高含固量阴离子水性聚氨酯鞋用胶黏剂的制备及其黏结和成膜作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性聚氨酯(WPU)是一种以水为分散介质的聚氨酯体系,由于其无毒、环保、使用安全,已经引起了国内外的广泛关注。水性聚氨酯具有优良的柔韧性、耐冲击性、耐磨性和耐低温性能等特点,其作为鞋用胶黏剂的应用更是成为近年来研究的热点。本论文通过复合改性制备了一系列阴离子型水性聚氨酯胶黏剂乳液,并详细研究了复合体系的结构与性能,探讨了其与皮革纤维基质材料的黏结,成膜作用机理。以下为本论文主要内容:
     1.本课题首先制备了一种阴离子水性聚氨酯胶黏剂乳液。研究表明,-COOH含量对水性聚氨酯胶黏剂的耐水性能、力学性能和乳液稳定性有较大影响。随着-COOH含量的增大,胶膜的拉伸强度增强,硬度提高,但耐水性下降。当-COOH含量低于1.45%后,胶黏剂乳液不稳定。TMP含量的增加可有效改善水性聚氨酯胶膜的耐水性和力学性能,但是w(TMP)大于2.0%时,乳液趋于不稳定。-NCO/-OH摩尔比对水性聚氨酯胶膜的耐水性能无明显影响,随着-NCO/-OH摩尔比的增大,胶膜的拉伸强度逐渐增大,胶膜变硬。当w(-COOH)为1.60%,-NCO/-OH摩尔比为1.4,w(TMP)为1.0%时,可获得相对综合性较好的水性聚氨酯胶乳。水性聚氨酯固含量提高时,皮革-橡胶的T-剥离强度提高。随着n(NCO)/n(OH)值、COOH含量、TMP用量、聚氨酯相对分子质量的增大,T剥离强度先增加后减小。经测定,以固含量为35%的聚氨酯乳液,作为皮革、橡胶的胶黏剂,其剥离强度为12N/(2.5cm)。因此要获得性能更优的产品,在上述研究的基础上,还需要对水性聚氨酯胶黏剂进一步进行改性。
     2.在水性聚氨酯制备方法的基础上,加入小分子扩链剂BDO,采用HEA封端聚氨酯预聚体,选用MMA和BA为自由基聚合单体,AIBN为引发剂,制备了一系列丙烯酸酯改性的水性聚氨酯胶黏剂。得到的水性聚氨酯分散体固含量均可达到40%以上。利用丙烯酸酯改性水性聚氨酯胶黏剂,一方面可提高干燥速率,提高水性聚氨酯胶黏剂与皮革纤维的黏结强度。另一方面可降低成本。
     FTIR表明,丙烯酸酯类单体反应较完全。TEM表明,改性水性聚氨酯乳液中乳胶粒子分布比较均匀。粒径分析表明,改性后水性聚氨酯乳液粒子粒径增大。
     TG分析表明,丙烯酸酯改性提高了聚氨酯的热稳定性,同时增加了体系的交联程度。DMA表明,改性后聚氨酯交联密度增大,具有较高的玻璃化转变温度。随HEA用量和丙烯酸酯(PA)用量的增加,水性聚氨酯的交联密度逐渐增大,有效提高了水性聚氨酯胶黏剂的黏接强度、耐水和耐热性能。当MMA与BA质量比为4:2时,剥离强度为52.9 N/(2.5cm),胶膜的拉伸强度为19.6MPa,断裂伸长率为533.7%,此时胶黏剂即具有优异的黏接强度和力学性能,又保持了良好的柔韧性。小分子扩链剂BDO可有效提高水性聚氨酯胶膜的力学性能,但BDO用量不宜超过1.5%。
     综合考虑各因素,确定丙烯酸酯改性水性聚氨酯胶黏剂的制备条件:w(-COOH)为1.6%、w(TMP)为1.0%、w(HEA)为4%、w(PA)为30%、m(MMA):m(BA)为4:2,w(BDO)为1.5%。此时水性聚氨酯胶黏剂的耐水性、耐热性和柔韧性优异,黏接强度可达52.9 N/(2.5cm)。加入丙烯酸酯进行乳液聚合有效提高了此系列胶乳的固含量,固含量可达45%,提高了胶黏剂的干燥速度。研究了水性聚氨酯乳化过程中相转变的影响因素。实验结果表明,随着软段分子量升高,体系的相转变点后延;n(NCO)/n(OH)值减小、羧基含量增大、中和度增加以及HEA用量的增加,都会导致体系的黏度增高,增加相转变发生所需的水含量。
     3.采用葡萄糖作为内交联剂,将葡萄糖引入聚氨酯分子主链上,制得固含量达50%以上的水性聚氨酯胶黏剂,其具有干燥速度快、初黏力大和耐水性好等特点,改性水性聚氨酯胶黏剂的综合性能显著提高。
     通过FTIR分析,证实了葡萄糖已引入聚氨酯主链。XRD表明,经葡萄糖改性的聚氨酯结晶度显著下降,属于非晶态聚合物,说明葡萄糖本身已经完全转化。
     随着葡萄糖含量增加,乳液稳定性略有下降。制备的聚氨酯乳液属于假塑性流体。增加葡萄糖交联剂的用量,乳液黏度先增大后减小。
     随着葡萄糖用量的增加,体系交联度增大,聚氨酯热分解温度明显升高。葡萄糖的加入使乳胶膜的表面自由能下降,体系的耐介质性得到改善。提高葡萄糖的用量,胶膜的拉伸强度增强,断裂伸长率逐渐降低,胶液的固化速度提高。当葡萄糖用量从0%增加到4.68%时,T-剥离强度由57.3N/(2.5cm)上升至116.1N/(2.5cm)。初步探讨了水性聚氨酯的粘结作用机理,粘合力是润湿吸附能力、扩散能力、化学键合以及机械嵌合的综合作用。
     4.采用葡萄糖作为内交联剂,利用羧基丁苯胶乳液(CSBL)物理改性水性聚氨酯,制得固含量达50%以上的水性聚氨酯胶黏剂。重点考察外加高分子乳液对合成水性聚氨酯乳液性能的影响,探讨了水性聚氨酯乳液与羧基丁苯胶乳液的协同作用。
     当CSBL与聚氨酯的质量比高于1︰2时,乳液趋于稳定。TEM照片显示乳胶粒子呈球形颗粒结构,粒径分布均匀。加入CSBL改性的水性聚氨酯乳液粒径呈现双峰分布。探讨了高固含量水性聚氨酯分散体的合成机理。
     固含量达60%的水性聚氨酯乳液表现为触变性流体,固含量低的水性聚氨酯乳液基本不具备触变性。当CBSL用量增加,水性聚氨酯耐热性能得到改善。与单独的水性聚氨酯乳液和CSBL相比,CSBL乳化得到的水性聚氨酯乳液成膜力学性能得到明显增强。当CSBL的用量为50%时,改性聚氨酯胶黏剂的剥离强度达到最大值。
Waterborne polyurethane (WPU) is a new type of polyurethane system with water as the dispersion medium. Because WPU is non-toxic, environmentally friendly and safe, it has attracted widespread attention at home and abroad. The application of waterborne polyurethane as shoe adhesives has become a hotspot of recent research due to the excellent flexibility, impact resistance, abrasive resistance and low temperature resistance. The authors prepared series of anionic waterborne polyurethane latex by composite modification, and a detailed study of the structure and properties of complex systems to explore the mechanism of their synergy. The main content of this paper is as followings:
     1.A water-based polyurethane adhesive was prepared. -COOH content has great effect on the water resistance, mechanical property and stability of WPU. The tensile strength of the WPU films increased with the increasing -COOH content while the water resistance decreased. The emulsion is unstable when w(COOH) is less than 1.45%. Increasing TMP content can improve water resistance and mechanical property of WPU films, the proper w(TMP) is 2%. The tensile strength of the WPU films increased with the increasing -NCO/-OH molar ratio. WPU with better combination property can be obtained when w(-COOH) is 1.60%,-NCO/-OH molar ratio is 1.4 and w(TMP) is 1.0%. T-style peeling strength increased with the increasing solid content of WPU adhesive. T-style peeling strength increased and then decreased with the increasement of n(NCO)/n(OH), COOH content, TMP content and molecular weight of polyurethane. When the WPU with solid content of 35% is used as leather adhesive, the T-style peeling strength is 12 N/(2.5cm). The polyurethane adhesive need to be further modified.
     2.A sery of modified waterborne polyurethane was prepared with BDO as chain extender, HEA as endcapper, MMA and BA as monomers and AIBN as initiator. The solid content of prepared waterborne polyurethane is more than 40%. After modification, the drying rate of WPU adhesive and the bonding strenghth can be both improved. On the other hand, production cost of waterborne polyurethane decreased. FTIR analysis indicates that acrylate has reacted. The morphology of emulsion were observed by Transmission Electron Microscope(TEM). TEM images display that the particles were well dispersed. The particle size of WPU increased and the distribution width becomes wider after the modification.
     TG analysis indicates that crosslinking degree and thermal stability of WPU modified with acrylate is increased. DMA showed that the modified WPU has a higher glass transition temperature. The adhesion, water resistance and thermal stability were improved by the increasing HEA and acrylate dosage. T-style peeling strength is 52.9 N/(2.5cm) as the mass ratio of MMA and BA is 4:2. The tensile strength of the WPU films is 19.6MPa, the elongation at break is 533.7%, the adhesive has good mechanical property and flexibility. BDO as chain extender can improve mechanical property of WPU, the proper w(BDO) is 1.5%. When the w(-COOH) is 1.6%, w(TMP) is 1.0%, w(HEA) is 4%, w(PA) is 30%, m(MMA):m(BA) is 4:2 and w(BDO) is 1.5%, The modified WPU has good water resistance, thermal resistance and flexibility, the bonding strength can reach 52.9 N/(2.5cm). The solid content of WPU with acrylate can reach 45%, which can improve the drying rate of WPU adhesive.
     With the increasing of the molecular of soft segments, the phase inversion delays. The decrease of NCO/OH molar ratio, increase of carboxyl content, HEA content and neutralization degree will increase the viscosity of system and more water was needed for the phase inversion.
     3. The natural glucose was introduced to the polyurethane mainchain as crosslinker, the waterborne polyurethane with solid content of 50% can be prepared. Combination property of the modified waterborne polyurethane can be improved evidently.
     The FTIR test results indicated that the glucose has been introduced into the main chain of polyurethane. XRD indicated that the degree of crystallinity decreased after the glucose has been introduced to the polyurethane, which showed the glucose has reacted with -NCO . With the increasing of glucose content, the stability WPU decreased. The WPU is stable when solid content of WPU is less than 60%. Dynamic rheological investigation showed that loss modulus(G'') and storage modulus(G′) both increased with oscillation frequency. Viscosity of the polyurethane emulsion increased and then decreased with the increasement of glucose content.
     The decomposition temperature of WPU films increased with increasing glucose content. Surface free energies decreased with addition of glucose and the medium resistance of WPU films is improved. Water and solvent absorption decreased with increasing R value. The tensile strength of the WPU films increased and the elongation at break decreased with increasing glucose content. As the glucose content increases from 0% to 4.68%, the T-style peeling strength increases 57.3N/(2.5cm) to 116.1 N/(2.5cm). The curing time of WPU samples were decreased with increasing glucose content. The bonding mechanism of WPU adhesives was investigated.
     4. The glucose was introduced to the polyurethane mainchain as crosslinker, the deionized water and carboxy styrene-butadiene latex were added to the polyurethane system and the waterborne polyurethane with solid content of 50% can be prepared. The effect of carboxy styrene-butadiene latex on properties of the waterborne polyurethane was studied in this chapter and synergistic action between waterborne polyurethane and carboxy styrene-butadiene latex was investigated. TEM photos show that WPU emulsion and CSBL were
     well-dispersed with round appearance. The average particle size of WPU emulsion increases from 58.45nm to 70.7nm with increasing w(glucose). WPU emulsified by CSBL has bimodal distribution. The synthesis mechanism of WPU was investigated.
     The rheological behavior of polyurethane emulsion was studied. WPU emulsion exhibiting pseudoplastic liquid behavior. WPU emulsion with high solid content of 60% has thixotropy, while WPU emulsion with low solid content has no obvious thixotropy. When CSBL content increases, the WPU will be well emulsified, so the thermal stability of WPU increases. Compared with WPU and CSBL films without modification, mechanical property of polyurethane films modified by carboxy styrene-butadiene latex increased obviously. T-style peeling strength of the modified adhesive reach maximum when the w(CSBL) is 50%.
引文
[1]许戈文等.水性聚氨酯材料[M].北京:化学工业出版社,2006,2-13,12
    [2]沈艳涛,周铭.水性聚氨酯涂料的研究现状与发展趋势[J].涂料工业,2002(1):27-30
    [3]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,561
    [4]Yen memg-Shung, Kuo Shu-Chin. Ttiblock Copolydiol-based waterborne polyurethane, Effect of The Soft-segment Composition on the structure and physical properties[J]. Journal of Applied Polymer Science, 1997, 65(5): 883-892
    [5]仝锋.水性聚氨酯研究进展综述[J].光谱实验室,2000,17(1):55-60
    [6]Noble, Karl-ludwig. waterborne polyurecthane[J]. Progress in organic, 1997, 32(1-4): 131-136
    [7]靳东杰,哈成勇等.聚丙烯酸酯改性水性聚氨酯的制备[J].中国胶粘剂,2003,13(2):50-53
    [8]周新华,涂伟萍,夏正斌.水性双组分丙烯酸聚氨酯涂料研究进展[J].现代化工,2003,23:89-92
    [9]王金平,贾梦秋.丙烯酸树脂交联改性水性聚氨酯乳液[J].北京化工大学学报,2004,31(5):60-63
    [10]李璐,瞿金清,等.丙烯酸改性水性聚氨酯涂料的研制[J].合成材料老化与应用,2002,31(2):7-9
    [11]杨昌跃,曹红菊,杨丽,等.水性聚氨酯木器漆胶膜物性的研究[J].聚氨酯工业,2001,16(4):22-25
    [12]瞿金清,陈焕钦.环氧改性水性聚氨酯涂料的合成与性能研究[J].高校化学工程学报,2002,16(5):570-574
    [13]田福学,陈曼丽.包装用聚氨酯胶粘剂研究[J].化工进展,2002,21(3):179-182
    [14]Sudipta M, N Krishnamurti. Synthesis and characterization of aqueous cationomeric polyurethanes and their use as adhesives[J]. J Appl Polym Sci, 1996, 62: 1993-2003
    [15]丁莉,杲云.水性聚氨酯胶粘剂结构与性能的研究[J].功能高分子学报,2001,14(1):95-99
    [16]Noble K L. Waterborne polyurethane [J]. Progress in Organic Coatings, 1997, 32(3): 131-136
    [17]Dieterich D. Aqueous emulsions, dispersions and solutions of polyurethanes:synthesis and properties[J]. Prog Org Coat, 1981, 9(3): 281
    [18]Tirpak R E, Markush P H. Aqueous dispersions of crosslinked polyurethanes[J]. Coat Technology, 1986, 58(738): 49
    [19]Al-salah H A H X, et al. polyurethane cationomers . I . Structure-properties[J]. Polym Sci PartA: Polym Chem, 1988, 26(6): 1609
    [20]Chars, Wu Chung chen, Show An. Polyurethane ionomers: effects of emulsification on properties of hexamethylene diisocyanate-based polyether-polyurethane cationonomers[J]. Polymer, 1988, 29(11): 1995
    [21]Kim B K, Lee. Structure-property relationship of polyurethane ionomer[J]. Sci, 1992, 270(10):956
    [22]Dieterich D, Rieck J N. Aqueous polyurethane syntems and their possible uses[J]. Adhes Age, 1978, 21(2): 24
    [23]周善康,林健青,许一婷.水性聚氨酯研究(二)[J].粘接,2001,22(2):23-26
    [24]Cheng Xiuli, Chen Zhengxia, Shi Tongshun, et al. Synthesis and characterization of core-shell LIPN-fluorine containing polyacrylate latex[J]. Colloids and Surfaces A, 2007, 292(2/3): 119-124
    [25]K Nachtkamp, J Pedain. Process for the preparation of aqueous polyurethane dispersions and solutions[P]. US4269748, 1981
    [26]耿耀宗.现代水性涂料[M].北京:中国石化出版社,2003:125-126
    [27]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,1999
    [28]李淑云.鞋用胶黏剂[M].北京:中国轻工业出版社,1983:16
    [29]王孟钟,黄应昌.胶黏剂应用手册[M].北京:化学工业出版社,1987:41
    [30]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2004: 568-571,19
    [31]Yilgor I, Yilgor E, Erenturk B, et al. Effect of structural variations on the synthesis and structure-property behavior of segmented silicone-urethane and copolymers:Ⅰ.Polymer synthesis[J]. Polymer Preprints, 2004, 45(1): 561-562
    [32]Sheth J P, Yilgor I, Yilgor E, et al. Effect of structural variations on the synthesis and structure-property behavior of segmented silicone-urethane andcopolymersⅡ.Structure-property behavior[J]. Polymer Preprints, 2004, 45(1): 563-564
    [33]黄勤,张剑秋,封玉凤.高含量有机硅改性水性聚氨酯乳液的制备及性能研究[J].涂料工业,2006,36(9):26-29
    [34]黄洪,傅和青,邓艳文,等.环氧树脂与丙烯酸酯复合改性水性聚氨酯的合成研究[J].高校化学工程学报,2006,20(4):583-587
    [35]蒋欣,刘志猛,刘煜平,等.聚氨酯-丙烯酸酯乳液的制备与性能[J].石油化工,2003,32(7):604-607
    [36]陈鹤,罗运军,李杰.硬段阻燃改性水性聚氨酯的合成与性能[J].高分子材料科学与工程,2008,24(6):80-82
    [37] Elias P. Growth and Use of UV/EB Technology in the American Markets[J]. Proceeding Radtech Asia, 2003: 1-5
    [38] Kim I H, Shin J S, Cheong I W, et al. Seeded Emulsion Polymerization of Methel Methacrylate Using Aqueous Polyurethane Dispersion: Effect of Hard Segment on Grafting Efficiengcy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207(1): 169-176
    [39] JungY C, Sahoo N G, Cho J W. Polymeric nanocomposites of polyurethane blocke copolymers and functionalized multi-walled carbon nanotubes as crewsslinkers[J]. Macromolecular Rapid Communications, 2006, 27(2): 126-131
    [40]刘艳辉,邓爱民.聚氨酯-聚丙烯酸互穿网络聚合物乳液的合成[J].电镀与精饰,2009,31(1):34-36
    [41]Kukan ja D. The structure and properties of acrylic polyurethane hybrid emulsions and comparison with physical blends[J]. Journal of Applied Polymer Science, 2000, 78: 67-80
    [42]朱国全,丛新泽.第三代水性PU涂料的产生和发展概况[J].江西化工,2001(1):9-11
    [43]Nishimura Seiji. Aqueous composition[P]. JP95242855, 1995
    [44]许戈文,熊潜生.脂肪族水性聚氨酯涂料的研制[J].涂料工业,2001(4):1-3
    [45]Werne J Black, Valetino J Tramontano. Properties of Crosslinked Polyurethane Dispersion[J]. Progress in Organic Coatings, 1996, (27): 1-3
    [46]Chen Guannan, Chen Kannan. Self-curing Behaviors of Single PackAqueous-based Polyurethane System[J]. Appl Polym Sci, 1997, 63(12): 1609
    [47]Augustin T C, Lawrence E K, Ronald T W, etal. Internal Crosslinking Increase stability[J]. Modem Paint and Coatings, 1996, 86(5): 49
    [48]刘景芳,李树材.封闭型水性聚氨酯的研究进展[J].涂料工业,2003,33(10):36-39
    [49]A Chen, L Katz. Proceeding of the Waterborne,High-Solids Powder Coating Sympoaium[J]. New Orleans, LAA, 1996, 23: 103-114
    [50]Kothandaraman K, Thangavel R. Cyclohexanone Oxime-blocked Polyisocyanates[J]. Appl Polym Sci, 1993(47): 1791-1796
    [51]Richard G C. Post-crosslinking of Waterborne Urethanes[J]. Progress in Organic Coatings, 1997, 32(1-4): 51
    [52]Zhiming Wang, Dongbo Gao, Jianwen Yang. Synthesis and characterization of UV-curable waterborne polyurethane-acrylate ionomers for coatings[J]. Journal of Applied polymer Science, 1999, 73: 2869-2876
    [53]Huynh-Tran, Truc-Chi T. Photocurable polyurethane-acrylate ionomer compositions for aqueous developable printing plates[P]. United States Patent: 5290663, 1994-03-01
    [54]Schwalm, Reinhold, et al.Aqueous polyurethane dispersions which can be hardened with mit UV-radiation and thermally,and use thereof[P]. United States Patent: 6747088, 2004-06-08
    [55]苏慈生.超分子化学引领高科技涂料应用[J].涂料工业,2004,34(9):36-39
    [56]巫辉,夏亚敏,明三军,等.水性双组分聚氨酯的分散混合和成膜[J].胶体与聚合物,2004,22(3):25-27
    [57]张发爱,王云普,柴春鹏.应用于汽车修补的水性双组分聚氨酯涂料[J].高分子通报,2004,l:93-97
    [58] He Z A, Blank W J, Picci M E. A selective catalyst for two component waterborne Polyurethane coatings[J]. Journal of coating technology, 2002, 74(930): 31-36
    [59]顾国芳.双组份水性聚氨酯涂料的分散与成膜[J].建筑材料学报,1999,2(2):136-141
    [60]季永新.高硬度双组分水性聚氨酯的合成[J].精细化工,2002,4(19):230-233.
    [61]唐文静,傅和青,黄洪,等.复合薄膜用水性聚氨酯-丙烯酸酯胶粘剂的合成[J].精细化工,2007,24(10):1022-1025
    [62]周建军,舒心,刘亚康.水性聚氨酯-丙烯酸酯粘合剂的研制[J].北京化工大学学报,2005,32(6):40-43
    [63] Byung Kyu Kim, Jung Hwan Shin. Modification of waterborne polyurethane by forming latex interpenetrating polymer networks with acrylate rubber[J]. Colloid Polym Sci, 2002, 280: 716-724
    [64]李芝华,郑子樵.丙烯酸树脂改性的水性聚氨酯性能与结构[J].化学与粘合,2000,(4):155-157
    [65]李延科,凌爱莲,桑鸿勋.丙烯酸酯改性水性聚氨酯乳液性能的研究[J].粘接,2000,28(5):31-32
    [66]M Hirose, F Kadowaki, Jianhui Zhou. The structure and properties of core-shell type acrylic-polyurethane hybird aqueous emulsions[J]. Progress in Organic Coatings, 1997, 31: 157-169
    [67]Vijayendran, Bheema R, et al. Aqueous polyurethane-vinyl polymer dispersions for coating applications[P]. US5173526, 1992-12-22
    [68]傅传兴,沈介发.一种改性丙烯酸树脂的新方法:聚氨酯-丙烯酸酯共聚乳液的制备[J].聚氨酯工业,1994,(1):22-25
    [69]许美萱,张绍林.亲水性聚丙烯酸酯改性聚氨酯的合成与性能研究[J].合成树脂及塑料,1992,9(4):12-15
    [70]Ahne, Hellmut, Plundrich, etal. Method for manufacturing heat-stable structured layers based on expoxy resin[P]. US4883730, 1989
    [71]周建平,徐伟箭,熊远钦,等.异氰酸酯改性光敏水性环氧丙烯酸酯的合成[J].涂料工业,2005,35(01):24-26
    [72]申永泰,异氰酸酯-丙烯酸酯共聚乳液[J].粘接,1994,15(6):14-16
    [73]韩仕甸,金养智.紫外光固化水性聚酯型聚氨酯丙烯酸酯的合成及性能[J].北京化工大学学报,2001,28(4):19-22
    [74]Huynh Tran, Truc Chi T, Kumpfmiller. Aqueous developable photosensitive polyurethane-(methyl)acrylate[P].United States Patent: 5328805, 1994-07-12
    [75]张旭东,霍金清,陈焕钦.聚氨酯-丙烯酸酯复合乳液研制进展[J].合成材料老化与应用,2003,32(4);31-36
    [76]陈义芳.聚氨酯-丙烯酸互穿网络聚合物乳液的制备[J].聚氨酯工业,1999,14(3):10-11
    [77] Wang F, Ji Q, McGrath J E. Synthesis and Characterization of Poly(dimethyl siloxane) Modified Polyurethane[J]. Polym Prep, 1997, 38(1): 308-309
    [78] Yilgor I, Yilgor E, Erenturk B, et al. Effect of structural variations on the synthsis and structure-Prooerty behavior of segmented silicone-urethane and copolymers:Ⅰ.polymer synthesis[J]. Polymer Preprints, 2004, 45(1): 561-562
    [79]王文荣,刘伟区,苏倩倩.硅烷封端羟基硅油改性端硅氧烷聚氨酯密封胶的研究[J].精细化工,2008,25(9):926-930
    [80]尹朝辉,张洪涛,李建宗.有机硅聚醚嵌段聚氨酯乳液的研究[J].粘接,2004,25(2):1-5
    [81]王武生,潘才元.交联聚氨酯水分散体的合成[J].高分子学报,2000,3(6):319-324
    [82]冯利邦,苏致兴,郭金山.含纳米硅氧化物的聚酯型水性聚氨酯涂料研究[J].国外建材科技,2004,25(4):62~64
    [83]吴晓青,卫晓利,邱圣军.环氧树脂改性水性聚氨酯的合成工艺与性能研究[J].应用基础与工程科学学报,2006,14(2):153-159
    [84]姜守霞,孙成,周照毅.环氧改性水性聚氨酯涂料的合成研究[J].应用化工,2003,32(5):17-21
    [85]Cauffman E T. Formulating urethane acrylate coating to reduce degradation[J]. Modern Paintand Coating, 1995, (6): 32-36
    [86]Huang Y S, Ding S L, Yang K H. Study of anionic polyurethane monomer dispersing[J]. Journal of Coatings Technology, 1997, 69(872): 89-99
    [87]邓艳文,傅和青,张小平,等.环氧树脂改性水性聚氨酯胶粘剂的合成研究[J].中国胶黏剂,2006,15(5):18-20
    [88]J S LEE, J H SHIM. Modification of aqueous polyurethanes by forming latex interpenetrating polymer networks with polystyrene[J]. Colloid Polymer Science, 2001, 279:959-965
    [89]周海峰,许戈文,瞿启云.环氧树脂改性阴离子型水性聚氨酯的研究[J].聚氨酯工业,2006,21(6):41-43
    [90] Yuanchang Shi, Youshi Wu, Zhiqian Zhu. Modification of Aqueous Aerylie-Polyurethane via Epoxy Resin Postcrosslinking[J]. Joumal of APPlied Polymer Scienee, 2003, 88: 470-475
    [91]吴蓁,郭青,徐梁,等.改性水性聚氨酯树脂的合成及性能研究[J].化学建材,2002,3:17-19
    [92]许戈文,熊潜生,王彤,等.水性环氧改性聚氨酯涂料的研制[J].涂料工业,1998,11:30-32
    [93]王春鹏,储富祥,金立维,等.不同端基聚氨酯-聚丙烯酸酯复合细乳液的表征[J].高分子材料科学与工程,2006,22(5): 90-94
    [94] Damrong sakkul S, Sinweeruthai R, Higgins JS. Processability and chemical resistance of the polymer blend of thermoplastic polyurethane and polydimethylsiloxane[J]. Macromolecular Symposia, 2003, 198: 411-419
    [95]傅明源,孙酣经.聚氨酯弹性体及其应用[M].北京:化学工业出版社,2006
    [96]刘景芳,李树材.硬段含量对水性聚氨酯性能的影响[J].涂料工业,2004,34(8):5-11.
    [97]谭晓玲,果云,潘肇琦,等.软段对水性聚氨酯结构与性能的影响[J].功能高分子学报,2004,17(2):235-240.
    [98]陈延娜,李树材.软段种类及相对分子质量对阴离子水性聚氨酯性能的影响[J].涂料工业,2004,34(7):1-4.
    [99]任祥忠,江英凯,刘剑洪,等.pH值对水性聚氨酯及其接枝共聚物分散液形态的影响[J].高分子材料科学与工程,2009,25(2):11-14.
    [100] Otts DB, Pereira KJ, Jarret. Dynamic colloidal processes in waterborne two-component polyurethanes and their effects on solution and film morphology[J]. Polymer, 2005, 46(13): 4776-4788.
    [101] Dietrich D, Keberle W, Wiet H. Polyurethane-ionomers eine neune klasse von sequenzpolymer angew [J]. Angew Chem Int Eng Ed, 1970, 9(2): 40-50.
    [102]鹿秀山,郝广杰,郭天瑛,等.水性聚氨酯乳化过程中相转变的研究[J].高分子学报,2001(3):320-324.
    [103]卫晓利,张发兴,肖忠良.高固含量低黏度聚氨酯微乳液的制备及性能研究[J].高分子学报,2009(1):28-34.
    [104]朱育平,叶宇达,杨昌正,等.嵌段聚氨酯阴离子离聚物的小角X射线散射研究[J].高分子学报,1995,(1):59-63.
    [105]顾建军,程树军,周达飞.单组分聚氨酯清漆的制备与性能研究[J].功能高分子学报,2004,17(4):610-614.
    [106] Jong Yoon Jang, Young Kuk Jhon, In Woo Cheong. Effect of process variables on molecular weight and mechanical properties of water-based polyurethane dispersion[J]. Colloids and Surfaces A:Physicochemical andEngineering Aspects, 2002, (196):135-143.
    [107] Ho Tak Jeon, Moon Kyoung Jang, Byung Kyu Kima. Synthesis and characterizations of waterborne polyurethane-silica hybrids using sol-gel process [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007(302):559-567.
    [108] S A Madbouly, J U Otaigbe, A K Nanda. Thermal-induced simultaneous liquid–liquid phase separation and liquid-solid transition in aqueous polyurethane dispersions[J]. Polymer, 2005(46): 10897-10907.
    [109]张庆思,朱晓丽,李天铎,等.反应型聚硅氧烷改性聚氨酯水分散体的合成与性能[J].石油化工,2007,36(8):839-845.
    [110] Li C , Su C. Latex interpenetrating networks based on polyurethane, polyacrylate and epoxy resin[J]. Prog Org Coat, 2004, 49: 252-258.
    [111] Paula C R, Leni A. Networks and blends of polyaniline and polyurethane: correlations between composition and thermal, dynamic mechanical and electrical properties[J]. Polymer, 2003, 44: 6891-6899.
    [112] Mequanint K, Sanderson R. Self-assembling metal coatings from phosphated and siloxane-Modified polyurethane dispersions: An analysis of the coating-air interface[J]. Journal of Applied Polymer Science, 2003, 88(4): 893-899.
    [113] RAHMANMM, KIMHAN-DO. Characterization of waterbrone polyurethane adhesives containing different soft segments[J]. Adhesion Sci Technol, 2007, 21(1): 81-96.
    [114]花兴艳,王源升,赵培仲,等.聚氨酯/环氧树脂互穿网络半硬泡沫的热稳定性[J].高分子材料科学与工程,2009,25(10):113-116.
    [115]黄洪,傅和青,邓艳文,陈焕钦.环氧树脂与丙烯酸酯复合改性水性聚氨酯的合成研究[J].高校化学工程学报,2006,20(4):583-587.
    [116] Mohammad Mizanur Rahman, Eun-Young Kim, Ji Yun Kwon, Hye-Jin Yoo, Han-Do Kim. Cross-linking reaction of waterborne polyurethane adhesives containing different amount of ionic groups with hexamethoxymethyl melamine [J]. International Journal of Adhesion & Adhesives, 2007(28): 47-54
    [117]Li Chen, Su Chen. Latex interpenetrating networks based on polyurethane, polyacrylate and epoxy resin[J]. Progress in Organic Coatings, 2004 (49):252-258.
    [118]成丰,向玲,于剑坤,等.鞋用水性聚氨酯胶黏剂的制备及表征[J].高分子学报,2009,9(9): 929-934.
    [119]Dieterich D. Aqueous emulsions, dispersions and solutions of polyurethane, synthesis and properties[J]. Progress in Organic Coatings, 1981, (9): 281-340
    [120] James J J, Wayne R W, James E P. Continuous Process for Preparing a Polyurethane Latex[P]. US 5959027, 1999-9-28
    [121] KennethW S, Rick L T, Paul T L, et al. Continuous Process for a Polyurethane Latex[P]. US 6087440, 2000-7-11
    [122] Tejedor-Tejedor M I, Paredes L, Anders on M A. Evaluation of ATR-FTIR spectroscopy as an“in situ”tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions[J]. Chemistry of Materials, 1998, 10 (11): 3410-3421.
    [123]SUNDAR S, VIJAYALAKSHMIN. Aqueous dispersion of polyurethane-polyvinyl pyridine cationomers and their application as binder in base coat for leather finishing[J]. Progress in Organic Coatings, 2006, 56:178-184.
    [124]Reifer D, Windeit R, Kumpf R J, et al. AFM and TEM investigations of polypropylene/ polyurethane blends [J]. Thin Solid Films, 1995, 6 (4): 148-152.
    [125] Mclean S, Scott S, Bryan B. Tapping mode AFM studies using phase detection for resolution of nanophase in segmented polyurethane and other block copolymer [J]. Macromolecules, 1997, 30: 8314-8317.
    [126]鹿秀山,郝广杰,郭天瑛,等.脂肪族水性聚氨酯的动态力学行为研究[J].高分子学报,2003,(6):821-825