Nakamura C (2000) A cold-responsive wheat (Triticum aestivum L.) gene wcorl4 identified in a winter-hardy cultivar'Mironovska 808'. Genes and Genetic Systems.75:49-57.
    50. Crosatti C,de L aureto PP, Bassi R, Cattivelli L (1999) The interaction between cold and light controls the expression of the cold-regulated barley gene corl4b and the accumulation of the corresponding protein. Plant Physiol,119:671-680.
    51. Vazquez-Tello A, Quellet F, Sarhan F (1998) Low temperature-stimulated phosphon lation regulates the binding of nuclear factors to the promoter of Wcs120,a cold-specific gene in wheat. Mol Gen Genet,257:157-166.
    52. Takumi S, Koike A, Nakata M, Kume S, Ohno R, Nakamura C (2003) Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast-targeted protein. J Exp Bot,54:2265-2274.
    53. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, A be H, Narusaka M, Shinozald K, Yamaguchi-Shinozald K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA- dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.Plant J,34:137-148.
    54. Kseuga M, Liu O,Miura S, el al (1999) Improving plant drought, salt, and beefing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol, 17:287-291.
    55. Xiao FH, Xue GP (2001) Analysis of the promoter activity of late embryogenesis abandant protein genes in barley seedlings under conditions of water deficit. Plant J,20(7):667-673.
    56. Ballas N, Wong LM, Ke M, Theologis A (1995) Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proceedings of the National Academy of Sciences of the United States of America,92(8): 3483-3487.
    57. Nagao RT, Goekjian VH, Hong JC, Key JL (1993) Identification of protein-binding DNA sequences in an auxin-regulated gene of soybean. Plant Molecular Biology.21(6): 1147-1162.
    58. Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P,Zhang J Z, Ghandehari D, Sherman B K, Yu GL (2000) Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes..Science.290(5499):2105-2110.
    59. Gutierrez R A, Green P J, Keegstra K, Ohlrogge J B (2004) Phylogenetic profiling of the Arabidopsis thaliana proteome:what proteins distinguish plants from other organisms? Genome Biology,5(8):53-58.
    60. Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987)The regulatory cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional actuators. EMBO J,6(12):3553-3558.
    61.杨致荣,王兴春,李西明,杨长登(2004)高等植物转录因子的研究进展。遗传,26(3):403-408.
    62.陈丽(1999)植物转录因子的结构与功能.植物生理学通讯,33:401-409.
    63. Saiflz MB, Goff SA, Chandler VL (1997) Extensive mutagenesis of a transcriptional activation domain identified single hydrophobic and acidic amino acids important for activation in vivo. JMol Cell Biol,17:115-122.
    64. Gu YQ, Yang C, Thara VK (2000) Pti4 is induced by ethylene and salicylic acid,and its product is phosphorylated by the Pto kinase. Plant Cell.12:771-786.
    65. Wu K, Tian L, Hollingworth J (2002) Functional analysis of tomato Pit4 in Arabidopsis. Plant Physiol.128:30-37.
    66. Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365-371
    67.桑新华,吴忠义,黄丛林,张潞生(2004)植物逆境抗性相关转录因子的研究进展.植物学通报21(6):700-708
    68. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY super family of plant transcription factors.
    69.路子显,常团结,刘翔,朱祯(2001)植物碱性亮氨酸拉链(bZW)蛋白的研究进展(一)一结构、分类、分布和同源性分析.遗传,23:564-570.
    70. Bilaud T, Koering CE, Binet-Brasselet E, Ancelin K, Pollice A, Gasser SM, Gilson E (1996) The telobox, a myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Res,24:1294-1303.
    71. Ito M (2000) Factors controlling cyclin B expression. PlantMol Biol,43:677-690.
    72. Aida M, Ishida T, Fukaki H, FujisawaH, Tasaka M (1997) Genes involved in organ separation in Arabidopsis. analysis of the cup-shaped cotyledon mutant. Plant Cell,9(6): 841-857.
    73. Al-Shebaz IA, O'Kane SLJ, Price RA (1999) Genetic placement of species excluded from Arabidopsis (Brassicaceae). Novon,9:296-307.
    74. Cody WJ (2000) Flora of the Yukon Territory. NRC Research Press, Ottawa, Canada,669.
    75 Inan, G, Zhang, Q, Li, PH, WangZL, Cao ZY, Zhang H, Zhang CQ, Quist TM, Goodwin SM, Zhu JH, Shi HH, Damsz B, Charbaji T, Gong QQ, Ma SS, Fredrickscn M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic anahses of growth and development of extremophiles. Plant Physiol.135(3):1718-1737.
    76. Amtmann A, Bohnert HJ, Bressan RA (2005) Abiotic Stress and Plant Genome Evolution. Search for New Models. Plant Physiol,138:127-130.
    77. Teusink RS, Rahman M, Bressan RA, Jenks MA (2002) Cuticular waxes on Arabidopsis ihaliana close relatives Thellungiella halophila and Thelhungiella parvula. Int J Plant Sci 163:309-315.
    78. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol,135:1697-1709.
    79. WongCE, LiY, WhittyBR, Diaz-Camino C, AkhterSR, BrandleJE, GoldingGB, Weretilnyk EA 2, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. PlantMol. Biol,58:561-574.
    80. Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kimd CS, Zhan CQ, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM, ZhaoYX, Zhang H (2004) Expressed sequence tags from Thelhingiella halophila, a new model to study plant salt-tolerance. Plant Sci,166: 609-616.
    81. Maeshima M (2000) Vacuolar H-pyrophosphatase. Bioch BiophyActa.1465:37-51.
    82. Kieber JJ, Signer ER (1991) Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thalina. Plant Mol Biol,16:345-348.
    83. Jardin PD, Rojas-Beltran J, Cebhardt C, Brasseur R (1995) Molecular Cloning and Characterization of a Soluble Inorganic Pyrophosphatase in Potato. Plant Physiol,109: 853-860.
    84. Rea, PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu. Rev. Plant Physiol. Plant Mol. BioL,44:157-180.
    85. TAIZ L (1992) THE PLANT VACUOLE. J. Exp. Biol,172:113-122.
    86. Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning, and sequencing of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci USA,89:1775-1779.
    87. Ikeda M, Rahman M, Moritani C, Umami K, Tanimura Y, Akagi R, Tanaka Y, Maeshima M, Watanabe Y (1999) Gene note. A vacuolar H+-pyrophosphatase in Acetabularia acetabulum:molecular cloning and comparison with higher plants and a bacterium.J Exp Bot.50:139-140.
    88. Drozdowicz YM, Kissinger JC, Rea PA (2000) AVP2,a Sequence-Divergent. K+-Insensitive H+-Translocating Inorganic Pyrophosphatase from Arabidopsis. Plant Physiol.123:353-362.
    89. Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases:from the evolutionary backwaters into the mainstream. Trends in Plant Sci,6(5):206-211.
    90. Maeshima M (1990) Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiol,31:311-317.
    91. Nakanishi Y, Maeshima M (1998) Molecular Cloning of Vacuolar H+-Pyrophosphatase and Its Developmental Expression in Growing Hypocotyl of Mung Bean. Plant Physiol,116: 589-597.
    92. Lerchl J, Konig S, Zrenner R, Sonnewald U (1995) Molecular cloning, characterization and expression analysis of isoforms encoding. tonoplast-bound proton-translating inorganic pyrophosphatase in. tabacco. Plant Mol. Biol,29:833-840.
    93. Suzuki Y, Maeshima M, Yamaki S (1999) Molecular Cloning of Vacuolar H+-pyrophosphatase and Its Expression during the Development of Pear Fruit. Plant and Cell Physiol,40(8):900-904.
    94. Colombo R, Cerana R (1993) Enhanced activity of tonoplast pyrophosphatase in NaCl-grown cells of Daucus carota. J. Plant Physiol,142:226-229.
    95. Kasai M, Nakamura N, Kudo N, Sato H, Maeshima M, Sawada S (1998) The activity of the root vacuolar H+-pyrophosphatase in rye plants grown under deficient conditions of mineral nutrients. Plant Cell Physiol,39:890-894.
    96. Palma DA, Blumwald Eduardo, Plaxton WC (2000) Upregulation of vacuolar H+-translocating pyrophosphatase by phosphate starvation of Brassica napus (rapeseed) suspension cell cultures. FEBS Lett,486:155-158.
    97. Carystinos GD, MacDonald HR, Monroy AF, Dhindsa RS, Poole RJ (1995) Vacuolar H+-Translocating Pyrophosphatase Is Induced by Anoxia or Chilling in Seedlings of Rice. Plant Physiol,108:641-649.
    98. Wang BS, Luttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J. Exp. Bot,52:2355-2365.
    99.Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot, 55:585-594.
    100. Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL,Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA,98:11444-11449.
    101. Guo SL, Yin HB, Zhang Xia, Zhao FY, Li PH, Chen SH, Zhao YX, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene,SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol. Biol,60:41-50.
    102. Gao F, Gao Q, Duan XG,Yue GD, Yang AF and Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot,57:3259-3270.
    103. Wei A, He C, Li B, Li N, Zhang J (2010) The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants. Plant Biotechnol J. Jul 12. [Epub ahead of print]
    104. Li B, Wei A, Song C, Li N, Zhang J (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J.6(2):146-59.
    105. Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR (2009). Ovcrexpression of Thellungiella halophila H(+)-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta.229(4):899-910.
    106. Guille MJ, Kneale GG (1987) Methods for the analysis of DNA-protein interactions. Mol Biotechnol.8(1):35-52.
    107. Nirenberg M, Leder P (1964) Rna Codewords and protein synthesis the effect of trinucleotides upon the binding of sRNA to ribosomes. Science,145:1399-1407.
    108. Jones OW, Berg P (1966) Studies on the binding of RNA polymerase to polynucleotides. J Mol Biol.22(2):199-209.
    109. Galas DJ, Schmitz A (1978) DNase footprinting:a simple method for the detection of protein-DNA binding specificity.Nucleic Acids Res.5(9):3157-3170.
    110. Carey MF, Smale ST (2000) Transcriptional Regulation in Eukaryotes:Concepts, Strategies, and Techniques. Cold Spring Harbor Laboratory Press.
    111. Fried MG, Daugherty MA (1998) Electrophoretic analysis of multiple protein-DNA interactions. Electrophoresis,19(8-9):1247-1253.
    112. Molloy PL(2000) Electrophoretic mobility shift assays. Methods Mol Biol.130:235-246.
    113. Rousseau S, Renaud J, Ruiz-Carrillo A (1989) Basal expression of the histone H5 gene is controlled by positive and negative cis-acting sequences. Nucleic Acids Res, 17(18):7495-7511.
    114. Fried MG (1989) Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis,10(5-6):366-376.
    115. Zellner E, Herrmann T, Schulz C, Grummt F (2007) Site-specific interaction of the murine pre-replicative complex with origin DNA:assembly and disassembly during cell cycle transit and differentiation. Nucleic Acids Res,35(20):6701-6713.
    116. Panno ML, Marsico S, Bellizzi D, Rizza P, Morelli C, Salerno M, Giordano F, and Ando'S (2006) Evidence that the mouse insulin receptor substrate-1 belongs to the gene family on which the promoter is activated by estrogen receptor through its interaction with Spl. J Mol Endocrinol.36:91-105.
    117. LeCaptain DJ, Michel MA, Orden AV (2001) Characterization of DNA-protein complexes by capillary electrophoresissingle molecule fluorescence correlation spectroscopy. Analyst.126(8):1279-1284.
    118. Bowen B, Steinberg J, Laemmli UK, Weintraub H (1980) The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res,8(1):1-20.
    119 Harada R, Vadnais C, Sansregret L, Lcduy L, Berube G, Robert F, Nepveu A (2008) Genome-wide location analysis and expression studies reveal a role for p110 CUX1 in the activation of DNA replication genes. Nucleic Acids Res.36(1):189-202.
    120. Chen R, Qiu W, Liu Z, Cao X, Zhu T, Li A, Wei Q, Zhou J (2007) Identification of JWA as a novel functional gene responsive to environmental oxidative stress induced by benzo[a]pyrene and hydrogen peroxide. Free Radic Biol Med,42(11):1704-1714.
    121. Smith SE, Papavassiliou AG (1992) A coupled Southwestern-DNase I footprinting assay. Nucleic Acids Res.20(19):5239-5240.
    122. Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev,7(4): 592-604.
    123. Dorbic T, Wittig B (1987) Chromatin from transcribed genes contains HMG17 only downstream from the starting point of transcription. EMBO J,6(8):2393.
    124. O'Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin:NChlP. Methods. 31(1):76-82.
    125. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde:evidence that histone H4 is retained on a highly transcribed gene. Cell.53(6):937-947.
    126. Alcorlo M, Salas M, Hermoso JM (2007) In vivo DNA binding of bacteriophage GA-1 protein p6. J Batcteriol 189(22):8024-8033.
    127. Gaughan L, Logan IR, Neal DE, Robson CN (2005) Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res,33(1):13-26.
    128. Wissmann M, Yin N, Miiller JM, Greschik H, Fodor BD,Jenmvein T, Vogler C, Schneider R, Giinther T, Buettner R (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat CellBiol,9:347-353.
    129. Sayeed A, Konduri SD, Liu W, Bansal S, Li F, Das GM (2007) Estrogen receptor{alpha} inhibits p53-mediated transcriptional repression:implications for the regulation of apoptosis. Cancer Res.67(16):7746.
    130. Lawrence RJ, Earley K, Pontes O, Silva M, Chen ZJ, Neves N, Viegas W, Pikaard CS (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell,13(4):599-609.
    131 Dryden DTF, Murray NE, Rao DN, Journals O (2001) Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res,29(18):3728-3741.
    132. Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of Rapl revealed by genome-wide maps of protein- DNA association. Nat Genet.28(4):327-334.
    133. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E,Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science.290(5500):2306-2309.
    134. Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature,409 (6819): 533-538.
    135. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z,Gerber GK, Hannett NM, Harbison CT, Thompson CM,Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science.298:799-804.
    136. Weinmann AS, Farnham PJ (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation.Methods,26(1):37-47.
    137. Testa A, Donati G, Yan P, Romani F, Huang THM, Vigano MA, Mantovani R (2005) Chromatin immunoprecipitation (ChIP) on chip experiments uncover a widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J Biol Chem.280(14): 13606-13615.
    138. Liu Y, Gao H, Marstrand TT, Strom A, Valen E, Sandelin A, Gustafsson JA, Dahlman-Wright K (2008) The genome landscape of ER{alpha}-and ER{beta}-binding DNA regions.Proc Natl Acad Sci USA,105(7):2604.
    139. Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature,451(7180):796-1801.
    140. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res.30:325-327.
    141. Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE:a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res,26:358-359.
    142. Clough SJ and Bent AF (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735-743.
    143. Jefferson RA, Kavanagh TA and Bevan MW (1987) GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J,6:3901-3907.
    144. Kapila J, DeRycke R, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci,122:101-108
    145. Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J.22:543-551
    146. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci.6:66-71.
    147 Yu CX, Jin T, Chen WW, Zhang PJ, Liu WW, Guan HY, Zhang J, Liu QW, Jiang AL (2002) Identification of Spl-elements in the promoter region of human homeobox gene NKX3.1. Mol Biol Rep.36(8):2353-60.
    148. He ML, Jiang AL, Zhang PJ, Hu XY, Liu ZF, Yuan HQ, Zhang JY (2005) Identification of androgen-responsive element ARE and Spl element in the maspin promoter. Chin J Physiol.48(3):160-6.
    149. Ibanez-Tallon I, Ferrai C, Longobardi E (2002) Binding of Spl to the proximal promoter links constitutive expression of the human uPA gene and invasive potential of PC3 cells. Blood.100:3325-3332
    150. Faber PW, Van Rooij HC, Schipper HJ (1993) Two different, overlapping pathways of transcription initiation are active on the TATA-less human androgen receptor promoter. The role of Sp1. J Biol Chem.268:9296-9301
    151. Takane KK, Mcphaul MJ (1996) Functional analysis of the human androgen receptor promoter. Mol Cell Endocrinol.119:83-93
    152. Mitsuda N, Takcyasu K and Sato MH (2001) Pollen-specific regulation of vacuolar H+-PPase expression by multiple cis-acting elements. Plant Mol Biol.46:185-92.
    153. Weterings K, Schrauwen J, Wullems G, and Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NPT303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J,8:55-63.
    154. Wolters H, Anders N, Geldner N, Gavidia R, Jiirgens G (2011) Coordination of apical and basal embryo development revealed by tissue-specific GNOM functions. Development. 38(1):117-26.
    155. Schnmann P, Richardson AE, Vickers CE and Delhaize E (2004) Promoter Analysis of the Barley Phtl;1 Phosphate Transporter Gene Identifies Regions Controlling Root Expression and Responsiveness to Phosphate Deprivation. Plant Physiol,136:4205-4214.
    156. Vijaybhaskar V, Subbiah V, Kaur J, Vijayakumari P and Siddiqi Ⅰ (2008) Identification of a root-specific glycosyltransferase from Arabidopsis and characterization of its promoter. J. Biosci,33:185-193.
    157. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16(9):2481-98.
    158. Souer, E (1996) The no apical mcristcm gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell,85:159-170
    159. Aida, M (1997) Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant. Plant Cell,9:841-857
    160. Xie, Q (2000) Arabidopsis NACl transduces auxin signal downstream of TIRl to promote lateral root development. Genes Dev.14:3024-3036
    161. Malamy, J.E. and Ben fey, P.N (1997) Down and out in Arabidopsis:the formation of lateral roots. Trends Plant Sci.2:390-396
    162. Alliotte, T (1989) An auxin-regulated gene of Arabidopsis thaliana encodes a DNA-binding protein. Plant Physiol 89:743-752
    163. Neuteboom, L.W (1999) A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res.6:13-19
    164. Xiao-Ya Chen (2005) Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis. Plant Cell.17:2204-2216
    165. Ren, T (2000) HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell.12:1917-1925
    166. Collinge, M. and Boller, T (2001) Differential induction of two potato genes, Stprx2 and StNAC. in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol. 46:521-529
    167. Hegedus, D (2003)Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol.53: 383-397
    168. Fujita, M (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J.39:863-876
    169. Qifa, Zhang (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS.103:12987-12992
    170. Grafi, G (2004) How cells dedifferentiate:a lesson from plants. Dev. Biol.268:1-6.
    171. Mosteller Tukey, Addison-Wesley (1977) Data Analysis and Regression:A Second Course in Statistics.pp.203-209
    172. Zheng, M., Barrera, L. O., B. Ren, and Wu, Y. N (2007) ChIP-chip:data, model, and analysis. Biometrics,63:787-796.
    173. Xin Zhou, Zhen Su, EasyGO (2007) Gene Ontology-based annotation and functional enrichment analysis tool for agronomical species, BMC Genomics,8:246
    174. Rolland F, Winderickx J, Thevelein J M (2001)Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci,26:310-317
    175. Smeekens S (2000) Sugar-induced signal transduction in plants.Anmi Rev Plant Phys Plant Mol Biol,51:49-81
    176. Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis thaliana. Plant Physiol,127: 252-261
    177. Ramaih, S., M. Guedira and G.M. Paulsen (2003) Relationship of indoleacetic acid and tryptophan dormancy and preharvest sprouting of wheat. Funct. Plant Biol..30:939-45
    178. Steif, M (1988) Isoenzymes tryptophan synthase (Serine hydrolase adding indolglycerol phosphate) of higher plants and their role in growth regulation. Agron. Rost.,49:83-107
    179. Martens, D.A. and W.T. Jr. Fankenberger (1994) Assimilation of exogenous 2'-14C-indole-3-acetic acid and 3'-14C tryptophan exposed to the roots of three wheat varieties. Plant Soil,166:281-90
    180. Wyszkowska, J (1999) Modification of faba bean chemical composition caused by precursors of plant growth regulators and soil microorganism I. Effect of L-tryptophan and beta-indolyl acetic acid. Biuletyn-Naukowy,5:55-63
    181. Kachroo P, Venugopal SC, Navarre DA, Lapchyk L, Kachroo A (2005) Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol. 139:1717-1735
    182. Kramell, R., Atzorn, R., Schneider, G., Miersch, O., Bruckner, C., Schmidt, J., Sembdner, G., and Parthier, B (1995). Occurrence and identification of jasmonic acid and its amino-acid conjugates induced by osmotic-stress in barley leaf tissue. J.Plant Growth Regulation,14:29-36.
    183. Doares, S.H., Syrovets, T., Weiler, E.W., and Ryan, C.A (1995). Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad.Sci. USA,92:4095-4098.
    184. Vijayan, P., Shockey, J., Levesque, C.A., Cook, R.J., and Browse, J (1998). A role for jasmonate in pathogen defense of Arabidopsis. Proc. Nail. Acad. Sci. USA.95:7209-7214.
    185. Yaeno T, Matsuda O, Iba K (2004) Role of chloroplast trienoic fatty acids in plant disease defense responses. Plant J,40:931-941
    186. Kachroo A, Venugopal SC, Lapchyk L, Falcone D, Hildebrand D, Kachroo P (2004) Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. Proc Natl Acad Sci USA.101:5152-5157
    187. Wei G, Pan Y, Lei J, Zhu YX (2005) Molecular cloning, phylogenetic analysis, expressional profiling and in vitro studies of TINY2 from Arabidopsis thaliana. J Biochem Mol Biol,38(4):440-6
    188. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci,5(5):199-206.
    189. Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins, Plant Physiol,155(1):464-76.
    190. Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol,148(1):436-54.
    191. Yanhui, Chen, Xiaoyuan, Yang, Kun, He, Meihua, Liu, Jigang, Li, Zhaofeng, Gao, Zhiqiang, Lin, Yunfei, Zhang, Xiaoxiao, Wang, Xiaoming, Qiu, Yunping, Shen, Li, Zhang, Xiaohui, Deng, Jingchu, Luo, Xing-Wang, Deng, Zhangliang, Chen, Hongya, Gu, Li-Jia, Qu (2006) The MYB Transcription Factor Superfamily of Arabidopsis: Expression Analysis and Phylogenetic Comparison with the Rice MYB Family. Plant Mol Biol.60(1):107-24.
    192. Seo PJ, Kim MJ, Song JS, Kim YS, Kim HJ, Park CM (2010) Proteolytic processing of an Arabidopsis membrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity. Biochem J.427(3):359-67
    193. Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta, 226(3):647-54.
    194. Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasls. Plant Cell,22(5):1516-31.
    195. Strzalka W, Kaczmarek A, Naganowska B, Ziemienowicz A (2010) Identification and functional analysis of PCNA1 and PCNA-likel genes of Phaseolus coccineus. J Exp Bot, 61(3):873-88.
    196. Liu W, Zhou Q, Li P, Gao H, Han YP, Li XJ, Yang YS, Li Y (2009) DNA mismatch repair related gene expression as potential biomarkers to assess cadmium exposure in Arabidopsis seedlings J Hazard Mater:167(1-3):1007-13.