涠西南凹陷流沙港组复杂储层综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油田勘探开发形势的发展,对陆上油气藏的研究刻画逐渐精细,海上的油气藏的勘探,也进入以小砂体、小断块、结构复杂、低渗透率,及各种非均质性极强的复杂地质体为目标的勘探和开发阶段。我国海洋领域油气生产不可避免的进入“复杂储层”为对象的阶段,评价手段、工程措施和开发措施都要为此精细设计。本文以北部湾盆地涠西南凹陷复杂储层油田(涠洲11-4N、涠洲11-1、涠洲11-1N、涠洲11-2)流沙港组为例,通过综合储层表征与评价技术,开展复杂储层精细沉积学和复杂储层综合指标体系综合定量评价的研究,从成因上分析研究区沉积储层的形成过程及其三维空间的变化规律,从研究方法上建立复杂储层评价研究体系和具体技术方法,为本区油藏开发方案的制定或调整提供扎实基础。
     论文以层序地层学、沉积学、储层地质学、测井地质学理论为指导,综合利用地震、岩心、测井、生产测试及开发井生产动态等资料建立了构造-沉积的层序地层格架,并进行复杂沉积体系控制因素分析,对重点层位储层沉积微相的垂向与平面分布进一步细化,分析砂体的垂向叠置关系、连通性与平面分布规律,建立不同沉积体系内不同成因砂体的砂岩厚度与宽度的经验公式和宏观非均质性参数,系统研究储层的物性特征,分析有效储层和储层物性与沉积微相之间的关系,确定有利物性区,并利用地质统计学法进行权衡定量评价,对储层进行分类,最后采用相控随机三维地质建模技术,建立油田尺度复杂储层定量化地质模型,在三维空间上表征储层结构单元、物性单元和有利储集带,为油田开发方案实施提供确定性依据。本论文研究取得的研究成果和主要认识可以概括为以下几个方面:
     以地震、岩心及测井资料为基础,以界面识别为准则、结合油组划分、可容纳空间变化研究,结合原有油藏的划分进行基准面旋回分析,综合了沉积层序、T-R层序和Cross.TA的高分辨率层序地层理论,建立了流沙港组统一的精细的层序格架。在流一段识别了两个长期旋回,9个中期旋回和24个短期旋回,在流三段识别了一个长期旋回,5个中期旋回和24个短期旋回。同时依据研究区内井位分布情况、砂体展布特征和全区层序划分结果,目的层自下而上划分了5个油组,8套砂体,砂体横向连通性较差,各个油组在平面分属不同的砂体,其中主力油组V油组又划分V1和V2两个小层。
     从砂体发育和重矿物定量分析来看,流一段上层序北部稳定重矿物组合主要为白钛矿、赤褐铁矿、锆石与电气石这四种,总体上来看物源主要来自西部,呈W-E向展布,流一段下层序北部稳定重矿物组合主要为电气石、白钛石、锆石和赤褐铁矿四种,南部为锆石、电气石和白钛石,总体上来看物源主要来自西南,呈WS-EN向展布。流三段稳定重矿物主要有白钛矿、赤褐铁矿、锆石和电气石,从重矿物组合特征上分析,其物源主要来自南西部。
     岩性特征方面,流一段上层序岩性整体偏细,主要为细砂岩、粉细砂岩和泥岩,沉积构造有槽状交错层理,板状交错层理,小型沙纹层理,小型爬升层理,水平层理和变形层理,主要表现为牵引流沉积作用,局部可见重力流变形和负载构造,而中层序与下层序岩性整体偏粗,主要为砂砾岩、含砾粗砂岩、中粗砂岩和薄层的粉细砂岩和泥岩,沉积构造主要为槽状交错层理、板状交错层理、复合层理。流三段主要识别出粒序层理,沙纹层理,板状交错层理,块状层理,槽状交错层理和生物扰动构造。
     通过对岩心观察与精细描述,将研究区流一段上测井相分为箱型、钟形、漏斗形、指形、线形,流一段中和流一段下再细分出箱型-漏斗形组合、钟形-钟形组合型、漏斗形-指形组合、箱型-箱型组合以及箱型-指形组合,综合岩心和测井相的详细分析,认为流一段上为正常三角洲前缘沉积,主要为水下分流河道、河口坝、远砂坝、席状砂和水道间等沉积微相,流一段中为扇三角洲前缘沉积,内前缘沉积主要微相为辫状水道、辫流坝、河口坝、席状砂和水道间,外前缘主要微相为分支水道、河口坝、远砂坝、席状砂和水道间,流一段下层序为扇三角洲前缘沉积,细分为扇三角洲内前缘和外前缘2种亚相,进一步细分为8种亚相。流三段上部为扇三角洲外前缘沉积,分为4种微相,下部为扇三角洲内前缘沉积,细分出5种微相,内前缘主要微相为辫状水道、辫流坝、河口坝、席状砂和水道间,外前缘主要微相为分支水道、河口坝、远砂坝、席状砂和水道间。
     在详细的岩心观察和砂体对比的基础上,总结了各类砂体的接触关系模式,将砂体叠置模式分为6大类8小类,即辫流坝与辫流坝模式、辫状水道与辫流坝模式、辫状水道与辫状水道模式、分支水道与分支水道模式、分支水道与河口坝模式、分支水道与席状砂模式。正常三角洲微相中,河口坝、水下分流河道和远砂坝平均厚度分别为3.4m、3m、1.9m,平均宽度分别为296m、294.8m、207.1m,宽厚比分别为100.9、110.7、115.9。辫状河三角洲中,河口坝、水下分流河道平均厚度分别为4.2m、6.3m,宽度分别为350.9m、348m,宽厚比分别为84.3m、70.3m。扇三角洲中,辫状水道、辫流坝、分支水道、河口坝平均厚度分别为3.6m、4.3m、4.1m、2.7m,平均宽度分别为646.1m、783.2m、748.3m、683.9m,平均宽厚比分别为223.2、242.2、253.7、606.3。
     利用岩心样品物性测试资料,分析了流沙港组物性变化规律。流三段孔隙度在12%-18%之间,渗透率在24-294md之间,孔隙度和渗透率分布图表明河道的物性相对最好,主要集中在WZ11.1-A5_WZ11-1-2_WZ11-1-A10_WZ11-1-A8井附件。通过对流沙港组夹层和渗透率变异系数的详细研究,认为辫状水道孔隙度和渗透率呈现正韵律特征,河口坝孔隙度和渗透率呈现反韵律特征,WZ11-1N-2井和WZ11-1N-A井附近的渗透率变异数最高(平均达到2.4),非均质性最强。
     通过测井-地震联合技术对砂体进行详细追踪,发现流一段上层序正常三角洲沉积的砂体在地震剖面上连续性差,呈孤立或条带状分布,而流一段中~下层序扇三角洲前缘沉积砂体多以砂砾岩和粗砂岩为主,沉积厚度较大,远离物源时,表现为薄层的辫状水道沉积与相对较厚的水道间泥岩沉积的互层。流三段共发育12个砂体,在地震剖面上为中强振幅,连续性较好,从平面分布图来看,靠近物源的北部砂体分布特点为大而少,南部砂体特点为小而多。
     结合实测数据和测井数据对复杂储层参数进行了综合评价。论文采用密度测井和中子测井建立了孔隙度解释模型,分中砂以上粒级和中砂以下粒级分别建立孔渗关系,同时结合6口井的578个样品点,利用RQI和Φz将研究区划分4类流动单元,并按照不同流动单元建立渗透率解释模型,结果表明在流动单元的控制下的孔渗模型相关性较高,相关系数在0.8以上。通过储层四性关系的研究,认为流沙港组主要好储层岩性为粗粒级岩性,粗砂及以上粒级岩性以高渗储层为主,细粒级岩性(如粉砂岩)以低渗储层为主,总体上储层渗透率以中高渗储层为主,孔隙度和渗透率下限分别为14%、2md,泥质含量上限为15%。并且总体上流沙港组敏感性表现为无速敏或中弱速敏、中弱酸敏、中弱应力敏感性,速敏原因主要与岩样中可运移的粘十矿物高岭石颗粒大小产状与孔喉匹配有关,强酸敏和强应力敏感性仅在个别样品出现。
     在对流沙港组复杂储层现有测试工作制度分析的基础之上,针对不同的储层物性分别提出了不同的测试工作制度,编制了一套计算合理测试时间的程序。同时分析了启动压力梯度和渗透率应力敏感效应对产能的影响,并综合区域的地质油藏认识,提出了适合本区域的产能预测方法。最后认为“一开一关”测试方式对流沙港组复杂低渗储层最合适,并且孔隙度大于17%时才能获得高产,随着渗透率的增大,比采油指数呈增大的趋势,进一步说明渗透率是影响油田油井产能的重要因素,生产井的部署要充分考虑储层的渗透性。复杂储层产能-埋深关系、复杂储层产能-沉积环境关系表明在同一深度下,异常高压的储层的产能相对较好,水下分流河道储层物性较好,河口砂坝、席状砂、远砂坝微相次之,湖相泥微相储层物性最差。
     明确了影响复杂储层成因及质量的地质因素,将多种地质因素运用地质统计学权衡法,建立以砂体毛厚度、有效厚度、储层物性、沉积相带和层间层内非均质性为基础的储层综合评价体系,形成了多参数权衡定量储层套合评价技术,将流沙港组复杂储层进行了综合分类,并对储量动用程度及采收率进行了分析。结合区域的实际情况,提出了适合区域开发的六条建议,为流沙港组复杂储层的开发提供了技术指导和支持。选择了砂岩厚度(H)、有效厚度(He)、微相(facies)、孔隙度(POR)、渗透率(K)、变异系数(Vk)以及夹层密度(F)等8个因子,利用灰色理论灰色关联法对储层进行评分,总共划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ大类,其中对Ⅰ、Ⅱ、Ⅲ各细分为两个亚类,把Ⅱ、Ⅰ2、Ⅱ1、Ⅱ2、Ⅲ1类划为常规储层(有自然产能),而Ⅲ2、Ⅳ类分别为常压地层的非常规储层。
     综合复杂储层构造建模采用的“Y”字型断层建模技术、地层超覆接触关系处理技术,逆掩断层建模技术以及相建模采用的储层反演技术、趋势面约束相建模技术、井—震—相联合建模技术,形成了一套针对复杂断层和复杂砂体的精细地质建模技术,并且采用地震反演体、沉积微相控制岩性建模,通过饱和度模拟符合实际地质特征,储量拟合误差为7.8%,表明本次复杂储层建模技术优于常规建模技术。
     综合运用了上述方法和技术,即复杂储层地质评价技术、复杂储层测井-地震联合评价技术、复杂储层综合参数评价技术以及复杂储层三维地质建模技术,形成了一套复杂储层综合评价的流程、方法和技术体系。2011-2013年涠洲11-4N以及涸洲11-1油田的开发中得到了阶段性的应用,且油田的开发调整效果较好。
The research on continental oil and gas reservoirs has been more and more delicate, the exploration target of offshore oil-gas reservoir has also been the small sand body, small fault block, complicated reservoir and low permeability reservoir. So the marine oil and gas production will inevitably entered the "complicated reservoir" stage, and meanwhile the corresponding assessment methods, engineering measures and exploration measures should be designed delicately. This paper carries out a study on complicated reservoir sedimentology and integrated assessment of Liushagang formation in weixinan depression(weizhou11-4N,11-1, weizhou11-IN, weizhou11-2,) based on the reservoir forming process and3D varying pattern, established complicated reservoir assessment system and specific methods which can provide the basic rule for the design of reservoir development scheme and adjusted scheme.
     This dissertation have reconstructed the sequence stratigraphic framework of complicated tectonic-sedimention, and revealed the controlling factors of the complicated sedimentary system using seismic data, core data, logging data, production test and dynamic analysis of well production comprehensively based on sequence stratigraphy, sedimentology, reservoir geology, logging geology and other discipline theories. Additionally, we make a further division of the sedimentary micro-facies of the key strata, analyzes sand body vertical stacking pattern, connectivity and the plane distribution laws, establish the empirical formula between thickness and width of different sand types in different depositional system and the macroscopic heterogeneity parameters. At the same time, this dissertation also analyzes the relationship between the reservoir physical properties, effective reservoir and sedimentary micro-facies systematicly, determines favorable area, and evaluates and classifies the reservoir quantitatively using geo-statistical method. Finally this research establishes a complicated reservoir geological model in the field scale by the means of random3D geological modeling, representing reservoir structure unit, property unit and the favorable reservoir zone in three-dimensional space, which provides certain basis for the development. Research results and the main ideas can be summarized as follows:
     We have established the uniform sequence stratigraphic framework of Liushagang formation combining the division of oil group, change of accommodation space, division of the original reservoir of base level cycles, integrating sedimentary sequence, T-R sequence and Cross.T A high-resolution sequence stratigraphy theory, based on seismic, core, well log data. We have recognized2long term cycles,9middle term cycles,24short term cycles in the1member of Liushagang formation, and a long term cycle,5middle term cycles,24short term cycles in the3member of Liushagang formation. At the same time, the target layer is divided into5oil groups,8sets of sand bodies from bottom to top according to the distribution of well location, sand bodies and the results of sequence classification. In addition, there is a low lateral connectivity of sand body and the distribution of sand body are different in each of the oil group, what's more, the main oil group V oil group is divided into V1and V2two layers.
     The stable heavy mineral assemblages in the north in the upper1member of Liushagang formation are mainly leucoxene, hematite-limonite, zircon and tourmaline from the development of sand body and the quantitative analysis of heavy mineral, which indicate the sources are mainly from the west, extending from west to east. The stable heavy mineral assemblages in the north in the lower1member of Liushagang formation are mainly tourmaline, leucoxene, zircon and hematite-limonite, and zircon, tourmaline and leucoxene in the south, which indicate the sources are mainly from the southwest, extending from west to east and east to north. The stable heavy mineral assemblages in the3member of Liushagang formation are mainly leucoxene, hematite-limonite, zircon and tourmaline, which indicate the sources are mainly from the southwest.
     The lithology aspects, the upper1member of Liushagang formation is major composed of fine sand, silt-finestone and siltstone, the mainly sedimentary structure includes trough cross-bedding, tabular cross-bedding, small sand grain bedding, small climb stratification, deformation bedding and horizontal bedding, mainly showing tractive current deposition, gravity deposition also exists locally, however, the middle and lower1member of Liushagang formation is major composed of glutenite, conglomeratic sandstones, middle-course sandstones, laminar fine-siltstone and mud stone, the mainly sedimentary structure includes trough cross-bedding, tabular cross-bedding, mixed bedding. On the other hand, the3member of Liushagang formation includes trough cross-bedding, tabular cross-bedding, massive bedding, bioturbation structure.
     The upper1member of Liushagang formation logging facies can be divided into box type, bell type, funnel-shaped type, finger type and linear type through the detail core description. The middle and lower1member of Liushagang formation logging facies can be further divided into box-funnel combination, bell-bell combination, funnel-finger combination, box-box combination and box-finger combination. The upper1member of Liushagang formation can be identified as normal delta front deposition based on the core analysis and logging facies, the delta inner-front can be further divided into braided channel, mouth bar, sheet sand, inter-channel, and the delta exo-front can be further divided into branch channel, mouth bar, distal bar, sheet sand, inter-channel. The lower1member of Liushagang formation can also be divided into delta inner-front and exo-front, further divided into8microfacies. The upper3member of Liushagang formation can be identified as delta exo-front, including4microfacies, the lower part is identified as delta inner-front including5microfacies, the delta inner-front can be further divided into braided channel, mouth bar, sheet sand, inter-channel, and the delta exo-front can be further divided into branch channel, mouth bar, distal bar, sheet sand, inter-channel.
     The sandstone superimposed structure is established and divided into6categories,8classes, including braided bar-braided bar pattern, braided bar-braided channel pattern, braided channel-braided channel pattern, branch channel-branch channel pattern, branch channel-mouth bar pattern, branch channel-sheet sand pattern. In the normal delta facies, the average thickness of mouth bar, distributary channel and distal sand are3.4m,3m,1.9m, respectively, the average width of mouth bar, distributary channel and distal sand are296m,294.8m,207.1, respectively, the average width-to-thickness ratio of mouth bar, distributary channel and distal sand are100.9,110.7,115.9, respectively. In the braided river delta, the average thickness of mouth bar, distributary channel are4.2m,6.3m, respectively, the average width of mouth bar, distributary channel are350.9m,348m, respectively, the average width-to-thickness ratio of mouth bar, distributary channel are84.3,70.3, respectively. In the fan-delta, the average depth of braided channel, braided bar, branch channel, mouth bar are3.6m,4.3m,4.1m,2.7m, respectively, the average width of braided channel, braided bar, branch channel, mouth bar are646.1m,783.2m,748.3m,683.9m, respectively, the average width-to-thickness ratio of braided channel, braided bar, branch channel, mouth bar are223.2,242.2,253.7,606.3, respectively.
     We have analyzed the changing law of physical properties. The results show that porosity ranges from12%to18%, permeability ranges from24md to294md, with regard to reservoir properties, the braid-channel and distributary channel are the best, concentrating around the wells WZ11-1-A5_WZ11-1-2_WZ11-1-A10_WZ11-1-A8. We find it that porosity and permeability in braid-channel has positive rhythm characteristics, however, the mouth bar shows inverse rhythm characteristics, the highest penneability variation coefficient concentrates around well WZ11-1N-2and WZ11-1N-A, the average permeability variation coefficient is about2.4, indicating strong heterogeneity.
     The log-seismic technique is introduced to track the sand distribution detailly, we find it that the normal delta deposition sand of upper1member of Liushagang formation in the seismic profile shows poor continuity, isolated or banded distribution, on the contrast, the fan-delta front sandbodies of the middle and lower1member of Liushagang formation are mainly composed of conglomerate and coarse sandstone with a large sedimentary thickness. The deposition is manifested as interbeds between thin braided channel deposition and relatively thick mudstone in the canal. There are12sand body developing in3member of Liushagang formation, showing moderate-strong amplitude, high continuity. We can conclude that the sand bodies in the north which is near the provenance are larger and fewer, however, the sand bodies in the south which is far away from the provenance are smaller and richer.
     We have evaluated the complicated reservoir parameters comprehensively combined with the measured data and logging data. This dissertation has established porosity interpretation model using density and neutron logging data, and established the relationship between porosity and permeability according to the grade above or below the medium sand. We have divided the flow unites into4categories using RQI and Oz combined with578test data in6wells, and established the permeability interpretation models according to the different flow units. The results show that the correlation coefficient in each permeability interpretation model is above0.8under the control of the flow units. By studying the reservoir parameters, we conclude that the good lithology of reservoir of Liushagang formation is coarse sandstone. The coarse sandstone are mainly high permeability reservoir and the fine-grade sandstone (siltstone) is mainly low permeability reservoir. The reservoir is mainly high and medium permeability in general. The lower limit of porosity and permeability are14%,2md, respectively, and upper limit of ash content (Vsh) is15%. And generally the sensitivity of Liushagang formation showed no speed-sensitive or weakly speed-sensitive, weak-acid sensitivity, weak-stress sensitivity, the speed-sensitive are mainly due to the particle size of kaolinite and pore throat match, only individual samples show strong stress-sensitivity and strong acid-sensitivity.
     We have proposed different testing systems according to different reservoir physical properties based on the analysis of existed complicated reservoir testing system of Liushagang formation, and compiled a set of program to calculate reasonable testing time. We have also analyzed the effect of starting pressure gradient and stress sensitive of permeability to the productivity, and proposed a reasonable method to predict the productivity of the region based on the comprehensive understanding of regional reservoir. Finally, we consider that the test method-"on-off'can best fit the low permeability reservoir of Liushagang formation, and it can achieve high yield only when the porosity is greater than17%, and specific productivity index is also increasing with the increase of permeability, so this further demonstrates that permeability is an very important factor to the productivity of the oil well, we should take a full consideration on the permeability. The relationship between productivity-buried depth and productivity-sedimentary of the complicated reservoir showed that the reservoir with abnormal high pressure has a better productivity at the same depth, distributary channel has the best property, then the mouth bar, sheet sand, distal sand, and the worst is mud.
     We have been clear about the geological factors affecting the complicated reservoir formation and quality, established the reservoir comprehensive evaluation system based on effective thickness, reservoir property, sedimentary facies zone, and the inter formational and internal heterogeneity, formed a comprehensive multi-parameter weighed quantitative evaluation technique. Meanwhile, the complicated reservoir of Liushagang Formation is classified, and the producing degree of reserves and recovery rate are also analyzed. Eight factors, including sandstone thickness(H), effective thickness (He), micro-facies (facies), porosity (POR), permeability(K), coefficient of variation (Vk), interlayer density (F), are introduced to classify reservoir using grey theory and grey relation method based on the actual regional situation, we divides the reservoir into Ⅰ,Ⅱ,Ⅲ,Ⅳ classes, and Ⅰ,Ⅱ,Ⅲ classes are subdivided into2subclasses, respectively. In addition, the1-1,1-2,Ⅱ-1, Ⅱ-2, Ⅲ-1are classified as conventional reservoir (a natural productivity), and Ⅲ-2, IV are unconventional reservoir in normal pressure formation. These recommendations provide technical guidance and support for the development of complicated reservoir of Liushagang Formation.
     We have integrated the structural modeling technique of complicated reservoir, including the "Y"-shaped fault modeling technique, the stratigraphic contact relationship processing technique, overthrust fault modeling techniques and the facies modeling technique, including reservoir inversion technique, trend surface modeling technique, well-seismic-facies technique, then the technique for complicated reservoir is established. In addition, the seismic inversion, sedimentary micro facies was used to control lithology modeling, and porosity, permeability, saturation and lithofacies simulation are more likely in accord with the actual geological features, the reserves fitting error is about7.6%, indicating that the complicated reservoir modeling technique is suitable for complicated reservoir and complicated fault block, and the accuracy of modeling is high, it can also reflect the underground structure and sand body structure more precise, and is better than the conventional modeling technique.
     The process, methods and technique system of complicated reservoir is established using all the methods and technique above, including geology assessment technique, logging-seismic assessment technique, integrated parameters assessment technique and3D geological assessment technique. The integrated assessment technique has been used in WZ11-4N and WZ11-1oilfield during2011-2013, and the effects of development adjustment is better.
引文
[1]朱伟林,江文荣.北部湾盆地涠西南凹陷断裂与油气藏[J].石油学报,1998,19(3):6-10.
    [2]杜振川,魏魁生.南海北部湾盆地北部凹陷涠洲组层序地层格架及特征[J].沉积学报,2001,19(4):563-568.
    [3]董贵能,李俊良.北部湾盆地涠西南凹陷流一段非构造油气藏[J].石油勘探与开发,2010,37(5):552-560.
    [4]王健,操应长,李俊良.北部湾盆地涠西南凹陷古近系层序结构与非构造圈闭[J].石油勘探与开发,2010,37(5):552-560.
    [5]姚光庆,张建光,姜平,等.涠西南凹陷11-7构造区流沙港组中深层有效储层下限厘定[J].地学前缘(中国地质大学(北京);北京大学),2012,19(2):102-109.
    [6]姜平,张建光,姚光庆,等.涠西南凹陷11-7区块流沙港组沉积体系构成及演化特征[J].地质科技情报,2013,32(2):97-104.
    [7]姚光庆.涠州11-7油田流沙港组储层沉积相研究[R].武汉:中国地质大学,2009.
    [8]刘杰,操应长,王健,等.涠西南凹陷A井区古近系流沙港组一段砂体沉积特征及分布规律[J].沉积学报,2013,31(1):56-66.
    [9]王军.富台潜山油藏复杂储层测井评及其应用[J].石油学报,2005,26(3):86-89.
    [10]邱旭明.苏北盆地扭动构造油气藏[J].石油勘探与开发,2004,31(3):26-29.
    [11]姜平.千米桥潜山构造油气藏成藏分析[J].石油勘探与开发,2000,27(3):14-16.
    [12]赵力民,杜金虎,郎晓玲,等.二连盆地努格达构造复杂油气藏描述研究[J].石油勘探与开发,1999,26(2):31-34.
    [13]陆建林.南阳洼陷北部坡折带隐蔽油气藏勘探[J].石油勘探与开发,2004,31(3):38-40,48.
    [14]陈冬霞,庞雄奇,姜振学,等.中国东部陆相盆地隐蔽油气藏成藏机理与模式[J].石油勘探与开发,2006,33(2):178-183.
    [15]李宏伟,朱怡翔,李胜利,等.辽河西部凹陷北部地区隐蔽油气藏预测与成藏机制分析[J].石油勘探与开发,2003,30(1):44-46.
    [16]吴东胜,杨申谷,刘少华.陆相盆地隐蔽油气藏综合勘探方法与应用初探[J].石油与天然气地质,2006,27(1):118-123.
    [17]李祥权,陈少平等.隐蔽油气藏勘探方法与发展趋势[J].断块油气田.2005.12(2):1-3.
    [18]贾承造,赵文智,邹才能,等.岩性地层油气藏勘探研究的两项核心技术[J].石油勘探与开发,2004,31(3):3-7.
    [19]庞雄奇,周新源,鄢盛华,等.中国叠合盆地油气成藏研究进展与发展方向—以塔里木盆地为例[J].石油勘探与开发,2012,39(6):649-656.
    [20]金之钧,蔡立国.中国海相油气勘探前景,主要问题与对策[J].石油与天然气地 质,2006,27(6):722-730.
    [21]牟书令.中国海相油气勘探理论,技术与实践[J].石油与天然气地质,2008,29(5):543-548.
    [22]刘俊峰.海拉尔盆地复杂储层地震识别方法研究[D].北京:中国地质大学(北京),2010.
    [23]何东博.苏里格气田复杂储层控制因素和有效储层预测[D].北京:中国地质大学(北京),2005.
    [24]王志章,熊琦华,张一伟,等.非均质复杂断块油田储层参数测井解释模型[J].石油学报,1994,15:89-98.
    [25]Suk Sang Kang, Akhil Datta-Gupta, W John Lee. Impact of natural fractures in drainage volume calculations and optimal well placement in tight gas reservoirs [J]. Journal of Petroleum Science and Engineering,2013,109:206-216.
    [26]Bing xiang Xu, Manouchehr Haghighi, Xiangfang Li, et al. Development of new type curves for production analysis in naturally fractured shale gas/tight gas reservoirs[J]. Journal of Petroleum Science and Engineering,2013,105:107-115.
    [27]康西栋,赵文翠,潘治贵,等.北部湾盆地层序格架及其内部构成[J].地球科学,1994,19(4):493-502.
    [28]朱伟林,江文荣.北部湾盆地涠西南凹陷断裂与油气藏[J].石油学报,1998,19(3):6-10.
    [29]于兴河,李剑峰.油气储层研究所面临的挑战与新动向[J].地学前缘,1995,2(4):213-220.
    [30]魏大农,袁明前.测井新技术评价方法在江汉复杂储层中的应用[J].测井技术,2004,28(5):406-409.
    [31]张小兵.陆相断陷盆地复杂小断块储层描述—以苏北盆地北汉庄地区为例[D].成都:成都理工大学,2007.
    [32]赵新民,李国平,王树寅,等.欠压实带与超压带的测井识别[J].石油与天然气地质,2002,23(1):63-65.
    [33]王树寅.苏里格地区上古生界气田沉积特征测井分析[J].测井技术,2006,30(2):146-148.
    [34]李潮流,王树寅.利用FMI成像测井识别柴西第三系藻灰岩储层[J].测井技术,2006,30(6):523-526.
    [35]李潮流,王树寅.柴达木盆地涩北一号气田低阻气层测井解释方法[J].测井技术,2004,28(2):128-131.
    [36]周锋德,姚光庆,赵彦超.鄂尔多斯北部大牛地气田储层特低渗成因分析[J].海洋石油,2003,23(2):27-31.
    [37]纪友亮,冷胜荣,张立强.吐哈盆地侏罗系层序地层学及复杂储层研究[M].东营:石油大学出版社,1998.
    [38]沈守文,彭大钧,颜其彬,等.吐哈盆地侏罗系层序地层学研究[J].沉积学报,2001,19(2):263-270.
    [39]孙金浩,浅析火山岩复杂储层流体识别的方法.国外测井技术[J].2005,20(6):13-16.
    [40]杨学峰,王薇,郑建东.徐深气田火山岩储层测井解释饱和度方法研究国外测井技术 [J].2006.
    [41]朱庆忠,黄捍东,魏修成,等.复杂油气藏储层横向预测[J].石油地球物理勘探,2003,38(4):405-408.
    [42]王连山,朱庆忠,董建海,等.三维多尺度边缘检测技术在古潜山裂缝性储层预测中的应用一以河西务南部油气藏为例[J].特种油气藏,2006,13(3):15-17,21.
    [43]赵良孝,张树东,胡玲.复杂碳酸盐岩储层含油气饱和度计算方法探索[J].天然气工业,2005,25(9):42-44.
    [44]傅海成,张承森,赵良孝,等.塔里木盆地轮南奥陶系碳酸盐岩储层类型测井识别方法[J].西安石油大学学报(自然科学版),2006,21(5):38-41.
    [45]王拥军,夏宏泉,陈科贵,赵良孝,等.塔里木碳酸盐岩储层最优化测井解释方法[J].西南石油学院学报,2000,22(4):18-21.
    [46]张旭.复杂碎屑储层测井参数计算方法研究[J].天然气勘探与开发,2003,26(3):17-23.
    [47]刘泽容,张晋仁,金强.油藏评价和预测[M].北京:石油工业出版社,1993:49-76.
    [48]季玉新,陈娟,谢雄举.测井曲线精细处理解释技术在复杂储层预测中的应用[J].石油物探,2004,43(2):139-144.
    [49]王秀玲,季玉新,刘玉珍.应用地震吸收分析技术预测裂缝性储层[J].油气地球物理,2003,1(2):44-46.
    [50]季玉新.裂缝储层预测技术及应用[J].天然气工业,2007,27(A):420-423.
    [51]王秀玲,孟宪军,季玉新.潜山裂缝储层地震多信息综合预测方法及应用实例[J].石油地球物理勘探,2002,37:196-201.
    [52]Aitokhuehi, Inegbenosel, Durlofsky, Louis J. Optimizing the performance of smart wells in complex reservoirs using continuously updated geological models [J]. Journal of Petroleum Science and Engineering,2005,48:254-264.
    [53]Purvis K, Kao J, FlanagnaK, et al. Complex reservoir geometries in a deep water clasticsequence, Gryphon Field, UKCS:injection structures, geological modelling and reservoir simulation[J]. Marine and Petroleum Geology,2002,19(2):161-179.
    [54]焦春艳,何顺利,谢全,等.超低渗透砂岩储层应力敏感性实验[J].石油学报,2011,32(3):489-494.
    [55]于忠良,熊伟,高树生,等.致密储层应力敏感性及其对油田开发的影响[J].石油学报,2007,28(4):94-98.
    [56]邓继新,王尚旭,李生杰,等.砂岩储层地震属性参数对孔隙流体的敏感性评价[J].石油学报,2006,27(6):55-59.
    [57]于翠玲,林承焰.储层非均质性研究进展[J].油气地质与采收率,2007,14(4):15-18.
    [58]杨少春.储层非均质性定量研究的新方法[J].石油大学学报,2000,24(1):53-56.
    [59]刘丽军,佟彦明,纪云龙,等.北部湾盆地福山凹陷流沙港组湖底扇沉积特征及发育背景[J].石油实验地质,2003,25(2):110-115.
    [60]徐新德,王碧维,李旭红,等.北部湾盆地涠西南凹陷流沙港组隐蔽油气藏油源及成藏特征[J].天然气地球科学,2012,23(1):92-98.
    [61]康西栋,赵文翠,潘治贵,等.北部湾盆地层序格架及其内部构成[J].地球科 学,1994,19(4):493-502.
    [62]方勇,张树林,胡林,等.涠西南凹陷流一段两种岩性圈闭成因模式分析[J].中国海上油气,2013,25(5):16-20.
    [63]Lake L W, Carroll H B. Reservoir Characterization[M]. Orlando:Academic Press,1986: 1-5.
    [64](美)理查德,沙茨英格,约翰.乔丹.储层表征新进展[M].北京:石油工业出版社,2002,4.
    [65]裘怿楠,贾爱林.储层地质建模10年[J].石油学报,2000,21(4):101-104.
    [66]刘孟慧.储层特征描述技术:第二届国际储层表征研讨会简介,储层评价研究进展:石油科技专辑(4),中国石油天然气总公司科技发展部,北京,1995.
    [67]刘孟慧,赵征林.油气储层研究进展与展望[J].石油大学学报(自然科学版),1991,15(3):115-124.
    [68]王留奇,赵征林,刘孟慧,等.油区构造沉积成岩相带研究[J].石油勘探与开发,1992,19(5):26-31.
    [69]赵征林,刘孟慧,姜在兴,等.渤海湾早第三纪断陷盆地含油气岩系及沉积相的基本特征[J].石油学报,1991,12(2):28-32.
    [70]赵春森,翟云芳,张大为.油藏非均质性的定量描述方法[J].石油学报,1999,20(5):39-42.
    [71]李汉林,姜在兴,赵征林,等.沉积相的定量判别[J].石油大学学报(自然科学版),1988,12(4-5):1-10.
    [72]Hans-Henrik Stolulll著,姜在兴译.碎屑岩储层的分形非均质性[M].东营:石油大学出版社,1990:103-121.
    [73]严科,杨少春,任怀强.储层宏观非均质性定量表征研究[J].石油学报,2008,29(6):870-874,879.
    [74]姚光庆,马正,赵彦超.储层描述尺度与储层地质模型分级[J].石油实验地质,1994,16(4):403-408.
    [75]王德发,陈建文,李长山.中国陆相储层表征与成藏形型式[J].地学前缘(中国地质大学,北京大学),2000,7(4):363-369.
    [76]欧阳健,王贵文.油气藏中的测井储层描述[J].石油学报,1994,15:116-123.
    [77]Wu Yahong, Weng Xingfang, Xu Mengya, et al. Study of early dynamic evaluation methods in complex small fault-block reservoirs [J]. Energy Procedia,2002,14:689-694.
    [78]骆杨,赵彦超.多点地质统计学在河流相储层建模中的应用[J].地质科技情报,2008,27(3):68-72.
    [79]周江羽,吴冲龙,毛小平,等.含油气盆地储层建模和模拟研究评述[J].地质科技情报,1998,17(1):67-72.
    [80]Van Riel P. The past,present,and future of quantitative reservoir Leading Edge 2000,19(8): 878-881.
    [81]于兴河.油气储层表征与随机建模的发展历程及展望[J].地学前缘(中国地质大学(北京);北京大学),2008,15(1):1-15.
    [82]穆龙新.油藏描述技术的一些发展动向[J].石油勘探与开发,1999,26(6):42-46.
    [83]申本科,胡永乐,田吕炳.油藏描述技术发展与展望[J].石油勘探与开发,2003,30(4):78-81.
    [84]魏忠元,张勇刚.现代油藏描述技术的特点及发展动向[J].特种油气藏,2004,11(5):5-7.
    [85]Alden J M, Stephen T S, Dan J H. Characterization of petrophysical flow units in carbonate reservoir[J]. AAPG Bulletin.1997,81 (5):731-759.
    [86]于兴河.油气储层表征与随机建模的发展历程及展望[J].地学前缘,2008,15(1):1-15.
    [87]杨辉廷,颜其彬,李敏.油藏描述中的储层建模技术[J].大然气勘探与开发,2004,27(3):45-49.
    [88]Shahab D, Mohaghegh. Reservoir modeling of shale formations[J]. Journal of Natural Gas Science and Engineering,2013,12:22-33.
    [89]Hussein Hoteit. Modeling diffusion and gas-oil mass transfer in fracture dreservoirs[J]. Journal of Petroleum Science and Engineering,2013,105:1-17.
    [90]YAO Jinglil, DENG Xiuqin, ZHAO Yande,et al. Characteristics of tight oil in Triassic Yanchang Formation,Ordos Basin[J]. PETROLEUM EXPLORATION AND DEVELOPMENT,2013,40(2):161-169.
    [91]Redha C, Aggoun, Djebbar Tiab, Jalal F. Owayed. Characterization of flow units in shaly sand reservoirs-Hassi R'mel Oil Rim, Algeria[J]. Journal of Petroleum Science and Engineering,2006,50:211-226.
    [92]Rima Chatterjee, SaurabhDattaGupta, M.Y.Farroqui. Reservoir identification using full stack seismic inversion technique:A case study from Cambay basin oilfields, India[J]. Journal of Petroleum Science and Engineering,2013,109:87-95.
    [93]Vincenzo Guerriero, Stefano Mazzoli, Alessandro Iannace, et al. A permeability model for naturally fractured carbonate reservoirs [J]. Marine and Petroleum Geology,2013,40: 115-134.
    [94]Michael Wilt, David Alumbaugh. Oil field reservoir characterization and monitoring using electromagnetic geophysical techniques[J]. Journal of Petroleum Science and Engineering,2003,39:85-97.
    [95]Tingting Yao, Andre G, Journel. Integrating seismic attribute maps and well logs for porosity modeling in a west Texas carbonate reservoir:addressing the scale and precision problem[J]. Journal of Petroleum Science and Engineering,2000,28:65-79.
    [96]Xiongyan Li, Hongqi Li. A new method of identification of complex lithologies and reservoirs:task-driven data mining[J]. Journal of Petroleum Science and Engineering,2013,109:241-249.
    [97]ZHAO Xianzheng, JIN Fengming, CUI Zhouqi, et al. Types of subtle buried-hill oil reservoirs and their accumulation simulation in Jizhong Depression, Bohai Bay Basin[J]. PETROLEUM EXPLORATION AND DEVELOPMENT,2012,39(2):147-154.
    [98]Michael Riedel, J Bahk, Kim, et al. Seismic facies analyses as aid in regional gas hydrate assessments. Part-Ⅱ:Prediction of reservoir properties, gas hydrate petroleum system analysis, and Monte Carlo simulation[J]. Marine and Petroleum Geology,2013,47:269-290.
    [99]GAN Lideng, DAI Xiaofeng, ZHANG Xin,et al. Key technologies for seismic reservoir characterization of high water-cut oilfields[J].PETROLEUM EXPLORATION AND DEVELOPMENT,2012,39(3):391-404.
    100] Morteza Raeesi, Ali Moradzadeh, Faramarz Doulati Ardejani, et al. Classification and identification of hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial neural networks[J]. Journal of Petroleum Science and Engineering,2012,82-83:151-165.
    101] M Fohrmann, I A Pecher. Analysing sand-dominated channel systems for potential gas-hydrate-reservoirs using an AVO seismic inversion technique on the Southern Hikurangi Margin,New Zealand [J]. Marine and Petroleum Geology,2012,38:19-34.
    102] K Aminian, S Ameri. Application of artificial neural networks for reservoir characterization with limited data [J]. Journal of Petroleum Science and Engineering,2005,49:212-222.
    103]申本科,胡永乐,田吕炳.油藏描述技术发展与展望[J].石油勘探与开发,2003,30(4):78-81.
    104]林畅松,张燕梅,刘景彦,等.高精度层序地层学和储层预测[J].地学前缘(中国地质大学,北京大学),2000,7(3):111-117.
    105]林畅松,张艳梅,等.高精度层序地层学和储层预测[J].地学前缘,2000,7(3):111-117.
    106]熊琦华,张一伟.现代油藏描述技术及其应用[J].石油学报,1994:12-33.
    107]尹志军,黄述旺,陈崇河.用三维地震资料预测裂缝[J].石油勘探与开发,1999,126(1):78-80.
    108] Jia Ailin, Cheng Lihua. The technique of digital detailed reservoir characterization[J]. PETROLEUM EXPLORATION AND DEVELOPMENT,2010,37(6):709-715.
    109] Scott M Frailey, James Damico, Leetaru. Reservoir Characterization of the Mt. Simon Sandstone,Illinois Basin, USA[J]. Energy Procedia,2011,4:5487-5494.
    110] WANG Hui, HU Guangyi, FAN Hongjun, et al. Key technologies for the fluvial reservoir characterization of marginal oil fields[J]. PETROLEUM EXPLORATION AND DEVELOPMENT,2012,39(5):667-673.
    111] S R Jackson, L Tomutsa M, Szpakiewicz. CONSTRUCTION OF A RESERVOIR MODEL BY INTEGRATING GEOLOGICAL AND ENGINEERING INFORMATION-BELL CREEK FIELD, A BARRIER/STRANDPLAIN RESERVOIR[J]. Reservoir Characterization Ⅱ,1991:524-556.
    112] Nelia Jafroodi, Dongxiao Zhang. New method for reservoir characterization and optimization using CRM-EnOpt approach[J]. Journal of Petroleum Science and Engineerings 11,77:155-171.
    113]穆龙新.油藏描述技术的一些发展动向[J].石油探与开发,1999,26(6):42-46.
    114]宋海渤,黄旭日.油气储层建模方法综述[J].大然气勘探与开发,2008,31(3):53-57.
    115]关振良,杨庆军,段成刚.油藏数值模拟技术现状分析[J].地质科技情报,2000,19(1): 73-76.
    [116]解宏伟.油藏精细描述技术在油田二次开发中的应用一以克拉玛依油田二中西克上组油藏为例[D].北京:中国地质大学(北京),2010.
    [117]姚光庆,马正,赵彦超,等.浅水三角洲分流河道砂体储层特征[J].石油学报,1995,16(1):26-31.
    [118]Y Z Ma. Error types in reservoir characterization and managemen[J]. Journal of Petroleum Science and Engineering,2010,72:290-301.
    [119]周锋德,姚光庆,赵彦超,等.鄂尔多斯北部大牛地气田特低渗储层地质特征研究[J].天然气勘探与开发,2002,25(2):37-42.
    [120]Masoud Nikravesh, Aminzadeh Past, present and future intelligent reservoir characterization trends[J]. Journal of Petroleum Science and Engineering,2001,31:67-79.
    [121]穆星,印兴耀,王孟勇.济阳坳陷储层地震地质综合预测技术研究[J].石油物探,2006,45(4):351-356.
    [122]黄贺雄,仲自勉.测井-地震综合解释软件-SUN工作站应用软件开发之一[J].测井技术,1994,(6):436-440.
    [123]魏嘉,刘永宁,仇正兰,等.地震综合解释数据平台的开发[J].石油物探,2009,48(2):206-212.
    [124]师永民.高分辨率砂泥岩薄互层储层综合预测技术[J].石油地球物理勘探,2000,35(5):661-668.
    [125]樊长江,王贤,邓宏文,等.地震反演中的储层表征的对策和思路[J].天然气地球科学,2006,17(4):543-546.
    [126]C E Romero, J N Carter. Using genetic algorithms for reservoir characterization[J]. Journal of Petroleum Science and Engineering,2001,31:113-123.
    [127]周海民,常学军,郝建明,等.冀东油田复杂断块油藏水平井开发技术与实践[J].石油勘探与开发,2006,33(5):622-629.
    [128]孙致学,鲁洪江,冯文光,等.低渗透砂岩储集层油藏评价一体化研究方法及应用[J].石油勘探与开发,2006,33(6):743-748.
    [129]刘永爱,董义军.油气资源勘探开发一体化管理模式探析[J].西安石油大学学报,2009,19(1):5-10.
    [130]周峰.智能井监测技术研究进展[J].地质科技情报,2013,32(2):174-180.
    [131]D R Brouwer,金佩强.用智能井技术通过水驱提高采收率[J].国外油气田工程,2002,18(3):1-6.
    [132]Stuart Crampin. Implications of rock criticality for reservoir characterization[J]. Journal of Petroleum Science and Engineering,1999,24:29-48.
    [133]王家豪,姚光庆,赵彦超.浅水辫状河三角洲发育区短期基准面旋回划分及储层宏观特征分析[J].沉积学报,2004,22(1):87-94.
    [134]Rima Chatterjee, SaurabhDattaGupta, M Y Farroqui. Reservoir identification using full stack seismic inversion technique:A case study from Cambay basin oilfields, India[J]. Journal of Petroleum Science and Engineering,2013,109:8-95.
    135] Obinna Ezulike, AlpheusIgbokoyi. A 3D analysis of interference testing in anisotropic composite reservoirs[J]. Journal ofPetroleumScienceandEngineering,2013,103:14-28.
    136] A Khidir, O Catuneanu. Reservoir characterization of Scollard-age fluvial sandstones, Alberta foredeep[J]. Marine and Petroleum Geology,2010,27:2037-2050.
    137] Herlander Mata-Lima. Reservoir characterization with iterative direct sequential co-simulation:Integrating fluid dynamic data into stochastic model[J]. Journal of Petroleum Science and Engineering,2008,62:59-72.
    138]姜在兴.层序地层学研究进展:国际层序地层学研讨会综述[J].地学前缘(中国地质大学,北京大学),2012,19(1):1-9.
    139]李思田,林畅松,解习农,等.大型陆相盆地地层层序学研究-以鄂尔多斯中生代盆地为例[J].地学前缘,1995,2(4):133-136.
    140]吴因业,顾家裕,施和生.从层序地层学到地震沉积学—全国第5届油气层序地层大会综述[J].石油实验地质,2008,30(3):216-227.
    141] Tomas V, Claudia A, Paul W, et al. Biostratigraphic techniques for analyzing benthic biofacies,stratigraphic condensation, and key surface identification, Pliocene and Pleistocene sediments,Northern Green Canyon and Ewing Bank (Offshore Louisiana)Northern Gulf of Mexico [J]. AAPG Bulletin,1998,82(5b):961-985.
    142] James A M, Brian A Z, Pemberton S G. High-resolution sequence stratigraphy of early transgressive deposits, Viking Formation, Joffre Field, Alberta,Canada[J]. AAPG Bulletin,1998,82(5A):729-755.
    143] Armentrout J M. High resolution sequence biostratigraphy:examples from the Gulf of Mexico Plio-Pleistocene[A]. Howell J A, Aitken J. High Resolution Sequence Stratigraphy: Innovations and Applications[C].Geological Society Special Publication,1996,104:65-87.
    144]单敬福,纪友亮,史榕,等.高分辨率层序地层学对河流相储层薄夹层的识别及其应用[J].海洋地质动态,2006,22(5):25-29.
    145]曾洪流.地震沉积学在中国:回顾与展望[J].沉积学报,2011,29(3):417-426.
    146] Zeng Hongliu, Hentz T F. High-frequency sequence stratigraphy from seismic sedimentology:applied to Miocene,Vermilion Block 50,Tiger Shoal area, offshore Louisiana[J].AAPG Bulletin,2004,88(2):153-174.
    147] Zhu X M, Dong Y L. Seismic Sedimentology Applied to Qinan Sag,China (Abstract).AAPG Annual Convention & Exhibition, San Antonio, TX,2008.
    148]林正良,王华,李红敬,等.地震沉积学研究现状及进展综述[J].地质科技情报,2009,28(5):131-137.
    149] Posamentier H W.Seismic stratigrphy into the next millennium:A focus on 3D seismic data[J]. AAPG Annual Convention Program,2009,9:118.
    150] Catuneanu O. Principles of sequence straigraphy[M]. Oxford:Elsevier,2006:20.
    151]佘敏,寿建峰,郑兴平,等.基于CT成像的三维高精度储集层表征技术及应用[J].新疆石油地质,2011,32(6):664-666.
    152]朱益华,陶果,方伟,等.3D多孔介质渗透率的格子Boltzmann模拟[J].测井技 术,2008,32(1):25-28.
    [153]王华,赵忠新,陆永潮,等.博湖坳陷八道湾组层序格架下的沉积构成研究[J].石油天然气学报,2007,29(4):15-22.
    [154]邱荣华,陈文礼,林社卿,等.焉耆盆地中生界层序地层和沉积体系分析[J].地球科学-中国地质大学学报,2001,26(6):615-620.
    [155]张宝民,刘静江.中国岩溶储集层分类与特征及相关的理论问题[J].石油勘探与开发,2009,36(1):12-29.
    [156]罗红梅,朱毅秀,穆星,等.渤海湾渤南洼陷深层湖相滩坝储集层沉积微相预测[J].石油勘探与开发,2011,38(2):182-180.
    [157]陈烨菲,彭仕宓.沉积微相定量研究方法[J].石油勘探与开发,2003,30(4):51-53.
    [158]张国栋,唐伟,翟瑞国,等.河流相储集层横向预测方法探索[J].石油勘探与开发,2001,28(6):84-86.
    [159]张道军,王亚辉,王振峰,等.琼东南盆地深水区中央峡谷沉积微相特征[J].沉积学报,2013,31(6):1114-1121.
    [160]周锋德,姚光庆,魏忠元,等.伊通盆地岔路河断陷不同构造带成岩作用比较[J].地质科技情报,2010,29(1):38-42.
    [161]王留奇,赵征林,刘孟慧.油区构造沉积成岩相带研究[J].石油勘探与开发,1992,19(5):24-31.
    [162]邹才能,陶士振,周慧,等.成岩相的形成、分类与定量评价方法[J].石油勘探与开发,2008,35(5):526-540.
    [163]邹才能,陶士振,薛叔浩.“相控论”的内涵及其勘探意义[J].石油勘探与开发,2005,32(6):7-12.
    [164]薛国勤,周锋德,姚光庆,等.宝浪油田宝北区块储层裂缝单元表征及预测[J].地质科技情报,2009,28(2):72-76.
    [165]Anton ellin i M, Moll ema P N. A natural analog for a fractured and faulted reservoir in dolomite:Triassic sella group, northern It aly[J]. A APG Bulletin,2000,84(3):314-344.
    [166]Barton C A, Zoback M D. Discrimination of natural fractures from drilling-induced wellbore failures in wellbore image dataimplications for reservoir permeability[J]. SPE Reservoir Evaluation & Engineering,2002,SPE 78559:249-254.
    [167]姚光庆,赵彦超,张森龙.新民油田低渗细粒储集砂岩岩石物理相研究[J].地球科学,中国地质大学学报,1995,20(3):355-360.
    [168]袁彩萍,姚光庆,徐思煌,等.油气储层流动单元研究综述[J].地质科技情报,2006,25(4):21-26.
    [169]Feazel C T, Byrnes A P, Honefenger J W, et al. Carbonate Reservoir Characterization and Simulation:From Facies to Flow Units [J].AAPG Bulletin,2004,88(11):1467-1470.
    [170]徐胜峰,刘春园,季玉新,等.分频技术在塔河油田石炭系薄储层预测中的应用[J].石油天然气学报,2011,33(2):65-69.
    [171]罗忠辉,冷军.地震属性分析在潜江凹陷储层预测中的应用[J].石油天然气学报,2010,32(1):228-231.
    172]吴键,李凡华.三维地质建模与地震反演结合预测含油单砂体[J].石油勘探与开发,2009,36(5):623-627.
    173] Eberli G P, Masaferro J L, Sarg J F, et al. Seismic imaging of carbonate reservoirs and systems:AAPG Memoir 81[M].Neterlands:AAPG, Shell International Exploration & Production B.V.,2004:11-41.
    174]黄捍东,张如伟,魏世平.地震非线性随机反演方法在陆相薄砂岩储层预测中的应用[J].石油学报,2009,30(3):386-390.
    175]夏义平,徐礼贵,温铁民,等.叠前偏移及储层预测技术研发进展与应用[J].石油学报,2012,33(1):132-141.
    176]姚清洲,孟祥霞,张虎权,等.地震趋势异常识别技术及其在碳酸盐岩缝洞型储层预测中的应用-以塔里木盆地英买2井区为例[J].石油学报,2013,34(1):101-106.
    177] Masoud Nikravesh, F. Aminzadeh. Past, present and future intelligent reservoir characterization trends[J]. Journal of Petroleum Science and Engineering,2001,31:67-79.
    178]张建光,姚光庆,樊中海,等.湖盆中心地带湖底扇砂体物源追踪及地质意义[J].吉林大学学报(地球科学版),2012,42(3):634-646.
    179]姚光庆,孙永传,李思田.油气储集层地质学研究体系[J].石油勘探与开发,1999,26(1):74-77.
    180] C E Romero, J N Carter. Using genetic algorithms for reservoir characterization[J]. Journal of Petroleum Science and Engineering,2001,31:113-123.
    181]于兴河,陈永峤.碎屑岩系的八大沉积作用与其油气储层表征[J].石油实验地质,2004,26(6):517-524.
    182] Hossein Kaydani, Ali Mohebbi, Ali Baghaie. Permeability prediction based on reservoir zonation by a hybrid neural genetic algorithm in one of the Iranian heterogeneous oil reservoirs[J]. Journal of Petroleum Science and Engineering,2011,78(2):497-504.
    183] Cai-neng ZOU, Shi-zhen TAO, Hui ZHOU,et al. Genesis, classification, and evaluation method of diagenetic facies[J]. Petroleum Exploration and Development,2008,35(5): 526-540.
    184] A Cosultchi, Sheremetov, J. A method for aquifer identification in petroleum reservoirs:A case study of Puerto Ceiba oilfield[J]. Journal of Petroleum Science and Engineering,2012,94-95:55-65.
    185] Sun Longde, Fang Chaoliang, Li Feng. Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology[J]. Petroleum Exploration and Development,2010,37(4):385-396.
    186] Xiongyan LI, Jinyu ZHOU, Hongqi LI, et al. Computational intelligent methods for predicting complex ithologies and multiphase fluids Original Research Article[J]. Petroleum Exploration and Development,2012,39(2):261-267.
    187] Tianjian SUN, Longxin MU, Guoliang ZHAO.Classification and characterization of barrier-intercalation in sandy braided river reservoirs:Taking Hegli Oilfield of Muglad Basin in Sudan as an example[J]. Petroleum Exploration and Development,2014,41(1): 125-134.
    [188]Hong Tang, Christopher D, White. Multivariate statistical log log-facies classification on a shallow marine reservoir[J]. Journal of Petroleum Science and Engineering,2008,61(2-4): 88-93
    [189]Zhang Baomin, Liu Jingjiang. Classification and characteristics of karst reservoirs in China and related theories[J]. Petroleum Exploration and Development,2009,36(1):12-29.
    [190]Derek Ohl, Abdelmoneam Raef.Rock formation characterization for carbon dioxide geosequestration:3D seismic amplitude and coherency anomalies, and seismic petrophysical facies classification, Wellington and Anson-Bates Fields, Kansas, USA[J]. Journal of Applied Geophysics,2014,103:221-231.
    [191]Xiao-peng Liu, Xiao-xin Hu, Jiang-ming Deng. Application of Classification Scale Method (CSM) in Tight Sandstone Permeability Calculation[J]. IERI Procedia,2013,5:271-276.
    [192]Kaijun TONG, Chunming ZHAO, Zuobin LU, Yingchun ZHANG, et al. Reservoir evaluation and fracture chracterization of the metamorphic buried hill reservoir in Bohai Bay Basin[J]. Petroleum Exploration and Development,2012,39(1):62-69.
    [193]文健,裘怿楠.油藏早期评价阶段储层建模技术的发展方向[J].石油勘探与开发,1994,21(5):88-93.
    [194]刘文岭.地震约束储层地质建模技术[J].石油学报,2008,29(1):64-68.
    [195]林良彪,陈洪德,姜平,等.四川盆地上三叠统构造层序划分及盆地演化[J].地层学杂志,2007,31(4):415-422.
    [196]姜平,何巍,成涛.东方1-1气田经济高效开发实践及认识[J].天然气工业,2012,32(8):16-21.
    [197]姜平,李胜利,李茂文,等.以海泛面进行垂向流动单元划分的方法-以琼东南盆地崖13-1气田陵三段为例[J].地学前缘(中国地质大学(北京),北京大学),2008,15(1):154-159.
    [198]姜平,于兴河,黄月银,等.储层精细描述在东方1-1气田中的应用[J].地学前缘(中国地质大学(北京),北京大学),2012,19(2):87-94.
    [199]张辉,李茂,姜平,等.储层非均质性评价技术研究及应用-以涠洲A油田流一段为例[J].中国海上油气,2011,23(3):175-178.
    [200]徐志明,王廷栋,姜平,等.原油水洗作用与高凝固点原油的成因探讨[J].地球化学,2000,29(6):556-561.
    [201]田冷,何顺利,顾岱鸿.苏里格气田储层三维地质建模技术研究[J].天然气地球科学,2004,15(6):593-596.
    [202]Kevin Purvis, Jim Kao, Kevin Flanagan,et al. Complex reservoir geometries in a deep water clastic sequence, Gryphon Field, UKCS:injection structures, geological modelling and reservoir simulation[J]. Marine and Petroleum Geology,2002,19(2):161-179.
    [203]J A Vargas-Guzman, J Liu. Enhanced compartmentalization of a complex reservoir with sub-seismic faults from geological inversion[J]. Journal of Petroleum Science and Engineering,2008,61(2-4):108-115.
    [204]任殿星,李凡华,李保柱.多条件约束油藏地质建模技术[J].石油勘探与开发,2008,35(2):205-214.
    [205]张淑品,陈福利,金勇.塔河油田奥陶系缝洞型碳酸盐岩储集层三维地质建模[J].石油勘探与开发,2007,34(2):175-180.
    [206]谢玉洪,王振峰,姜平,等.多角度同步反演在南海西部气田开发中的应用[J].石油天然气学报(江汉石油学院学报),2006,28(1):37-41.
    [207]姜平,于学敏.大港探区下古生界奥陶系烃源岩地化特征[J].西南石油学院学报,2000,22(2):18-20,69.
    [208]姜平,王建华.大港油田千米桥潜山油气运移期次研究[J].天然气工业,2005,25(12):16-18.
    [209]叶黎明,陈洪德,姜平,等.川西前陆盆地须家河期高分辨率层序格架与古地理演化[J].地层学杂志,2006,30(1):87-94.
    [210]李胜利,于兴河,姜平,等.琼东南盆地崖13-1气田陵三段沉积微相对储层非均质性及流动单元划分的影响[J].地学前缘(中国地质大学(北京),北京大学)2010,17(4):160-166.
    [211]方小宇,姜平,欧振能,等.融合地质建模与地震反演技术提高储层预测精度的新方法及其应用—以涠洲11-1N油田为例[J]中国海上油气,2012,24(2):23-46.
    [212]张辉,姜平,蔡军,等.涸西南凹陷流沙港组一段储层物性影响因素研究[J].海洋石油,2013,33(2):8-14.