微小RNA及其生物合成相关基因在小鼠着床前胚胎中表达的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小RNA(MicroRNA,miRNA)是近年新发现的一类非编码RNA;长度为19-25个核苷酸的单链RNA分子,广泛存在于从线虫到人类的真核生物中。miRNA具有高度的保守性;大多数已发现的miRNA的表达具有时序性和组织特异性;生成miRNA的基因并不是随机分布的,从同一个前体RNA加工而来的共表达miRNA存在基因簇集现象。成熟的miRNA通过其5’端的5~8个核苷酸,识别并与靶标mRNA序列进行完全互补配对或不完全互补配对,引起靶标mRNA的降解或翻译抑制,达到调控目的基因表达的作用。通过上述作用机制miRNA在基因调控网络中发挥重要的作用,并在发育、细胞增殖、凋亡、分化以及肿瘤的发生等方面起重要作用。
     自从发现lin-4和let-7在线虫发育中发挥作用后,近年有大量的研究表明, miRNA及其生物合成相关的基因在着床后胚胎发育的各个阶段都有表达并对胚胎发育有影响。但是,目前尚无文献报道miRNA及其生物合成相关基因在着床前胚胎中的表达及其功能。因此,本课题拟开展miRNA及其生物合成相关基因在小鼠着床前胚胎表达的研究,以期找到miRNA对着床前胚胎生长发育、细胞分化及胚胎基因组激活等方面可能起作用的依据。目的:建立小鼠的超排、交配和胚胎收集系统,研究miRNA及其生物合成的相关基因在小鼠着床前胚胎的表达,探讨miRNA在着床前胚胎发育中的作用和意义。
     方法和结果:
     1.采用miRNA扩增结合miRNA芯片技术研究了小鼠的卵母细胞和着床前胚胎中miRNA表达谱。首次发现小鼠卵母细胞、受精后1.5天(2细胞)、2.5天(4-8细胞)和4.5天(囊胚)胚胎中分别表达55、53、62和72个miRNA;四个发育阶段中共筛查到表达的miRNA 94个,其中有32个miRNA在四个发育阶段均表达(包括16个在四个发育阶段均高表达的miRNA);其它的62个miRNA在不同的发育阶段特异性表达,其中在囊胚期胚胎中特异性表达一簇从小鼠干细胞克隆到的miRNA miR-290~miR-295基因簇。筛查到的miRNA中包括目前功能比较明确的miRNA miR-155和miR-181,通过对这些miRNA功能的分析,表明着床前胚胎中miRNA的表达可能对胚胎的早期发育起调控作用,并在维持胚胎细胞的分化中起作用。
     2.采用qRT-PCR方法研究miR-721和let-7e在小鼠卵母细胞、4-8细胞和囊胚中的表达水平。结果显示miR-721和let-7e的表达水平在这三个发育阶段均呈下降趋势。
     3.采用RT-PCR的方法研究了miRNA生物合成的相关基因Dicer1和DGCR8在卵母细胞和受精后1.5天、2.5天、3.5天和4.5天胚胎中的表达,结果表明在卵母细胞和上述各个发育阶段均表达Dicer1和DGCR8基因,他们可能是着床前胚胎miRNA合成的重要基因并对着床前胚胎发育起作用。
     结论:通过成功建立小鼠的超排、交配和胚胎收集系统,发现在小鼠着床前胚胎及卵母细胞中表达miRNA及其合成相关的基因Dicer1和DGCR8。通过对着床前胚胎和卵母细胞中的miRNA表达水平研究及功能分析,表明miRNA可能通过调控在胚胎发育中的某些重要的与发育和细胞分化有关的原癌基因的表达,对胚胎发育和胚胎细胞的分化起重要作用;并可能与小鼠胚胎在2细胞后基因组的激活有关系。
MicroRNAs (miRNAs) are a newly found 19-25nt single stranded noncoding RNAs, and were distributed widely in Eukaryotes from C. elegans to human beings. MiRNAs have a characteristic of highly evolutionarily conservation and exihibit tissue-specific or developmental-stage-specific expression.Most of their genes are not randomly distributed but often closely clustered on the genome. MiRNAs act as a gene regulation molecular and function through the regulation of target genes by imperfect or perfect base-pairing with their target mRNAs, then either lead to the degradation of the target transcript (near perfect complementarity), or the inhibition of the protein translation.Through above mechnisim miRNAs play a important role in gene regulation network and play critical roles in many biological processes including the regulation of development, cell proliferation or differentiation, apoptosis and cancer formation.
     Since the important roles of lin-4 and let-7 in the development of nematodes were found, many studys reported that miRNAs and genes coding for the enzymes involved in miRNA biogenesis were expressed and have influence on the development of post implantation embryos. But presently there is no report about expression and function of miRNAs in mouse preimplantation embryos. In this study, we intended to investigate the expression of miRNA and genes coding for the enzymes involved in miRNA biogenesis to find the evidence of miRNA acting on development and differentiation of preimplantation embryos
     AIM: To set up a system about murine superovulation and mating and to establish a platform of embryo recovery to investigate the expression of miRNAs in mouse preimplantation embryos and to futher illustrate the possible role and significance of miRNA in the preimplantational embryonic development.
     METHODS AND RESULTS:
     1. We used a method of miRNA amplification system combined with miRNA microarry technique to analyze miRNA expression across mouse oocyte and preimplantation embryos. For the first time, we found that fifty-five, fifty-three, sixty-two and seventy-two miRNAs were expressed respectively in mouse oocytes, 1.5dpc(2cell), 2.5dpc(4-8cell) and 4.5dpc(blastocyst) embryos. Ninty-four miRNAs were expressed in preimplantation embryos and thirty-two were expressed commonly in each stage of development and sixty-two were expressed in the four different stages of development. Of the commonly expressed 32 miRNAs, 16 showed high levels. Of the 62 stage-specific miRNAs, cluster of miR-290~295 were expressed only in blastocyst, which were previously cloned from murine ES cells and were considered to have ES cell-specific functions. Of the identified miRNAs in microchip, the roles of miR-155 and miR-181 were clearly. Through analyzing the function of the two miRNAs suggests that miRNAs might play a role in maintenance of the embryonic cell differentiation and in the regulation of early mammalian development.
     2. We used qRT-PCR to study the expression level of miR-721 and let-7e across mouse oocyte, 4-8cell and blastocyst embryos. The results of qRT-PCR show that both of them were expressed and the level of expression decreases with the development.
     3. We used RT-PCR to investigate the expression of Dicer and DGCR8 across mouse oocytes, 1.5dpc (2cell), 2.5dpc (4-8cell), 3.5dpc (morula) and 4.5 dpc(blastocyst) embryos. The results indicate that the two genes are all expressed across oocyte and preimplantation embryos.They are the important factor involved in miRNA biogenesis of preimplantation embryos and might play a role in embryo development.
     CONCLUSION: Through successfully setting up the system of murine ovulation and mating and the platform of embryo recovery, we identified miRNAs and genes of Dicer and DGCR8 in mouse oocyte and preimplantation embryos. In addition, we analyzed the function of the expressed miRNAs and genes coding for the enzymes involved in miRNA biogenesis. Our results suggest that miRNAs might play a role in the development and differentiation of the embryonic cells. Our analyses also indicate that there might be a correlation between miRNA and genomic activation after 2-cell development in mouse embryo.
引文
1. Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants.J Cell Physiol. 2007 Feb;210(2):279-89.
    2. Griffiths-Jones S. The microRNA registry. Nucl Acids Res, 2004,32: D109-D111
    3. Song L, Tuan RS. MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today. 2006 Jun;78(2):140-9.
    4. Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed.Cell. 1995 May 19;81(4):611-20.
    5. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature. 1998 Feb 19;391(6669):806-11.
    6. Jones L, Hamilton AJ, Voinnet O, Thomas CL, Maule AJ, Baulcombe DC. RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing.Plant Cell. 1999 Dec;11(12):2291-301.
    7. Lee RC, Feinbaum RL,Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell ,1993,75 :843-54.
    8. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000; 403(6772): 901-906.
    9. Horvitz H R ,Sulston J E. Isolation and genetic characterization of cell - lineage mutants of the nematode Caenorhabditis elegans .Genetics ,1980 ,96 :435~454.
    10. Lagos-Quinana M ,Rauhut R ,Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science ,2001 ,294 :853~858.
    11. Lau N C ,Lim L P ,Weinstein E G,Bartel D P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science ,2001 ,294 :858~862.
    12. Lee R C , Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science ,2001 ,294 :862~864.
    13. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001; 294(5543): 853-858.
    14. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA, 2003, 9: 277~279
    15. Pasquinelli AE. miRNAs: deviantsno longer. Trends Genet ,2002.18:171–173.
    16. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalianmicroRNA host genes and transcription units. Genome Res. 2004 Oct;14(10A):1902-10.
    17. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing.Nat Rev Mol Cell Biol. 2005 May;6(5):376-85.
    18. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science.2001 Oct 26; 294(5543):858-62.
    19. Pasquinelli AE,Reinhart BJ,Slack F,Martindale MQ, Kuroda MI, Maller B,Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M,Finnerty J, Corbo J, Levine M, Leahy P, Davidson E,Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.Nature. 2000 Nov 2;408(6808):86-9.
    20. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V. Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev Biol. 2003 Jul 1;259(1):9-18.
    21. Nakahara K, Carthew RW. Expanding roles for miRNAs and siRNAs in cell regulation.Curr Opin Cell Biol. 2004 Apr;16(2):127-33.
    22. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T.Identification of novel genes coding for small expressed RNAs.Science. 2001 Oct 26;294(5543):853-8.
    23. Kim VN, Nam JW. Genomics of miRNA. Trends Genet. 2006 22:165–173.
    24. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation.Genome Biol. 2004;5(3):R13.
    25. Lee Y, Han J, Yeom KH, Jin H, Kim VN. Drosha in Primary MicroRNA Processing. Cold Spring Harb Symp Quant Biol. 2006;71:51-7.
    26. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004 Dec 14;14(23):2162-7.
    27. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004 Dec 15;18(24):3016-27. Epub 2004 Dec 1.
    28. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004 Feb; 10(2): 185-91.
    29. Lund E, Dahlberg JE. Substrate Selectivity of Exportin 5 and Dicer in the Biogenesis of MicroRNAs. Cold Spring Harb Symp Quant Biol. 2006;71:59-66.
    30. Calado A, Treichel N, Muller EC, Otto A, Kutay U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 2002 Nov 15;21(22):6216-24.
    31. Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, andHEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol. 2002 Sep 3;12(17):1484-95.
    32. Lingel A, Simon B, Izaurralde E, Sattler M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature. 2003 Nov 27; 426(6965):465-9.
    33. Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell. 2004 Apr 2;117(1):1-3. Review.
    34. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003 Oct 17;115(2):199-208.
    35. Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115: 209~216.
    36. Chen X. A microRNA as a translational repressor of APETALA 2 in Arabidopsis flower development. Science, 2004, 303: 2022~2025
    37. Lai EC. microRNAs: runts of the genome assert themselves. Curr Biol. 2003 Dec 2;13(23):R925-36.
    38. Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett. 2005 Oct 31;579(26):5911-22.
    39. Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR, Ambros V. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell. 2005 Sep; 9(3):403-14.
    40. Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003 Dec 18;426(6968):845-9.
    41. Chang S, Johnston RJ Jr, Frokjaer-Jensen C, Lockery S, Hobert O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature. 2004 Aug 12;430(7001):785-9.
    42. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003; 113(1):25-36.
    43. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, Chiappetta G, Liu CG, Santoro M, Negrini M, Croce CM, Fusco A. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006 Jun;13(2):497-508.
    44. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A.The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation.Nat Cell Biol. 2006 Mar;8(3):278-84.
    45. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004 Nov 11;432(7014):226-30.
    46. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature.2005 14; 436(7048): 214-20.
    47. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell. 2003; 5(2): 351-358.
    48. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004; 270(2): 488-498.
    49. Lai EC, Tam B, Rubin GM.Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs.Genes Dev. 2005 May 1;19(9):1067-80.
    50. Kawasaki H, Taira K. MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells.Nucleic Acids Symp Ser (Oxf).
    51. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004 Apr 23;304(5670):594-6.
    52. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004; 101(9): 2999-3004.
    53. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12): 882-891.
    54. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005; 120(5): 635-647
    55. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL,Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF,Bhanot S, Monia BP. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.Cell Metab. 2006 Feb;3(2):87-98.
    56. Sullivan CS, Ganem D MicroRNAs and viral infection. Mol Cell. 2005; 20(1): 3-7.
    57. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature. 2005; 435(7042): 682-686.
    58. Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science. 2005; 308(5721): 557-560.
    59. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes.Science. 2003 Mar 7;299(5612):1540.
    60. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB,BartelDP. The microRNAs of Caenorhabditis elegans.Genes Dev. 2003 Apr 15; 17(8):991-1008.
    61. Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB.Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA. 2004 Sep;10(9):1309-22.
    62. Fu HJ, Zhu J, Yang M, Zhang ZY, Tie Y, Jiang H, Sun ZX, Zheng XF.A novel method to monitor the expression of microRNAs. Mol Biotechnol. 2006 Mar;32(3):197-204.
    63. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human.RNA. 2003 Feb;9(2):175-9.
    64. Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biol. 2003;4(7):R42. Epub 2003 Jun 30.
    65. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z.RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. NA. 2006 Feb;12(2):187-91.
    66. Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery.Nat Genet. 2006 Jun;38 Suppl:S2-7.
    67. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD,Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues.Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9740-4.
    68. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3): 241-247.
    69. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL,Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ.Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res.
    70. 骆明勇,田志刚,徐智,张亮,王应雄,程京. 一种检测 microRNA 表达的微阵列芯片的研制及应用[J]. 生物化学与生物物理进展. 2007; 34(1): 31-41.
    71. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4.
    72. 刘妍,张亮,戴久增,王琳,赵建晴,徐东平. 乙型肝炎病毒基因组转染 HepG2 细胞的microRNA 表达研究[J]. 解放军医学杂志. 2007;32(2):92-95.
    73. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y. MiRNA-Directed Regulation of VEGF and Other Angiogenic Factors under Hypoxia. PLoS ONE. 2006;27(1):e116.
    74. Shi R, Chiang VL.Facile means for quantifying microRNA expression by real-time PCR. Biotechniques. 2005; 39(4): 519-25.
    75. Lao K, Xu NL, Yeung V, Chen C, Livak KJ, Straus NA. Multiplexing RT-PCR for thedetection of multiple miRNA species in small samples. Biochem Biophys Res Commun. 2006; 343(1): 85-9.
    76. Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA. 2007 Mar;13(3):313-6.
    77. 徐卫,李建勇,陆凤翔. 液相杂交检测 B 细胞淋巴瘤细胞系 miR-228 的表达[J]. 中国实验血液学杂志. 2006;14 (2): 289-92
    78. Karali M, Peluso I, Marigo V, Banfi S. Identification and characterization of microRNAs expressed in the mouse eye.Invest Ophthalmol Vis Sci. 2007 Feb;48(2):509-15.
    79. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods. 2006 Jan;3(1):27-9.
    80. Orom UA, Kauppinen S, Lund AH. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene. 2006 May 10;372:137-41. Epub 2006 Feb 24.
    81. Johnson SM, Lin SY, Slack FJ. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev Biol. 2003 Jul 15;259(2):364-79.
    82. Mansfield JH, Harfe BD, Nissen R, Obenauer J, Srineel J, Chaudhuri A, Farzan-Kashani R, Zuker M, Pasquinelli AE, Ruvkun G, Sharp PA, Tabin CJ, McManus MT. MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet. 2004 Oct;36(10):1079-83. Epub 2004 Sep 12. Erratum in: Nat Genet. 2004 Nov;36(11):1238.
    83. Doran J, Strauss WM. Bio-Informatic Trends for the Determination of miRNA-Target Interactions in Mammals. DNA Cell Biol. 2007 May; 26(5):353-60.
    84. Hsu PW, Lin LZ, Hsu SD, Hsu JB, Huang HD. ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res. 2007 Jan;35(Database issue):D381-5.
    85. Lall S, Grun D, Krek A, Chen K, Wang YL, Dewey CN, Sood P, Colombo T, Bray N, Macmenamin P, Kao HL, Gunsalus KC, Pachter L, Piano F, Rajewsky N. A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol. 2006 Mar 7;16(5):460-71.
    86. Takada S, Berezikov E, Yamashita Y, Lagos-Quintana M, Kloosterman WP, Enomoto M, Hatanaka H, Fujiwara S, Watanabe H, Soda M, Choi YL, Plasterk RH,Cuppen E, Mano H. Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Res. 2006;34(17):e115.
    87. Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, Takayama M, Asada K, Mirochnitchenko O, Inouye M, Kato I. The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 2006 Mar 31;34(6):1765-71.
    88. Weston MD, Pierce ML, Rocha-Sanchez S, Beisel KW, Soukup GA. MicroRNA gene expression in the mouse inner ear. Brain Res. 2006 Sep 21;1111(1):95-104.
    89. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH. MicroRNA expression in zebrafish embryonic development. Science. 2005; 309(5732): 310-311.
    90. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A. 2005; 102(34):12135-40.
    91. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ. Dicer is essential for mouse development. Nat Genet. 2003; 35(3): 215-217.
    92. Carmell MA, Zhang L, Conklin DS, Hannon GJ, Rosenquist TA. Germline transmission of RNAi in mice. Nat Struct Biol. 2003 Feb;10(2):91-2.
    93. Abbott AL. Heterochronic genes. Curr Biol. 2003 Oct 28;13(21):R824-5.
    94. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006 Apr 15;15 Spec No 1:R17-29.
    95. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004 Aug 10;101(32):11755-60.
    96. Andras Nagy, Marina Gertsenstein, Kristina Vintersten, Richard Behringer. Manipulating the Mouse Embryo: A Laboratory Manual[M]. Cold Spring Harbor Laboratory Press; 3rd edition. 2002; 643-645.
    97. Thomson JM, Parker J, Perou CM, Hammond SM. A custom microarray platform for analysis of microRNA gene expression. Nat Methods. 2004 Oct;1(1):47-53.
    98. Tichopad A, Dilger M, Schwarz G, Pfaffl MW. Standardized determination of real-time PCR efficiency from a single reaction set-up.Nucleic Acids Res. 2003 Oct 15;31(20):e122.
    99. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 May 1;29(9):e45.
    100. Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004 Nov;10(11):1813-9.
    101. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH, Rajewsky N, Marks DS, Sander C, Rajewsky K, Rao A, Kosik KS. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 2005;6(8):R71.
    102. Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ, Poppema S, van den Berg A. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer. 2006 Feb; 45(2):147-53.
    103. 邱佳菁, 李逸平, 张武文. 小鼠着床前胚胎发育中调控因子的时序表达及功能[J]. 生命科学. 2002; 14(4): 193-97
    104. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004 Jan 2;303(5654):83-6.
    105. Wheeler G, Ntounia-Fousara S, Granda B, Rathjen T, Dalmay T. Identification of new central nervous system specific mouse microRNAs. FEBS Lett. 2006 Apr 17;580(9):2195-200.
    106. 李艳红,姚元庆,杨梦庚.小鼠着床前胚胎中原癌基因表达的实验研究.第四军医大学硕士学位论文.1999.6
    107. Cui XS, Shen XH, Kim NH. Dicer1 expression in preimplantation mouse embryos: Involvement of Oct3/4 transcription at the blastocyst stage. Biochem Biophys Res Commun. 2007 Jan 5;352(1):231-6.