黄河口悬浮泥沙扩散规律及其数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河三角洲处于河流与海洋相互作用的过渡带,其陆海相互作用强烈,是黄河入海物质的主要“汇”,同时还是这些入海物质向渤海扩散的“源”。为了深入系统地研究黄河入海物质(水、沙、营养盐和主要污染物)的输运、转化和归宿,本论文依托于“973”项目“中国典型河口-近海陆海相互作用及其环境效应”第四子课题“黄河三角洲海岸蚀积转换机制和趋势预测”,首先对黄河口2003年两次黄河口海洋环境综合调查数据资料进行详细分析,研究了枯季的水文、泥沙基本特征,重点讨论了淡水扩散、盐淡水混合、盐水入侵过程、泥沙输运、河口密度环流等;在此基础上,将EOMSED数值模型应用到黄河口,根据黄河口的实际岸线和地形,建立了一个基于正交曲线网格的三维黄河口水沙输运数值模型。通过与实测资料对比验证,证明该模型可以较为真实的反映黄河口水沙扩散的基本情况。利用该模型成功的模拟了黄河口不同流量条件下水沙输运的过程,得到了以下几点结论:
     1. 1996年改道后,黄河口悬浮泥沙通量指向河口西北方,余流对泥沙的净搬运起到了重要影响,致使新河口向河口左侧生长。而原清水沟流路时期河嘴向右侧生长,与现行河嘴生长方向相反。
     2.本文基于数值模型方法,首次通过计算对黄河口悬浮体锋面出现的时刻、其分布形态以及形成的动力机制进行了详细的探讨。当近岸流场转为涨潮流时,黄河入海泥沙羽状流被海水顶托,扩散范围仅局限于河口东南侧,此处随径流扩散的高浓度含沙羽状流与海水之间形成一条悬浮体锋面;而部分泥沙随羽状流绕过流场切变带后受到远岸端落潮流的影响向西北方向扩散,此处随潮流扩散的羽状流与海水之间形成了另一条悬浮体锋面,其形成机制与近岸端的悬浮体锋面并不相同。当近岸流场转流至落潮流时,入海泥沙随羽状流向河口西北扩散,受流场切变带阻隔,大部分泥沙被阻挡在切变带近岸侧,形成随径流扩散的高浓度含沙羽状流与海水之间的一条悬浮体锋面;而部分泥沙绕过流场切变带后随远岸端涨潮流向东南扩散,形成随潮流扩散的高浓度泥沙羽状流与海水之间的另一条悬浮体锋面。流场切变带的存在阻挡了泥沙向外扩散,使得泥沙沿流场切变带在河口两侧扩散沉积。
     3.分析了不同流量条件下黄河口淡水扩散规律,指出不同流量状态下黄河淡水都是以异轻羽状流的形式向海扩散。低流量状态下,淡水扩散伴随着盐淡水混合,河口水体总体而言属于部分混合型,仅在河口前缘水体分层较为明显;高流量状态下,淡水扩散范围较大,河口附近海区水体垂向分层明显。
     4.在低流量状态下,模型模拟结果可以看出整个潮周期内,河口拦门沙附近悬浮泥沙浓度均高于其两侧,然而在涨、落潮交替时发育最为充分。高、低流量状态下,河口最大浑浊带发育位置随盐水楔前端位置不同而有所差别:高流量状态下,盐水楔未能侵入河口,因此最大浑浊带位于河口拦门沙外缘;低流量状态下,盐水楔深入河口最远可达5km,最大浑浊带发育于河口拦门沙附近。
Yellow River Delta is located in the transitional zone of the river-sea interaction, where land and sea interact intensely. This area is not only the sink of the materials from Yellow River into the sea, but also the source of the Yellow River material dispersal system into the Bohai Sea. In order to systematically study on the transportation, transformation and the fate of the suspended sediment and fresh water from Yellow River into the sea, two synthetic surveys’data at the Huanghe estuary area are analyzed and discussed. Then the ECOMSED numerical model is applied to the Huanghe estuary. A 3D transportation simulation model with the orthogonal curvilinear grid which is based on the coastal line and terrain of Huanghe estuary is built up. With this model, the transportation processes of the fresh water and suspended sediment on the Huanghe estuary under low/high discharge condition are successfully simulated respectively. The following results are obtained throughout the work:
     1. Suspended sediment is transported towards the NW, the mouth of Yellow River will grow left-handed. This trend of developing is absolutely opposite with that of the abandoned Qingshuigou promontory which grew right-handed when it was in use.
     2. Two types of shear front resulting from the phase difference between the near shore and offshore tides appear off the river mouth over tidal cycle. As a result, two types of river-laden suspended sediment dispersal patterns form in the shear frontal zone. The fresh and highly turbid river effluents discharge to the sea during ebb tides and are transported northwestwards inside the shear front under the combined impacts of northward ebb currents, down-slope transport of hyperpycnal flow and confining action of shear front; after partially mixing with the ambient seawater the river effluents are then transported southeastwards outside the shear front along the flood currents, causing the intermittent increase in suspended sediment concentration and corresponding decrease in salinity outside the shear front. When the near-shore area turn to flood while off shore area is ebbing, the suspended sediment dispersal pattern is the opposite.
     3. Whether the river discharge is low or high, the fresh water disperse in the surface layer as the hypopycnal flow. When the river discharge is low, the salt water intrudes into the channel with the maximum distance about 5km, while the salt water mixes with fresh water during this course. When the river discharge turn high, the salt water only influenced the river mouth bar area, the water is laminated.
     4. The estuarine maximum turbidity zone occurs over tidal cycle but significant at the time when ebb and flow alternates and the tide speed is relatively little. It is located at the front of the saltwater wedge, which is on the river mouth bar area when river discharge is low while on the out side of river mouth bar when river discharge is high.
引文
[1]叶青超.黄河流域环境演变与水沙运行规律研究,山东科学技术出版社,1994.
    [2]王厚杰.黄河口悬浮泥沙输运三维数值模拟.中国海洋大学博士论文.
    [3] Bird E C F. Classification of European coastal dune coasts. In: Bakker W, Jungerius P D, Klijin J A, eds. Dunes of the European coasts, Catena Suppl. 18,15-24.
    [4] Bird E C F. Beach Management. New York: John Wiley&Sons, 281.
    [5] Fanos A M. The impact of human activities on the erosion and accretion of the Nile delta coast. Journal of Coastal Research, 1995,11(3):821-833.
    [6] Chen X and Chen Z Y. Coastal Erosion along the Changjiang Deltaic Shoreline, China: History and Prospective. Estuarine, Coastal and Shelf Science, 1998(46): 733-742.
    [7] Smith S E. and Abdel-Kader, A. Coastal Erosion along the Egipt Delta. Journal of Coastal Research, 1988(4(2)):245-255.
    [8] Frihy O E. Nile delta shoreline changes: Aerial Photographic Study of a 28-year Period. Journal of Coastal Research, 1988(4(4)):597-606.
    [9] Frihy O E. and Khafagy A A. Climate and Induced Changes in Relation to Shoreline Migration Trends at the Nile Delta Promotories, Egypt. Catena, 1991(18):197-211.
    [10] Frihy O E. and Komar P.D. Long-term shoreline changes and the concentration of heavy minerals in beach sands of the Nile Delta, Egypt.Marine Geology, 1993(115(3-4)):253-261.
    [11] Fanos A M., Khafagy A A. and Dean R G. Protective works on the Nile delta coast, Journal of Coastal Research, 1995(11):516-528.
    [12] Ahmed M H. Long-term changes along the Nile delta coast: Rosetta promontory a case study. Egypt. J. Remote Sensing &Space Sci., 2000(3):125-134.
    [13] Panin N. and Jipa D. Danube River Sediment Input and its Interaction with the North-western Black Sea. Estuarine, Coastal and Shelf Science, 2002(54):551–562.
    [14] Michael J. Cohen, Christine Henges-Jeck&Gerardo Castillo-Moreno. A preliminary water balance for the Colorado River delta, 1992-1998.Journal of Arid Environments,2001(49):35-48.
    [15] Samina Khalil. Economic valuation of the mangrove ecosystem along the Karachi coastal areas. In: Joy E. Hecht, ed., The Economic Value of the Environment: Cases from South Asia, published by IUCN in 1999. (Http: //www.iucnus.org/publications.html.).
    [16] Coleman James M. and Oscar K. Huh. Major world deltas: a perspective from space, 2003. (http://cires.colorado.edu/science/pro/wdn/).
    [17]夏东兴,王文海,武桂秋,崔金瑞,李福林.中国海岸侵蚀述要.地理学报,1993(48(5)):468-476.
    [18]季子修.中国海岸侵蚀特点及侵蚀加剧原因分析.自然灾害学报,1996(5(2)):65-75.
    [19]杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计.海洋学报,2003(25(5)):83-91.
    [20]庞家珍,司书亭.黄河河口演变I.近代历史变迁.海洋与湖沼,1979(10(2)):136-141.
    [21]庞家珍,司书亨.黄河河口演变II.河口水文特征及泥沙淤积分布,海洋与湖沼,1980(10(2-4):295-305.
    [22]侍茂崇,赵进平,孙月彦.黄河口附近水文特征分析.山东海洋学院学报,1985.15(2):81-95
    [23]黄世光,王志豪.近代黄河三角洲海域泥沙的冲淤特.泥沙研究,1990(2):13-22.
    [24]杨作升,孙宝喜,沈渭铨.黄河口毗邻海域细粒级沉积物特征及沉积物入海后的运移.山东海洋学院学报,1985,15(2):121-129
    [25]李栓科.近代黄河三角洲的沉积特征.地理研究.1989.8(4):45-55
    [26]李泽刚.黄河三角洲附近海域潮流分析.海洋通报,1984,3(5):12-16
    [27]王凤聪,高慎月,苏志清.黄河口滨海区潮流速度铅直分布及其粗糙度参量的初步研究.青岛海洋大学学报,1989.19(2):37-41.
    [28]刘风岳.黄河冲淡水及其混和锋面的观测研究.海洋科学.1989, 5:33-36.
    [29]胡春宏,曹文洪.黄河口水沙变异与调控I—黄河口水沙运动与演变基本规律.泥沙研究,2003,5:1-7.
    [30]尹延鸿,周永青,丁东.现代黄河三角洲海岸演化研究.海洋通报,2004(23(2)):32-40.
    [31]庞家珍,姜明星.黄河河口演变.海洋湖沼通报,2003.3(4):1-13.
    [32]师长兴,章典,尤联元,李炳元.黄河口泥沙淤积估算问题和方法-以钓口河亚三角洲为例.地理研究,2003. 22(1):49-59.
    [33]许炯心.流域人类活动与降水变化对黄河三角洲造陆过程的影响.海洋学报,2004.26(3):68-74.
    [34] Guangxue Li,Helong Wei,Yeshen Han,Yiji Chen. Sedimentation in the Yellow River delta, part I: flow and suspended sediment structure in the upper distributary and the estuary. Marine Geology,1998,149:93-111.
    [35] Li,G.X, Wei,H.L, Yue,S., Cheng,Y., Han,Y. Sedimentation in the Yellow River delta, part II: suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology, 1998(149(1-4)):103-121.
    [36] Li,G.X.,Zhuang,K.L.,and Wei,H.L. Sedimentation in the Yellow River delta, part III: seabed erosion and dispirism in the abandoned subaqueous delta lobe. Marine Geology, 2000(168):129-144.
    [37]张士华,邓声贵.黄河水下三角洲沉积物输运及海底冲淤研究.海洋科学进展,2004. 22(2):184-192.
    [38]张世奇.黄河口输沙及冲淤变形计算研究.水利学报,1990(1):23-33.
    [39]李国胜,王海龙,董超.黄河入海泥沙输运及沉积过程的数值模拟.地理学报,2005.60(5):707-716.
    [40]庞家珍,等.黄河口拦门沙与盐水楔特征及其演变.海洋湖沼通报,1997,3:1-10
    [41]庞重光,杨作升.黄河口泥沙异重流的数值模拟.青岛海洋大学学报,2001,31(5):762-768.
    [42] Li,G.,X, Yang,Z., Yue,Sh. Zhuang,K., Wei H. Sedimentation in the shear front off the Yellow River mouth. Continental Shelf Research,2001(21(6-7)):607-625.
    [43] Wang H J., Yang Z S., Li Y H, etc. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) mouth. Continental Shelf Research, 2007, 27:: 854-871.
    [44] Philips N A. A coordinate system having some spatial advantages for numerical forecasting. J. of Meteology, 1957.14:184-185.
    [45] Wang K H. Characterization on circulation and salinity change in Galveston Bay. J. Engrg. Mech., 1994.120(3):557-579.
    [46]赵士清.长江口三维潮流数值模拟.水利水运研究.1985(1):8-20.
    [47]韩国其,汪德灌,许协庆.潮汐河口三维水流数值模拟.水利学报,1989.12:54-60.
    [48]窦振兴,杨连武,等.渤海湾三维潮流数值模拟.海洋学报,1993.15(5):1-5.
    [49]宋志尧,薛鸿超等.潮汐动力场准三维数值模拟.海洋工程,1998,16(3):54-61.
    [50]刘桦,何友声等.长江口水环境数值模拟研究.水动力学研究进展.2000,1.
    [51]张越美,孙英兰.渤海湾三维变动边界潮流数值模拟.青岛海洋大学学报(自然科学版),2002,32(3):337-344.
    [52]练继健.波浪、水流与淤泥质底床的相互作用.天津,天津大学.1993.
    [53] Quack M C. Sediment transport by waves and current. Civ. Eng., 1983.10:1-11.
    [54] Dou G R and Dong F W. The sand-carrying capability of tidal current and wave. Chinese Science Bulletin, 1995,40(5):443-446.
    [55]曹祖德,王桂芳.波浪掀沙、潮流输沙的数学模拟.海洋学报,1993.15(1),107-118.
    [56] Teisson C. Cohesive suspended sediment transport: ability and limitations of numerical modeling. Journal of Hydraulic Research, 1991.29:755-769.
    [57] Wolannski,E., King B. and Galloway S. Dynamics of the turbidity Maximum in the Fly river Estuary, Papua New Guinea. Estuarine coastal and shelf science, 1995.40:321-337.
    [58] Lou J. and Ridd P. V., Modeling of suspended sediment transport in coastal areas under waves and currents Estuarine coastal and shelf science, 1997, 45:1-16.
    [59] Mead C T. An investigation of the suitability of two-dimensional mathematical models for predicting sand deposition in dredged trenches across estuaries. Journal of Hydraulic Research, 1999, 37(4): 444-464.
    [60]叶锦培,何焯霞,周志德.珠江河口潮流输沙数学模型.人民珠江.1986,6:7-15.
    [61]罗肇森等.射阳河口拦门沙治理研究和投资估算.咨询报告[资料].1987.12:35
    [62]朱玉荣,潮流在长江三角洲形成发育过程中所起作用的探讨.海洋通报,1999(01):3-13.
    [63]李东风,张红武等.黄河口潮流和泥沙淤积过程数值分析研究.水利学报2004,(11):74.
    [64] Chen R E. Modeling of estuary hydrodynamics-A mixture of art and science. Proceedings of 3rd International Symp. on River Sedimentation. The University of Mississippi, 1986.
    [65] McAnally W H., Leter J W., Tomas W A. Two and three-D modeling systems for sedimentation[C]. Proceedings of 3rd International Symp. on River Sedimentation. The University of Mississippi, 1986.
    [66] O’Connor B A., and Nicholson J A. A three-dimensional model of suspended particulate sediment transport. Delft Hydra. Communication No.382, Delft, The Netherlands, 1987.
    [67] Malcherek A., Lenormant C., Peltier E., Teisson C. etc. Three dimensional modeling of estuarine sediment transport [A]. Estuarine and Coastal ModelingⅢ. Proceedings of the Conference[C], Eds.M.L.Spaulding etc.1993.43-57.
    [68] Cancino, L. and Neves, R.“Hydrodynamic and Sediment Suspension Modeling in Estuarine Systems.Part I: Description of the Numerical Models.”Journal of Marine Systems, 1999,Vol. 22, pp.105-116.
    [69] Brenon,L and Le Hir, P. Modeling the turbidity maximum in the Scine Estuary(France):Identification of Formation Processes. Estuarine Coastal and Shelf Science,1999,40:321一337.
    [70] Lou,J and Ridd, P.V. Modeling of Suspended Sediment Transport in Coastal Areas under Waves and Currents. Estuarine Coastal and Shelf Science,1997,45: 1一16.
    [71]周华君.长江口最大浑浊带特性研究和三维水流泥沙数值模拟.河海大学博士学位论文,1992.
    [72]陆永军,窦国仁,韩龙喜,邵学军,杨向华.三维紊流悬沙数学模型及应用.中国科学E辑技术科学,2003,34(3):311-328.
    [73]王崇浩,陈建国.三维水动力泥沙输移模型及其在珠江口的应用.中国水利水电科学研究院学报.2006,4(4):246-252.
    [74]李东风,张红武,许雨新,张俊华.黄河下游平面二维水沙运动模拟的有限元方法.泥沙研究,1999,4:59-63.
    [75]李东风,张红武,钟德钰,吕志咏.黄河河口水沙运动的二维数学模型.水利学报,2004,6:1-6.
    [76]朱建荣,傅德健,吴辉,戚定满.河口最大浑浊带形成的动力模式和数值试验.海洋工程,2004,22(1):67-73.
    [77]朱建荣,胡松,傅得健,吴辉.河口环流和盐水入侵I——模式及控制数值试验.青岛海洋大学学报,2003,33(2):180-184.
    [78]朱首贤,丁平兴,史峰岩,朱建荣.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅱ.冬季余流及其对物质底输运作用.海洋学报,2000,22(6):1-12.
    [79]朱建荣,朱首贤. ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用.海洋与湖沼,2003,34(4):364-374.
    [80]窦希萍,李褆来,窦国仁.长江口全沙数学模型研究.水利水运科学研究,1996,2:136-145.
    [81]郑金海,诸裕良.长江河口盐淡水混合的数值模拟计算.海洋通报,2001,20(4):1-10.
    [82]江文胜,孙文心.渤海悬浮颗粒物三维输运模式的研究Ⅱ.模拟结果.海洋与湖沼,2001,32(1):94-100.
    [83] Van Rijn. L. C, Sediment Transport, part II:Suspended Load Transport, J. of hydraulic Engineering, ASCE 110(11),1984.
    [84] Van Rijn, L.C., Nieuwjaar M. W. C. transport of fine sands by currents and waves. ASCE. J. Hydr. Engr., 1993, 119(2): 123-143.
    [85] Garcia, M. and Parker, G., 1991. Entrainment of bed sediment into suspension. ASCE J.Hydr. Engr., 117(4):414-435.
    [86] Ziegler,C.K and Nisbet, B.S.1994. Long-term simulation of fine-grained sediment transport in large reservoir.ASCE J.Hyd.Engr.,121(11):773-781.
    [87] Cheng, N.S.,1997. Simplified settling velocity formula for sediment particle. ASCE.J.Hydr. Engr., 123,149-152.
    [88] Karim, M.F and Holly, F.M. Armoring and sorting simulation in alluvial rivers. ASCE J.Hydr. Engr., 1986, 112(8):705-715.
    [89] Van Niekerk, A., Vogel, K.R., Slingerland, R.L. and Bridge, J.S. Routing of heterogeneous sediments over movable bed: model development. ASCE J. Hydr. Engr. 1992, 118(2):246-279.
    [90]国家科委“九.五”科技攻关项目子课题:黄河口冲淤灾害预测技术研究(96-922-03-02-02)成果汇编,青岛:青岛海洋大学河口海岸带研究所,国家海洋局第二海洋研究所,国家海洋局海洋动力过程与卫星海洋学重点实验室,2000.
    [91]李心铭.流体动力学,青岛:青岛海洋大学出版社,1996.
    [92]钱宁,万兆惠.泥沙运动力学,北京:科学出版社,1991.
    [93]王宝灿,黄仰松.海岸动力地貌,上海:华东师范大学出版社,1989.
    [94]赵今声,赵子丹等.海岸河口动力学,北京:海洋出版社,1993.
    [95]胡健伟,汤怀民.微分方程数值方法,北京:科学出版社,2000.
    [96]叶安乐,李凤歧.物理海洋学,青岛:青岛海洋大学出版社,1992.
    [97]孙文心、江文胜、李磊.近海环境流体动力学数值模型,北京:科学出版社,2004.
    [98]张瑞瑾.河流泥沙动力学(第二版),北京:中国水利电力出版社,1998.
    [99]曹祖德,王运洪.水动力泥沙数值模拟,天津:天津大学出版社,1994.
    [100]黄胜.中国河口治理,北京:海洋出版社,1992.
    [101]臧启运.黄河三角洲近岸泥沙,北京:海洋出版社,1996.
    [102]中国水利学会泥沙专业委员会主编.泥沙手册,北京:中国环境科学出版社,1992.
    [103]黄河水利委员会.黄河泥沙公报(2002).黄河水文网.
    [104]时钟.河口海岸底部边界层和细颗粒泥沙过程.海洋科学,2000,4(11):26-29.
    [105] Wright L.D.,Yang Z S. Sediment transport and deposition at Huanghe mouth. Continentalshelf Research, 1990, 10(2):36-44.
    [106]张世奇.黄河口及三角洲冲淤演变计算原理及方法.泥沙研究,1997,2:23-26
    [107]李广雪,成国栋,魏合龙,潘为刚,任于灿,丁东,周永青,赵杰仁.现代黄河口区流场切变带.科学通报,1994,39(10):928-932.
    [108]庞重光,杨作升,张军,雷坤.黄河口最大浑浊带特征及其时空演变.黄渤海海洋,2000,18(3):1-6.
    [109]孙琪,孙效功,李瑞杰.窄缝法在河口区悬沙输运数值计算中的应用.海洋与湖沼,2001,32(3):296-301.
    [110]李谊纯,孙效功,李瑞杰,吕丹梅.黄河三角洲洪、枯季泥沙冲淤的数值模拟.青岛海洋大学学报,2003,33(2):281-286.
    [111] Jiongxin Xu. Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration: the Yellow River basin, China. Catena,2002,49:289-307.
    [112] Yoshiki Saitoa, Helong Wei, Yongqing Zhou, Akira Nishimura, Yoshio Sato, 2000: Delta progradation and chenier formation in the Huanghe (Yellow River) delta, China. Journal of Asian Earth Sciences 18, 489-497
    [113] Milliman, J.D., Meade, R.H., 1983. World-wide delivery of river sediment to the oceans.Journal of Geology, 91, 1-21
    [114]尹学良,1982:黄河口的大型并汊改造.泥沙研究,4,13-25
    [115]孙效功,杨作升,陈彰榕,1993:现行黄河口海域泥沙冲淤的定量计算及其规律探讨.海洋学报,15(1),129-136
    [116]崔承琦,施建堂,张庆德.古代黄河三角洲海岸的现代特征-黄河三角洲潮滩时空谱系研究Ⅰ.海洋通报,2001,20(1):46-52.
    [117]李泽刚.黄河口附近海区水温要素基本特征.黄渤海海洋.2000,18(3):20-28.
    [118]黄胜.中国河口治理.海洋出版社.2002.北京.
    [119]侯国本.东营港.海洋出版社.1993.北京.
    [120]臧启运.黄河三角洲泥沙.海洋出版社.1996.北京.
    [121] LI G X,YUE S H.,ZHAO D B,SUN Y T.. Rapid deposition and dynamic processes in the modern Yellow River mouth.海洋地质与第四纪地质,2004,24(3):29-35.
    [122]李殿魁等.延长清水沟流路行水年限的研究.黄河水利出版社.2002.郑州.
    [123]沈焕庭,胡辉,1988:长江口门附近分水流与混合,长江河口动力过程和地貌演变,上海科学出版社,131-144.
    [124]黄河水利委员会,2002:黄河泥沙公报(2002).黄河水文网
    [125]胡春宏,吉祖稳,王涛,1996:黄河口海洋动力特性与泥沙的输移扩散.泥沙研究,4,1-10
    [126]冯士筰,李凤歧,李少菁,1999:海洋科学导论,高等教育出版社,北京,503pp.