四株植物内生真菌次级代谢产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生菌作为一种新的微生物资源逐渐成为人们寻找新天然产物的热点。植物内生真菌作为植物内生菌的重要成员,由于它的次级代谢产物往往种类繁多、骨架新颖、生物活性多样,已成为发现新的生物活性物质的重要来源。
     本论文以三种不同药用植物(滑桃树、喜树和番荔枝)为研究对象,对来源于这三种药用植物的四株内生真菌(两株番荔枝植物内生真菌Pyrenochaeta sp.B36、Xylaria sp.A45,一株滑桃树植物内生真菌Aspergillus sp.F1和一株喜树内生真菌Phomopsis sp.XZ26)的次级代谢产物进行分离纯化和结构鉴定。共分离并鉴定了52个化合物(包括2个乙酰化产物和1个乙酯化产物),其中23个为新化合物(反应产物不属于新化合物),对其中部分化合物进行抗菌、抗肿瘤活性研究。由于目前对这三种药用植物内生真菌的次级代谢产物的研究较少,许多化合物都是首次从它们的内生真菌中分离得到。
     从菌株Aspergillus sp.F1的次级代谢产物中分离并鉴定了12个化合物,包括聚酮类化合物、萜类化合物、部分萜类化合物。其中LT24为新化合物,命名为butyl 3,5-dichloro-2-hydroxy-6-(2-hydroxy-4-methoxy-6-(methoxycarbonyl)phenoxy)-4-methylbenzoate;新化合物LT 1为部分萜类化合物,命名为butyrolactone-V。
     运用核磁共振、质谱及X-Ray单晶衍射分析技术,从菌株Phomopsis sp.XZ26的液体发酵和固体发酵产物中分离并鉴定了14个化合物,包括11个聚酮(LTC,LTP,LTQ,LTJ-1,LTJ-2,LTG,LTH,26-L-2,LTL,LTM,LTR)类化合物、2个(LTA,LTO)萜类化合物和1个(LTD)大环内酯类化合物。其中化合物LTC、LTG、LTH、LTJ-1、26-L-2、LTL、LTO、LTM、LTQ、LTR为新化合物;化合物26-L-2,LTG,LTL,LTM和LTR是首次从喜树内生真菌的次级代谢产物中分离得到,对其中部分化合物进行了抗菌活性测定。结果表明,这些化合物具有一定的抗菌活性。
     从菌株Pyrenochaeta sp.B36的次级代谢产物中分离并鉴定了10个(B36-1,LT-36-2,LT-36-4,LT-36-9,LT-36-11,LT-36-12,LT-36-15,LT-36-16,LT-36-17,LT-36-19)聚酮类化合物。其中化合物LT-36-2,LT-36-12,LT-36-15,LT-36-16和LT-36-11是新化合物,且首次从番荔枝内生真菌中分离得到。化合物B36-1是聚酮类化合物,有很强的抗肿瘤活性:在浓度为5μg/ml时,对Raji细胞的抑制率为82.21%;在浓度为1.25μg/ml时,对HEPG2的抑制率为49.79%。
     在对番荔枝另外一株内生真菌Xylaria sp.A45的研究中,从其PDA平板发酵产物中共分离并鉴定了13个化合物,包括9个聚酮类化合物(LT-45-1,LT-45-2,LT-45-4,LT-45-5,LT-45-7,LT-45-8,LT-45-10,LT-45-12,LT-45-14)、一个生物碱类化合物(LT-45-24)和三个萜类化合物(LT-45-16,LT-45-21和LT-45-25),其中LT-45-2、LT-45-10、LT-45-16、LT-45-21、LT-45-25、LT-45-24为新化合物。
     本论文的结果表明,植物内生真菌作为植物生态一个重要的组成部分,其次级代谢产物具有结构新颖性与生物活性多样性的特征,是寻找药物先导化合物的重要资源。
Recently,endophyte as a new microbiology resource has played an importantrole in people discovering novel natural products.Endophytic fungi is an importantpart of the endophyte,they can produce numerous secondary metabolites with severalstructures,novel skeletons and varied and high bioactivities.They have been a veryimportant source for searching new bioactivity natural product over decades.
     In this thesis,three medical plants (Trewia nudiflora,Camptotheca acuminata,Annona squamosa L.) were picked as research sources.The secondary metabolites offour endophytic strains of different plants (two strains Pyrenochaeta sp.B36 andXylaria sp.A45 from Annona squamosa L.,one strain Aspergillus sp.F1 from Trewianudiflora and one strain Phomopsis sp.XZ26 from Camptotheca acuminata ) wereinvestigated.Fifty two compounds were isolated and elucidated from these fourstrains,including twenty three new compounds.Partial compounds were tested for theantimicrobe and anticancer bioactivity.There were not many research about thesemedical plants's endophytic fugi,so many compounds were isolated for the first time.
     Twelve compounds were isolated from the strain Aspergillus sp.F1.Theirstructures were elucidated by extensive spectroscopic data analyses,includingpolyketides,terpenoids and dibenzylbutyrolactone lignans.One of them was new polyketide,namely LT-24,named butyl 3,5-dichloro-2-hydroxy-6-(2-hydroxy-4-methoxy-6-(methoxycarbonyl)phenoxy)-4-methylbenzoate,another one was newdibenzylbutyrolactone lignan,namely LT1,named butyrolactone-V.
     The secondary metabolites of the strain Phomopsis sp.XZ26 for both solid andliquid fermentations were studied.Fourteen compounds were isolated.Theirstructures were elucidated by extensive spectroscopic data analyses and X-raycrystallographic analysis,including eleven (LTC,LTP,LTQ,LTJ-1,LTJ-2,LTG,LTH,26-L-2,LTL,LTM,LTR) polyketides,two (LTA,LTO) terpenoids and one (LTD)macrocyclic lactone.Among them,ten new compounds (LTC、LTD、LTG、LTH、LTJ-1、26-L-2、LTL、LTO、LTM、LTQ、LTR)were obtained.Except LTO was monoterpen,the others were all new polyketides.Compounds 26-L-2,LTG,LTL,LTM and LTR were polyketides isolated from Camptotheca acuminata fungi for thefirst time.Some of the compounds were tested for anti-microbial activities.The resultshowed that they had humble activities against Escherichia coli,Bacillus subtilis,Staphylococus aureus,Sacharomyces cereviiae and Candidia albicans.
     Ten polyketides were isolated and identified from the strain Pyrenochaeta sp.B36 (B36-1,LT-36-2,LT-36-4,LT-36-9,LT-36-11,LT-36-12,LT-36-15,LT-36-16,LT-36-17,LT-36-19).LT-36-2,LT-36-12,LT-36-15,LT-36-16 and LT-36-11 were newcompounds and they were isolated from Annona squamosa L.fungi for the first time.Compound B36-1 was polyketide.When tested with anticancer bioactivity,thiscompound exhibited very strong activity.At the concentration of 5μg/ml,it still has82.21% inhibition rate against the Raji cell.When tested against HEPG2 cell,at theconcentration 1.25μg/ml,it still showed inhibition rate at 49.79%.
     From another Annona squamosa L.'s endophytic fugus Xylaria sp.A45,thirteencompounds were obtained,including nine polyketides (LT-45-1,LT-45-2,LT-45-4,LT-45-5,LT-45-7,LT-45-8,LT-45-10,LT-45-12,LT-45-14),three new steroids(LT-45-16,LT-45-21 and LT-45-25) and one alkoid (LT-45-24).Compounds LT-45-2,LT-45-10,LT-45-16,LT-45-21 and LT-45-25 were new compounds.
     In conclusion,this thesis indicated that endophytic fungi,this important part ofplant system,contain novel and bioactive compounds in its secondary metabolisms.Itis an important source for searching lead compounds for drugs.
引文
[1]马旭闽,吴萍茹.植物内生真菌——一类生物活性物质的新的资源微生物[J].海峡药学,2004.16(4):11-12.
    [2]Bary.,De.Morphologie und Physiologie der Pilze,Flechten und Myxomyceten.[J].Engelmann,Leipzig,,1866:1-316.
    [3]Leuchtmann,A.Systematics,distribution,and host specificity of grass endophytes[J].Nat Toxins,1992.1(3):150-162.
    [4]Stone J K,Bacon C W,White J F Jr.An Overview of Endophytic Microbes:Endophytism Defined.[J].NewYork:Marcel Dekker,2000:3-29.
    [5]Sturz AV,Christie B R,Nowak J.Bacterial endophytes:potential role in developing sustainable systems of crop production[J].Crit.Rev.Plant Sci.,2000.19(1):1-30.
    [6]黎万奎,胡之璧.内生菌与天然药物[J].中国天然药物,2005.3(4):193-199.
    [7]Lu,H.:Zou,W.X.:Meng,J.C.:Hu,J:Tan,R.X..New bioactive metabolites produced by Colletotrichum sp.,an endophytic fungus in Artemisia annua.[J].Plant-sci,2000..151 (1):67-73.
    [8]Service,R.F.Hazel trees offer new source of cancer drug[J].Science,2000.288(5463):27-28.
    [9]Wani,M.C.,Taylor,H.L.,Wall,M.E.,et al.Plant antitumor agents.Ⅵ.The isolation and structure of taxol,a novel antileukemic and antitumor agent from Taxus brevifolia[J].J Am Chem Soc,1971.93(9):2325-2327.
    [10]Stierle,A.,Strobel,G.,and Stierle,D.Taxol and taxane production by Taxomyces andreanae,an endophytic fungus of Pacific yew[J].Science,1993.260(5105):214-216.
    [11]Kharwar,R.N.,Verma,V.C.,Kumar,A.,et al.Javanicin,an antibacterial naphthaquinone from an endophytic fungus of neem,Chloridium sp[J].Curr Microbiol,2009.58(3):233-238.
    [12]Li,E.,Jiang,L.,Guo,L.,et al.Pestalachlorides A-C,antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta[J].Bioorg Med Chem,2008.16(17):7894-7899.
    [13]Poling,S.M.,Wicklow,D.T.,Rogers,K.D.,et al.Acremonium zeae,a protective endophyte of maize,produces dihydroresorcylide and 7-hydroxydihydroresorcylides[J].J Agric Food Chem,2008.56(9):3006-3009.
    [14]Hoffman,A.M.,Mayer,S.G.,Strobel,G.A.,et al.Purification,identification and activity of phomodione,a furandione from an endophytic Phoma species[J].Phytochemistry,2008.69(4):1049-1056.
    [15]Macias-Rubalcava,M.L.,Hernandez-Bautista,B.E.,Jimenez-Estrada,M.,et al.Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae[J].Phytochemistry,2008.69(5):1185-1196.
    [16]Ding,G.,Liu,S.,Guo,L.,et al.Antifungal metabolites from the plant endophytic fungus Pestalotiopsisfoedan[J].J Nat Prod,2008.71(4):615-618.
    [17]Zhang,W.,Krohn,K.,Draeger,S.,et al.Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi [J]. J Nat Prod, 2008. 71(6): 1078-1081.
    [18] Zhang, H. W., Huang, W. Y., Chen, J. R., et al. Cephalosol: an antimicrobial metabolite with an unprecedented skeleton from endophytic Cephalosporium acremonium IFB-E007 [J]. Chemistry, 2008. 14(34): 10670-10674.
    [19] Rukachaisirikul, V., Sommart, U., Phongpaichit, S., et al. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15 [J]. Phytochemistry, 2008. 69(3): 783-787.
    [20] Huang, Z., Cai, X., Shao, C., et al. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76 [J]. Phytochemistry, 2008. 69(7): 1604-1608.
    [21] Strobel, G. A., Kluck, K., Hess, W. M., et al. Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant [J]. Microbiology, 2007. 153(Pt 8): 2613-2620.
    [22] Wei, G. H., Yang, X. Y, Zhang, J. W., et al. Rhizobialide: a new stearolactone produced by Mesorhizobium sp. CCNWGX022, a rhizcbial endophyte from Glycyrrhiza uralensis [J]. Chem Biodivers, 2007. 4(5): 893-898.
    [23] Gallo, M. B., Chagas, F. O., Almeida, M. O., et al. Endophytic fungi found in association with Smallanthus sonchifolius (Asteraceae) as resourceful producers of cytotoxic bioactive natural products [J]. J Basic Microbiol, 2009. 49(2): 142-151.
    [24] Gu, W., Ge, H. M., Song, Y. C., et al. Cytotoxic benzo[j]]fluoranthene metabolites from Hypoxylon truncatum IFB-18, an endophyte of Artemisia annua [J]. J Nat Prod, 2007. 70(1): 114-117.
    [25] Aly, A. H., Edrada-Ebel, R., Wray, V., et al. Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides [J]. Phytochemistry, 2008. 69(8): 1716-1725.
    [26] Ding, G, Zheng, Z., Liu, S., et al. Photinides A-F, Cytotoxic Benzofuranone-Derived gamma-Lactones from the Plant Endophytic Fungus Pestalotiopsis photiniae [J]. J Nat Prod, 2009.
    [27] Xu, J., Kjer, J., Sendker, J., et al. Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata [J]. J Nat Prod, 2009. 72(4): 662-665.
    [28] Debbab, A., Aly, A. H., Edrada-Ebel, R., et al. Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Mentha pulegium [J]. J Nat Prod, 2009. 72(4): 626-631.
    [29] Chomcheon, P., Wiyakrutta, S., Sriubolmas, N., et al. Metabolites from the endophytic mitosporic Dothideomycete sp. LRUB20 [J]. Phytochemistry, 2009. 70(1): 121-127.
    [30] Aly, A. H., Edrada-Ebel, R., Indriani, I. D., et al. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense [J]. J Nat Prod, 2008. 71(6): 972-980.
    [31] Ge, H. M., Shen, Y, Zhu, C. H., et al. Penicidones A-C, three cytotoxic alkaloidal metabolites of an endophytic Penicillium sp [J]. Phytochemistry, 2008. 69(2): 571-576.
    [32] Prachya, S., Wiyakrutta, S., Sriubolmas, N., et al. Cytotoxic mycoepoxydiene derivatives from an endophytic fungus Phomopsis sp. isolated from Hydnocarpus anthelminthicus [J]. Planta Med, 2007. 73(13): 1418-1420.
    [33] Wang, F. W., Ye, Y H., Chen, J. R., et al. Neoplaether, a new cytotoxic and antifungal endophyte metabolite from Neoplaconema napellum IFB-E016 [J]. FEMS Microbiol Lett, 2006. 261(2): 218-223.
    [34] Shen, L., Ye, Y. H., Wang, X. T., et al. Structure and total synthesis of aspernigerin: a novel cytotoxic endophyte metabolite [J]. Chemistry, 2006. 12(16): 4393-4396.
    [35] Silva, G. H., Teles, H. L., Zanardi, L. M., et al. Cadinane sesquiterpenoids of Phomopsis cassiae, an endophytic fungus associated with Cassia spectabilis (Leguminosae) [J]. Phytochemistry, 2006. 67(17): 1964-1969.
    [36] Liu, L., Liu, S., Chen, X., et al. Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici [J]. Bioorg Med Chem, 2009. 17(2): 606-613.
    [37] Liu, L., Tian, R., Liu, S., et al. Pestaloficiols A-E, bioactive cyclopropane derivatives from the plant endophytic fungus Pestalotiopsis flci [J]. Bioorg Med Chem, 2008. 16(11): 6021-6026.
    [38] Liu, L., Liu, S., Jiang, L., et al. Chloropupukeananin, the first chlorinated pupukeanane derivative, and its precursors from Pestalotiopsis fici [J]. Org Lett, 2008. 10(7): 1397-1400.
    [39] Ding, G., Jiang, L., Guo, L., et al. Pestalazines and Pestalamides, Bioactive Metabolites from the Plant Pathogenic Fungus Pestalotiopsis theae [J]. J Nat Prod, 2008. 71:1861-1865.
    [40] Li, E., Tian, R., Liu, S., et al. Pestalotheols A-D, bioactive metabolites from the plant endophytic fungus Pestalotiopsis theae [J]. J Nat Prod, 2008. 71(4): 664-668.
    [41] Campos, F. F., Rosa, L. H., Cota, B. B., et al. Leishmanicidal Metabolites from Cochliobolus sp., an Endophytic Fungus Isolated from Piptadenia adiantoides (Fabaceae) [J]. PLoS Negl Trop Dis, 2008. 2(12): e348.
    [42] Qin, J. C, Zhang, Y. M., Gao, J. M., et al. Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba [J]. Bioorg Med Chem Lett, 2009. 19(6): 1572-1574.
    [43] Souza, A. D., Rodrigues-Filho, E., Souza, A. Q., et al. Koninginins, phospholipase A2 inhibitors from endophytic fungus Trichoderma koningii [J]. Toxicon, 2008. 51(2): 240-250.
    [44] Li, D. L., Li, X. M., Li, T. G, et al. Benzaldehyde derivatives from Eurotium rubrum, an endophytic fungus derived from the mangrove plant Hibiscus tiliaceus [J]. Chem Pharm Bull (Tokyo), 2008. 56(9): 1282-1285.
    [45] Lang, G, Cole, A. L., Blunt, J. W., et al. Excelsione, a depsidone from an endophytic fungus isolated from the New Zealand endemic tree Knightia excelsa [J]. J Nat Prod, 2007. 70(2): 310-311.
    [46] Krohn, K., Hussain, H., Florke, U., et al. Massarilactones E-G, new metabolites from the endophytic fungus Coniothyrium sp., associated with the plant Artimisia maritima [J]. Chirality, 2007. 19(6): 464-470.
    [47] DU Zhi-zhi, SONG Cheng-zhi, YU Bu-zhu,LUO Xiao-dong. . Secondary metabolites produced by Fusarium sp.2TnP1-2, an endophytic fungus fromTrewia nudiflora [J]. Chinese Journal of Medicinal Chemistry., 2008. 18(6): 452-456.
    [48] Yu, B. Z., Zhang, G. H., Du, Z. Z., et al. Phomoeuphorbins A-D, azaphilones from the fungus Phomopsis euphorbiae [J]. Phytochemistry, 2008. 69(13): 2523-2526.
    [49] Kusari, S., Zuhlke, S., and Spiteller, M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues [J]. J Nat Prod, 2009. 72(1): 2-7.
    [50] Tan, Q.F., Yan,X.F., Lin,X., et.al. Chemical Constituents of the Endophytic Fungal Strain Phomopsis sp. NXZ-05 of Camptotheca acuminata. [J]. Helv. Chim. Acta, 2007. 90: 1811-1817.
    [51] LIN Xiao, LU Chun-Hua, SHEN Yue-Mao. One New Ten-membered Lactone from Phomopsis sp.B27, an Endophytic Fungus of Annona squamosa L. [J]. Chinese Journal of Natural Medicines, 2008. 6: 0391-0394.
    [52] Solis, P. N, Wright ,C. W, Anderson, M. M, et al. . A Microwell Cytotoxicity Assay using Artemian salina (Brine Shrimp) [J]. Planta med., 1993. 59: 250-252.
    [53] Norio, S., Takanori, K., Yukiko, M. C, et al. Temporal variations in isolation frequency of endophytic fungi of Japanese beech. [J]. Botany, 1999. 77(2): 197-202.
    [54] Thongchai, T, John, F. P., Saisamorn, L. Isolation of endophytic actinomycetes from selected plants and their antifungal activity [J]. World Journal of Microbiology and Biote.hnology, 2003. 19(4): 381-385.
    [55] Gregory, S. G., M(?)nica, M., Enith, R. Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism [J]. 2002. 132: 278-285.
    [56] Fujii I, Ebizuka Y, Sankawa U. Partial purification and some properties of emodin-O-methyltransferase from (+)-geodin producing strain of Aspergillus terreus. [J]. Chem Pharm Bull 1982. 30: 2283-2286.
    [57] Kiriyama, N., Nitta, K., Sakaguchi, Y., et al. Studies on the metabolic products of Aspergillus terreus. Ⅲ. Metabolites of the strain IFO 8835. (1). [J]. Chem.Pharm.Bull, 1977. 25(10): 2593-2601.
    [58] Li, G Y, Li, B. G., Yang, T., et al. Sesterterpenoids, terretonins A-D, and an alkaloid, asterrelenin, from Aspergillus terreus [J]. J Nat Prod, 2005. 68(8): 1243-1246.
    [59] Springer, J. P., Dorner,J. W., Cole, R. J., Cox, R. H. . Terretonin, a toxic compound from Aspergillus terreus [J]. J. Org. Chem., 1979. 44(26): 4852-4854.
    [60] Curtis, R. F.; Hassall, C. H.; Parry, D. R. Biosynthesis of phenols. XXIV. Conversion of the anthraquinone questin to the benzophenone sulochrin in cultures of Aspergillus terreus. [J]. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 1972. 2: 240-244.
    [61] Calam, C. T, Clutterbuck, P. W., Oxford, A. E., et al. Studies in the biochemistry of micro-organisms: The molecular constitution of geodin and erdin, two chlorine-containing metabolic products of Aspergillus terreus Thorn. Part Ⅱ. Dihydrogeodin and dihydroerdin and the synthesis of their trimethyl ethers [J]. Biochem J, 1939. 33(4): 579-588.
    [62] Natori, S., Nishikawa, H. Structures of osoic acids and related compounds; metabolites of Oospora sulphurea-ochracea. [J]. Chem Pharm Bull 1962. 10: 117-124.
    [63] Curtis, R. F., Hassall,C. H., Jones,D. W., Williams,T. W. The biosynthesis of phenols. Ⅱ. Asterric acid, a metabolic product of Aspergillus terreus. [J]. J. Chem. Soc, 1960: 4836-4842.
    [64] Lee, H. J., Lee, J. H., Hwang, B. Y, et al. Fungal metabolites, asterric acid derivatives inhibit vascular endothelial growth factor (VEGF)-induced tube formation of HUVECs [J]. J Antibiot (Tokyo), 2002. 55(6): 552-556.
    [65] Barton, D. H. R., Scott, A. I. Constitutions of geodin and erdin [J]. Journal of the Chemical Society,Perkin Transactions 1:Organic and Bio-Organic Chemistry,1958:1767-1772.
    [66]Oka,M.,Iimura,S.,Tenmyo,O.,et al.Terpestacin,a new syncytium formation inhibitor from Arthrinium sp[J].J Antibiot (Tokyo),1993.46(3):367-373.
    [67]Dai,J.,Krohn,K.,Gehle,D.,Kock,I.,Fl(?)rke,U.,Aust,H.J.,Draeger,S.,Schulz,B.,Rheinheimer,J..New Oblongolides Isolated from the Endophytic Fungus Phomopsis sp.from Melilotus dentata from the Shores of the Baltic Sea[J].Eur.J.Org.Chem.,2005:4009-4016
    [68]Pettersson,Tore.,Eklund,A.Marie.,Wahlberg,I.New Lactones from Tobacco[J].J.Agrlc.Food Chem.,1993.41:2097-2103.
    [69]Ahmed,A.A.,El-Moghazy,S.A.,El-Shanawany,M.A.,et al.Polyol monoterpenes and sesquiterpene lactones from the Pacific Northwest plant Artemisia suksdorfii[J].J Nat Prod,2004.67(10):1705-1710.
    [70]Glaser,R.,Shiftan,D.,Froimowitz,M.NMR structure determination of brefeldin-A,a 13-membered ring fungal metabolite.[J].Magnetic Resonance in Chemistry 2000.38(4):274-280.
    [71]Lee,H.B.,Oh,H.Two new fungal metabolites from an epiphytic fungus Paraphaeosphaeria species.[J].Bulletin of the Korean Chemical Society,2006.27(5):779-782.
    [72]Stipanovic,R.D.and Bell,A.A.Pentaketide metabolites of Verticillium dahliae.3.Identification of(-)-3,4-dihydro-3,8-dihydroxy-1(2h)-naphtal enone((-)-vermelone) as a precursor to melanin[J].J Org Chem,1976.41(14):2468-2469.
    [73]Maysa,L.,Ina'cio,a.,Geraldo,H.,Silva,a.,et al.Antifungal metabolites from Colletotrichum gloeosporioides,an endophytic fungus in Cryptocarya mandioccana Nees(Lauraceae)[J].Biochemical Systematics and Ecology 2006.34:822-824.
    [74]Liu,L.J.,Li,W.,Koike,K.,et al.New α-tetralonyl glucosides from the fruit of Juglans mandshurica.[J].Chem.Pharm.Bull.,2004.52(5):566-569.
    [75]Novak,I.,Ng,S.C.,Wang,L.,Huang,W.The Photoelectron Spectrum of 2,2'-Bitellurophene.[J].Journal of Chemical Research,Synopses,1998.8:438-439.
    [76]Guimaraes,D.O.,Borges,K.B.,Bonato,P.S.,et al.A simple method for the quantitative analysis of tyrosol by HPLC in liquid Czapek cultures from endophytic fungi.[J]Journal of the Brazilian Chemical Society,2009.20(1):188-194.
    [77]Ducho,C.,Grbig,U.,Jessel,S.,et al.Bis-cycloSal-d4T-monophosphates:Drugs That Deliver Two Molecules of Bioactive Nucleotides[J].J.Med.Chem.,2007.50(6):1335-1346.
    [78]Huang,J.and Li,T.Highly efficient chromatographic resolution of alpha,alpha'-dihydroxybiaryls[J].Org Lett,2005.7(26):5821-5823.
    [79]Namikoshi,M.,Kobayashi,H.,Yoshimoto,T.,et al.Phomopsidin,a new inhibitor of microtubule assembly produced by Phomopsis sp.isolated from coral reef in Pohnpei[J].JAntibiot (Tokyo),1997.50(10):890-892.
    [80]董静洲,易自力,蒋建雄.我国药用植物种质资源研究现状[J].西部林业科学,2005.34(2):95-100.
    [81]李强,刘军,周东坡.植物内生菌的开发与研究进展[J].生物技术通报,2006.3:33-37.
    [82]王建锋,吕华鹰,苏文金.植物内生真菌产紫衫醇的研究[J].微生物学通报,2000.27(1):58-60.
    [83]Dreyfuss,M.M.Chapela,I.H.In the discovery of natural prod-ucts with therapeutic potential [M].1994,(series volume).
    [84]武子敬,杨小生,朱海燕.植物内生真菌的研究现状[J].江西中医学院学报,2007.19(1):98-100.
    [85]王虹,张惟材,汪建华.聚酮类化合物生物合成的代谢工程研究进展[J].生物技术通讯,2005.16:448-451.
    [86]Weissman,K.J.Polyketide biosynthesis:understanding and exploiting modularity.[J].Philos Transact A Math Phys Eng Sci,2004.362:2671-2690.
    [87]杨建,洪葵.宏基因组文库技术获得聚酮化合物[J].遗传,2006.28(10):1330-1337
    [88]刘炳辉,曹远银,闫建芳,齐小辉,程浩,黄盼盼,刘秋,.聚酮类化合物生物合成基因簇与药物筛选[J].生物技术通报,2008(4):30-33.
    [89]OHASHI H.,AKIYAMA H.,NISHIKORI K.,MOCHIZUKI J.I.Asterric acid,a new endothelin binding inhibitor[J].Journal of antibiotics 1992.45(10):1684-1685.
    [90]Ishimaru,T.,Tsuboya,S.,Shirafuji,H.,Terashita,Z.[J].Chem.Abstr,1992:117.
    [91]Hargreaves,J.,Park,J.O.,Ghisalberti,E.L.,et al.New chlorinated diphenyl ethers from an Aspergillus species[J].J Nat Prod,2002.65(1):7-10.
    [92]Katano,T.,Goto,K.,Murakami.E.,Yamazaki,R.,Uenoyarna,T.,Sugimoto,T.,Kawashima,Y.Jpn Kokai Tokkyo[J].Chem.Abstr,1985.104:49846.
    [93]Yada,Y.,Kimura,M.,Morizaki,N.,Imokawa,G.J.[J].Chem.Abstr..122:169695.
    [94]Huang,K.X.,Fujii,I.,Ebizuka,Y.,et al.Molecular cloning and heterologous expression of the gene encoding dihydrogeodin oxidase,a multicopper blue enzyme from Aspergillus terreus[J].J Biol Chem,1995.270(37):21495-21502.
    [95]Chen,Z.G.,Fujii,I.,Ebizuka,Y.,Sankawa,U.Purification and characterization of emodinanthrone oxygenase from Aspergillus terreus[J].Phytochemistry 1995.38:299-305.
    [96]Takuya,F.,Akiko,F.,Kiyotaka,H.,etal.NSF is required for the brefeldin A-promoted disassembly of the Golgi apparatus[J].FEBS Letters,1998.435:237-240.
    [97]Sausville,E.A.,Duncan,K.L.,Senderowicz,A.,et al.Antiproliferative effect in vitro and antitumor activity in vivo of brefeldin A[J].Cancer J Sci Am,1996.2(1):52-58.
    [98]Simpson,Thomas.J.,Bandumathie Weerasooriya,M.K..NMR studies of tautomerism in the fungal melanin biosynthesis intermediate 1,3,8-trihydroxynaphthalene[J].J.Chem.Soc.,Perkin Trans.1,2000:2771-2775.
    [99]Ichinose,K.,Ebizuka,Y.,and Sankawa,U.Mechanistic studies on the biomimetic reduction of tetrahydroxynaphthalene,a key intermediate in melanin biosynthesis[J].Chem Pharm Bull (Tokyo),2001.49(2):192-196.
    [100]Denise,O.,Guimar(?)es,a.,Keyller,B.,Borges,b.,Pierina,S..A Simple Method for the Quantitative Analysis of Tyrosol by HPLC in Liquid Czapek Cultures from Endophytic Fungi[J].J.Braz.Chem.Soc.,2009.20(1):188-194.
    [101]Schlingmann,Gerhard.,Milne,Lisa.,Carter,G.T.New a-pyrones produced by fungal culture LL-11G219 function as androgen receptor ligands[J].Tetrahedron,1998.54(43):13013-13022.
    [102]Quang,D.N.,Stadler,M.,Fournier,J.,et al.Carneic acids A and B,chemotaxonomically significant antimicrobial agents from the xylariaceous ascomycete Hypoxylon carneum[J]J Nat Prod,2006.69(8):1198-1202.
    [103]Chappell,J.,Wolf,F.,Proulx,J.,Cuellar,R.,Saunders,C.Is the reaction catalysed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step, for isoprenoid biosynthesis in plants? [J]. Plant Physiol, 1995. 109(4): 1337-1343.
    [104] Rohmer, M, Knani, M., Simonin, P., et al. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate [J]. Biochem J, 1993. 295 (Pt 2): 517-524.
    [105] Rao, K. V., Sadhukhan, A. K., Veerender, M., et al. Butyrolactones from Aspergillus terreus [J]. Chem Pharm Bull (Tokyo), 2000. 48(4): 559-562.
    [106] Jung, H. J., Lee, H. B., Kim, C. J., et al. Anti-angiogenic activity of terpestacin, a bicyclo sesterterpene from Embellisia chlamydospora [J]. J Antibiot (Tokyo), 2003. 56(5): 492-496.