多功能超声造影剂显像及治疗肿瘤转移淋巴结实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的分别制备两种多功能超声造影剂:载染料苏丹黑B的聚乳酸羟基乙酸超声微泡造影剂(SB-PLGA)和载阿霉素的超顺磁性聚乳酸羟基乙酸超声微泡造影剂(DOX-SPLGA),并检测其一般特性。
     方法采用双乳化法和真空冷冻干燥法分别制备出SB-PLGA及不同铁浓度的DOX-SPLGA,并对其进行粒径,形态,包封率等性质检测;其中对载药微泡DOX-SPLGA还进行了体外释药实验观察,采用原子吸收分光光度计检测造影剂的铁含量;用振动样品磁强计及磁共振仪检测造影剂的磁学性质;体外超声和磁共振显像评价造影剂的显像效果。
     结果SB-PLGA外观呈蓬松的蓝色粉末状,溶于水后为均匀的深蓝色乳液,分散度好。扫描电镜观察微泡粒径1~2μm,其形态规则,呈球形,表面光滑,大小均匀。马尔文电位检测其Zeta电位为(20.80±1.60)mV,SB的包封率为(85.67±1.44)%,载药量为(3.43±0.06)%,分散度好。DOX-SPLGA外观呈黄褐色粉末,溶于水后为均匀的乳液,分散度较好。扫描电镜观察微泡呈球形,表面有孔,大小较均匀,透射电镜显示微泡为壳核结构,SPIO纳米颗粒分布于微泡的壳膜中。原子吸收光谱法得到7种不同铁浓度制得的DOX-SPLGA中的铁含量分别为(1.47±0.07)μg/ml(,2.83±0.08)μg/ml,(5.76±0.33)μg/ml(,14.77±0.32)μg/ml,(28.06±0.62)μg/ml,(56.71±0.44)μg/ml,(185.45±1.06)μg/ml,其相对应的DOX的包封率分别为(58.10±1.61)%(,57.73±3.45)%,(60.30±2.67)%,(57.53±0.80)%,(61.13±0.95)%,(56.07±1.55)%,(59.60±1.61)%;DOX的载药量分别为(5.81±0.16)%,(5.77±0.35)%,(6.03±0.27)%,(5.75±0.08)%,(6.11±0.10)%,(5.61±0.16)%,(5.96±0.16)%。造影剂的粒径为800~900nm,具有超顺磁性,其磁敏感效应与壳膜中装载的SPIO的含量有关。体外超声显像实验显示,DOX-SPLGA能够较普通PLGA造影剂产生更强的超声回声。体外磁共振显像实验显示,T2*信号随着造影剂内铁浓度的增高而降低。
     结论SB-PLGA造影剂为蓝色粉末,粒径均匀,分散好,为其之后既能外科手术前进行肿瘤转移淋巴结内超声显像,又能手术活检时指示定位淋巴结提供了基础。DOX-SPLGA造影剂具有形态规则,大小较均一,表面光滑有孔,分散均匀,超顺磁性等优点,在体外能够增强超声、磁共振显像,同时能载药辅助化疗,是一种有应用前景的多功能超声造影剂。
     目的探讨SB-PLGA造影剂的细胞毒性及被巨噬细胞吞噬的能力;探讨SB-PLGA造影剂对兔肿瘤转移淋巴结的超声显像和手术示踪效果,及其在淋巴结组织内的分布情况。
     方法体外培养小鼠单核巨噬细胞RAW264.7,加入同一浓度SB-PLGA造影剂孵育3h、24h和48h后,光镜下观察巨噬细胞对造影剂的吞噬情况,用MTT法检测造影剂对巨噬细胞增殖活性的影响。采用瘤块组织悬液种植法建立兔VX2腘窝肿瘤转移淋巴结模型,建模后14天用于肿瘤淋巴结超声显像。选取肿瘤转移淋巴结模型兔8只,共16个肿瘤淋巴结(实验组8个,对照组8个),实验组给予SB-PLGA造影剂,对照组给予等量生理盐水,分别经足垫皮下间隙注射,行超声造影检查评价腘窝肿瘤转移淋巴结及第二站腹股沟淋巴结的增强效果;并分别于30min后行腘窝和腹股沟淋巴结清扫术,切除蓝染及未染色淋巴结,进行冰冻切片HE染色。
     结果光镜下观察,巨噬细胞对SB-PLGA造影剂的吞噬量随着造影剂与细胞孵育时间的增加而增加。MTT结果显示,SB-PLGA造影剂被巨噬细胞吞噬后对其增殖活性无明显影响。超声造影可明显增强兔腘窝肿瘤转移淋巴结显像,而同侧腹股沟淋巴结及注射生理盐水组显像不明显。腘窝淋巴结清扫术中可见,注射SB-PLGA造影剂组淋巴结染色效果好;而腹股沟淋巴结清扫术中均未见第二站淋巴结蓝染。淋巴结冰冻切片HE染色可见,SB-PLGA存在于淋巴窦内,并有大量进入巨噬细胞。
     结论SB-PLGA在体外能够被巨噬细胞吞噬,且对细胞增殖活性无明显影响。SB-PLGA能够被淋巴结内巨噬细胞吞噬,增强淋巴结超声显像,同时又能通过染色来指示定位淋巴结,是一种良好的多功能超声造影剂。
     目的探讨DOX-SPLGA造影剂对兔肿瘤转移淋巴结的超声和磁共振显像效果;探讨DOX-SPLGA造影剂联合低频超声促进药物释放对兔肿瘤转移淋巴结的治疗效果。
     方法新西兰大白兔42只,采用瘤块种植法于大腿外侧植入VX2肿瘤组织块悬液,建立兔腘窝肿瘤转移淋巴结模型。建模后第15天,取12只模型兔(24个肿瘤淋巴结),随机分为三组(每组8个肿瘤淋巴结),分别为DOX-SPLGA组(经足垫皮下注射DOX-SPLGA微泡)、PLGA组(经足垫皮下注射普通PLGA微泡)及对照组(经足垫皮下注射等量生理盐水),行超声和磁共振扫描,并应用图像分析软件评价造影效果。扫描结束后,取淋巴结组织进行HE染色和普鲁士蓝染色,以及透射电镜检查。建模后第15天,取30只模型兔(60个肿瘤淋巴结),随机分为6组(每组10个肿瘤淋巴结),包括空白对照组(C)、载药微泡(DOX-SPLGA)、单纯药物组(DOX)、单纯微泡+超声组(PLGA+US)、药物+超声组(DOX+US)、载药微泡+超声组(DOX-SPLGA+US)。治疗后取肿瘤淋巴结组织,用免疫组化法检测淋巴结组织PCNA、CD34及LYVE-1的表达;TUNEL法检测淋巴结内肿瘤细胞凋亡。
     结果在超声显像的造影模式和传统灰阶模式下,与对照组相比,经DOX-SPLGA与普通PLGA微泡造影后,腘窝淋巴结均可见回声增强;且DOX-SPLGA组比普通PLGA组回声更强。在磁共振显像中,DOX-SPLGA组表现出明显负性增强效果,普通PLGA组负性增强效果较弱,而对照组未见明显增强。普鲁士蓝染色和透射电镜结果均证实了DOX-SPLGA存在于淋巴结组织内。免疫组化结果显示,DOX-SPLGA+US组的凋亡指数(AI)显著高于其它各组(P<0.05);DOX-SPLGA+US组的肿瘤增殖受到明显抑制,其增殖指数明显低于其它各组(P<0.05)。
     结论DOX-SPLGA造影剂能显著增强显像超声和磁共振两种模式下的兔肿瘤转移淋巴结,同时联合低频超声促进造影剂内的药物释放,达到治疗转移淋巴结的效果,为寻求一种有效、安全、集显像和治疗
Objective To prepare two kinds of multifunctional ultrasound contrastagents: SB-PLGA and DOX-SPLGA, and to investigate their physicalproperties.
     Methods SB-PLGA were prepared by double emulsion andfreeze-drying methods by introducing SB in the oil phase, DOX-SPLGAwere prepared similarly with the addition of DOX in the water phase anddifferent iron concentrations of oleic acid-treated Fe3O4nanoparticles in theoil phase. Several analytical tools were employed to characterize thesecontrast agents. The morphology was observed under the light microscope(LM) and transmission electron microscope (TEM). The mean size and sizedistribution were measured by a laser instrument. Drug encapsulationefficiency of SB and DOX were determined using ultraviolet-visible(UV-Vis) spectrophotometry. Except that, DOX release behavior of DOX-SPLGA in the sound field was performed in vitro sonicationexperiment. The concentration of Fe3O4loading in DOX-SPLGA wasdetected by an atomic absorption spectrophotometer (AAS). Themagnetization properties of DOX-SPLGA were detected by using avibrating smaple magnetometer (VSM). The efficacy of DOX-SPLGA forUS and MR imaging was evaluated by in vitro experiments.
     Results SB-PLGA microbubbles were fluffy blue powder, whichbecame to uniform, dark blue and well dispersed solution after dissolved inwater. The SEM images showed the smooth and spherical nature of theSB-PLGA microbubbles with the diameter of1~2μm. The zeta potentialwas (20.80±1.60) mV. The encapsulation efficiency of SB in the PLGAmicrobubbles was85.67%±1.44%. The SB loading efficiencies ofSB-PLGA were3.43%±0.06%. DOX-SPLGA microbubbles were brownpowder, which became to uniform and well dispersed solution afterdissolved in water. The SEM images showed that DOX-SPLGAmicrobubbles exhibited a smooth and uniform spherical morphology withholes on the surface. TEM images demonstrated a typical core-shellstructure and Fe3O4nanoparticles were successfully encapsulated into theshell of the contrast agent. The amount of Fe3O4nanoparticles encapsulatedin the microbubbles measured by atomic absorption spectrometry methodwas0±0,1.47±0.07,2.83±0.08,5.76±0.33,14.77±0.32,28.06±0.62,56.71±0.44,185.45±1.06μg/ml, respectively. The encapsulation efficiencies of DOX in the DOX-SPLGA with different concentration ofFe3O4(1.47±0.07,2.83±0.08,5.76±0.33,14.77±0.32,28.06±0.62,56.71±0.44,185.45±1.06μg/ml) were58.10%±1.61%,57.73%±3.45%,60.30%±2.67%,57.53%±0.80%,61.13%±0.95%,56.07%±1.55%,59.60%±1.61%, respectively. The DOX loading efficiencies ofthese DOX-SPLGA were5.81%±0.16%,5.77%±0.35%,6.03%±0.27%,5.75%±0.08%,6.11%±0.10%,5.61%±0.16%,5.96%±0.16%,respectively. The size of DOX-SPLGA was found to be about200~250nm,DOX-SPLGA contrast agent could preserve the superparamagneticproperties of the encapsulated Fe3O4material, and its magneticsusceptibility effect was associated with the concentration of Fe3O4in theshell. The in vitro US imaging showed that DOX-SPLGA could producehigher echo intensity than non-Fe3O4-loaded PLGA. The in vitro MRimaging showed that T2*-weighted signals was dependent on ironconcentration and decreased as iron concentration increased.
     Conclusion SB-PLGA contrast agents were prepared successfully,which provided the basis for preoperative and intraoperative localization oflymph nodes as well as for ultrasonographically guided core needle biopsyof lymph nodes. DOX-SPLGA contrast agents have the properties of smallsize, well dispersion and superparamagnetism, which could enhance theUS/MR imaging and perform drug-loaded adjuvant chemotherapy in vitro.DOX-SPLGA could be used as a novel multifunctional ultrasound contrast agent.
     Objective To explore the cytotoxicity of SB-PLGA and the ability ofmacrophages phagocytosis in vitro. To explore the efficacy of SB-SPLGAenhanced US imaging and operation tracer in the detection of VX2tumormetastatic lymph nodes in rabbits, and the distribution of SB-SPLGA inlymph nodes tissue.
     Methods Mouse mononuclear macrophages RAW264.7were incubatedfor3h,24h and48h with the same concentrations of SB-PLGA. Themacrophage phagocytosis of contrast agent was observed by lightmicroscope, MTT assay was used to detect the viability of the cells. Tumorpopliteal metastatic lymph nodes models were established by intramuscularinjection of VX2tumor tissue suspension into hind legs. Two weeks aftertumor inoculation,8rabbits (16tumor lymph nodes) were screened by USto evaluate the efficacy of SB-PLGA for enhanced US imaging in thepopliteal lymph node and the inguinal lymph node.16tumor lymph nodes were randomly divided into two groups: experimental group (8tumorlymph nodes) and control group (8tumor lymph nodes). Experimentalgroup was subcutaneous injected by the foot pad with SB-PLGA, controlgroup was injected with sterile saline. After30mins, the blue stained andnon-stained lymph nodes were harvested by popliteal and inguinal lymphnodes dissection for the frozen-section examination and HE staining.
     Results A time-dependent SB-PLGA uptake by macrophages can beobserved under the light microscope. The amount of SB-PLGA uptakeincreased with the incubation time increased. MTT results showed the cellsproliferation activity was not affected after SB-PLGA engulfed bymacrophages. The enhancement of popliteal lymph nodes could be detectedafter injected with SB-PLGA by contrast lymphosonography. While theinguinal lymph nodes and control tumor lymph nodes injected with salinedid not show any increase in echogenicity over the duration of the imagingperiod. By gross examination with the naked eye, it is apparent that thepopliteal lymph nodes with SB-PLGA injection were stained blue (thenatural color of SB under visible light), whereas the lymph nodes withsaline injection and the inguinal lymph nodes were not stained. The resultsof HE-stained sections with light microscopy indicated that a significantnumber of SB-PLGA microbubbles were trapped in the popliteal lymphnodes tissue and a large number of SB-PLGA microbubbles were localizedwith macrophages.
     Conclusion SB-PLGA could be phagocytized by macrophages in vitro,and had no obvious effect on cell proliferation. The ultrasonographicsignals of the lymph nodes were significantly enhanced by SB-PLGAcontrast agent. More important, the same lymph nodes that were enhancedby SB-PLGA microbubbles were easily located during surgery by thenaked eye because of the accumulation of the SB dye (appears blue)encapsulated in the PLGA microbubbles. SB-PLGA may have the potentialto serve as a multifunctional ultrasound contrast agent for enhanced US andbiopsy indicator.
     Objective To explore the efficacy of DOX-SPLGA enhanced US/MRimaging in the detection of VX2tumor metastatic lymph nodes in rabbits.To explore the antitumor effect of DOX-SPLGA combined with lowfrequency US triggered in situ drug release for VX2tumor metastaticlymph nodes in rabbits.
     Methods Tumor popliteal metastatic lymph nodes models wereestablished in42rabbits by intramuscular injection of VX2tumor tissuesuspension into hind legs. Two weeks after tumor inoculation,12rabbits(24tumor lymph nodes) were screened by US and MR imaging.24tumorlymph nodes were selected and randomized into three groups (8tumorlymph nodes every group). One group was injected with DOX-SPLGA.The second group was injected with the pure PLGA. The third controlanimal group was used to rule out the possibility of enhancement caused bythe sterile saline. After each in vivo US/MR imaging experiment, all of thepopliteal lymph nodes were harvested for HE and Prussian blue stain andTEM detection. Two weeks after tumor inoculation,30rabbits (60tumorlymph nodes) were randomly divided into6groups: blank control group(C),DOX-SPLGA microbubbles group (DOX-SPLGA), doxorubicin group(DOX),pure PLGA microbubbles combined with US group (PLGA+US),doxorubicin combined with US group (DOX+US) and DOX-SPLGAmicrobubbles combined with US group (DOX-SPLGA+US). Tumor lymphnodes for histological analysis were harvested after the initial treatment,protein expression of PCNA, CD34and LYVE-1was detected byimmunohistochemistry, apoptosis was detected by TUNEL.
     Results The enhancement of popliteal lymph nodes could be detectedafter injected with DOX-SPLGA by both contrast lymphosonography andconventional gray-scale sonography. While control tumor lymph nodes injected with saline did not show any increase in echogenicity over theduration of the imaging period. Importantly, the control tumor lymph nodesinjected with pure PLGA showed similar increase in echogenicity, but theincreased reflectivity was less than that of DOX-SPLGA. In MR imaging,the overall signal in the tumor lymph nodes was negatively enhanced afterinjection of the DOX-SPLGA, while control tumor lymph nodes injectedwith saline did not show any change in the T2*-weighted signal. Likewise,the control tumor lymph nodes injected with pure PLGA also showed anegative enhancement when T2*-weighted images were acquired, however,to a much less extent. Both Prussian blue stain and TEM showed thatDOX-SPLGA were mainly present in lymph nodes. Theimmunohistochemical staining results showed that the tumor cell apoptoticindex (AI) of DOX-SPLGA+US group was highest among all groups(P<0.05), while the tumor proliferation index (PI), micro blood vesseldensity (MVD) and micro lymphatic vessel density (LMVD) were lowestamong all groups (P<0.05).
     Conclusion DOX-SPLGA could markedly enhanced dual-modeUS/MR imaging of lymph node, and combined with low frequency US thatcould triggered drug release for lymph nodes metastases therapy, whichmay give a novel strategy for exploring an effective and safemultifunctional ultrasound contrast agent for imaging and therapy.
引文
[1] Nune SK, Gunda P, Majeti BK, et al. Advances in lymphatic imaging and drugdelivery [J]. Adv Drug Deliv Rev.2011,63:876-885.
    [2] Xie Y, Bagby TR, Cohen MS, et al. Drug delivery to the lymphatic system:importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv [J].2009,6:785-792.
    [3] Sleeman JP. The lymph node as a bridgehead in the metastatic dissemination oftumors [J]. Recent Results Cancer Res.2000,157:55-81.
    [4] Sleeman JP, Thiele W. Tumor metastasis and the lymphatic vasculature [J]. Int JCancer.2009,125:2747-2756.
    [5] Cabanas RM. An approach for the treatment of penile carcinoma [J]. Cancer.1977,39:456-466.
    [6] Cohen MS, Forrest ML. Lymphatic drug delivery: therapy, imaging andnanotechnology [J]. Preface. Adv Drug Deliv Rev.2011,63:865-866.
    [7] Vidal M, Vidal-Sicart S, Torrents A, et al. Accuracy and reproducibility oflymphoscintigraphy for sentinel node detection in patients with cutaneousmelanoma [J]. J Nucl Med.2012,53:1193-1199.
    [8] Intenzo CM, Truluck CA, Kushen MC, et al. Lymphoscintigraphy in cutaneousmelanoma: an updated total body atlas of sentinel node mapping [J]. Radiographics.2009,29:1125-1135.
    [9] Gad D, Hoilund-Carlsen PF, Bartram P, et al. Staging patients with cutaneousmalignant melanoma by same-day lymphoscintigraphy and sentinel lymph nodebiopsy: a single-institutional experience with emphasis on recurrence [J]. J SurgOncol.2006,94:94-100.
    [10] Bostick PJ, Giuliano AE. Vital dyes in sentinel node localization [J]. Semin NuclMed.2000,30:18-24.
    [11] Giuliano AE, Kirgan DM, Guenther JM, et al. Lymphatic mapping and sentinellymphadenectomy for breast cancer [J]. Ann Surg.1994,220:391-398.
    [12] Thevarajah S, Huston TL, Simmons RM. A comparison of the adverse reactionsassociated with isosulfan blue versus methylene blue dye in sentinel lymph nodebiopsy for breast cancer [J]. Am J Surg.2005,189:236-239.
    [13] Vassallo P, Wernecke K, Roos N, et al. Differentiation of benign from malignantsuperficial lymphadenopathy: the role of high-resolution US [J]. Radiology.1992,183:215-220.
    [14] Luciani A, Itti E, Rahmouni A, et al. Lymph node imaging: basic principles [J]. EurJ Radiol.2006,58:338-344.
    [15] Steinkamp HJ, Wissgott C, Rademaker J, et al. Current status of power Dopplerand color Doppler sonography in the differential diagnosis of lymph node lesions[J]. Eur Radiol.2002,12:1785-1793.
    [16] Ahuja A, Ying M, Yuen YH, et al. Power Doppler sonography of cervicallymphadenopathy [J]. Clin Radiol.2001,56:965–969.
    [17] Yang WT, Metreweli C, Lam PK, et al. Benign and malignant breast masses andaxillary nodes: evaluation with echo-enhanced color power Doppler US [J].Radiology.2001,220:795-802.
    [18] Steppan I, Reimer D, Muller-Holzner E, et al. Breast cancer in women: evaluationof benign and malignant axillary lymph nodes with contrast-enhanced ultrasound[J]. Ultraschall Med.2010,31:63-67.
    [19] Wisner ER, Ferrara KW, Short RE, et al. Sentinel node detection usingcontrast-enhanced power Doppler ultrasound lymphography [J]. Invest Radiol.2003,38:358-365.
    [20] Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and genedelivery [J]. Adv Drug Deliv Rev.2008,60:1153-1166.
    [21] Li P, Zheng Y, Ran H, et al. Ultrasound triggered drug release from10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumortherapy in mice [J]. J Control Release.2012,162:349-354.
    [22] Geis NA, Katus HA, Bekeredjian R. Microbubbles as a vehicle for gene and drugdelivery: current clinical implications and future perspectives [J]. Curr Pharm Des.2012,18:2166-2183.
    [23] Hawley AE, Illum L, Davis SS. Preparation of biodegradable, surface engineeredPLGA nanospheres with enhanced lymphatic drainage and lymph node uptake [J].Pharm Res.1997,14:657-661.
    [24] Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems andintestinal lymphatic drug transport: a mechanistic update [J]. Adv Drug Deliv Rev.2008,60:702-716.
    [25] Liu J, Meisner D, Kwong E, et al. A novel trans-lymphatic drug delivery system:implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres [J].Biomaterials.2007,28:3236-3244.
    [26] Rao DA, Forrest ML, Alani AW, et al. Biodegradable PLGA based nanoparticlesfor sustained regional lymphatic drug delivery [J]. J Pharm Sci.2010,99:2018-2031.
    [27]冉海涛,任红,王志刚,等.包裹阿霉素的高分子材料微泡声学造影剂制备及显影效果实验研究[J].临床超声医学杂志.2005,7:217-220.
    [28] Yang F, Li L, Li Y, et al. Superparamagnetic nanoparticle-inclusion microbubblesfor ultrasound contrast agents [J]. Phys Med Biol.2008,53:6129-6141.
    [29] Yang F, Li Y, Chen Z, et al. Superparamagnetic iron oxide nanoparticle-embeddedencapsulated microbubbles as dual contrast agents of magnetic resonance andultrasound imaging [J]. Biomaterials.2009,30:3882-3890.
    [30] Kang J, Wu X, Wang Z, et al. Antitumor effect of docetaxel-loaded lipidmicrobubbles combined with ultrasound-targeted microbubble activation on VX2rabbit liver tumors [J]. J Ultrasound Med.2010,29:61-70.
    [31] Xing W, Gang WZ, Yong Z, et al. Treatment of xenografted ovarian carcinomausing paclitaxel-loaded ultrasound microbubbles [J]. Acad Radiol.2008,15:1574-1579.
    [1]黄相丽,张强.聚乳酸/聚乙醇酸微球控释系统研究进展[J].山东医药.2006,46:75-76.
    [2]林汝榕,邢炳鹏,蔡文旋,等.苏丹黑B染色处理细胞技术在快速检测微藻油脂含量中的应用[J].台湾海峡.2011,30:292-298.
    [3] Mualem-Burstein O. Drug Loading onto Polymeric Contrast Agents for UltrasoundDrug Delivery [D]. Philadelphia: Drexel University,2008.
    [4] Echt ML, Finan MA, Hoffman MS, et al. Detection of sentinel lymph nodes withlymphazurin in cervical, uterine, and vulvar malignancies [J]. South Med J.1999,92:204-208.
    [5] Bostick PJ, Giuliano AE. Vital dyes in sentinel node localization [J]. Semin NuclMed.2000,30:18-24.
    [6] Haque SH, Nossaman BD. Dyed but not dead [J]. Ochsner J.2012,12:135-140.
    [7] Cimmino VM, Brown AC, Szocik JF, et al. Allergic reactions to isosulfan blueduring sentinel node biopsy--a common event [J]. Surgery.2001,130:439-442.
    [8] Lai HC, Hsu HM, Cherng CH, et al. Interference of patent blue dye with pulseoximetry readings, methemoglobin measurements, and blue urine in sentinel lymphnode mapping: a case report and review of the literature [J]. Acta AnaesthesiolTaiwan.2011,49:162-164.
    [9] Burgoyne LL, Jay DW, Bikhazi GB, De Armendi AJ. Isosulfan blue causes factitiousmethemoglobinemia in an infant [J]. Paediatr Anaesth.2005,15:1116-1119.
    [10] Steppan I, Reimer D, Muller-Holzner E, et al. Breast cancer in women: evaluationof benign and malignant axillary lymph nodes with contrast-enhanced ultrasound[J]. Ultraschall Med.2010,31:63-67.
    [11] Georgakopoulou EA, Tsimaratou K, Evangelou K, et al. Specific lipofuscinstaining as a novel biomarker to detect replicative and stress-induced senescence. Amethod applicable in cryo-preserved and archival tissues [J]. Aging.2013,5:37-50.
    [12] Bhattacharya A, Dhar P, Mehra RD. Preliminary morphological and biochemicalchanges in rat liver following postnatal exposure to sodium arsenite [J]. Anat CellBiol.2012,45:229-240.
    [13] Sun Y, Yu H, Zheng D, et al. Sudan black B reduces autofluorescence in murinerenal tissue [J]. Arch Pathol Lab Med.2011,135:1335-1342.
    [14] Oliveira VC, Carrara RC, Simoes DL, et al. Sudan Black B treatment reducesautofluorescence and improves resolution of in situ hybridization specificfluorescent signals of brain sections [J]. Histol Histopathol.2010,25:1017-1024.
    [15] Yang Y, Honaramooz A. Characterization and quenching of autofluorescence inpiglet testis tissue and cells [J]. Anat Res Int.2012,2012:820120.
    [1] Wang YX. Superparamagnetic iron oxide based MRI contrast agents: Current statusof clinical application [J]. Quant Imaging Med Surg.2011,1:35-40.
    [2] Tonan T, Fujimoto K, Qayyum A, et al. Correlation of Kupffer cell function andhepatocyte function in chronic viral hepatitis evaluated with superparamagnetic ironoxide-enhanced magnetic resonance imaging and scintigraphy usingtechnetium-99m-labelled galactosyl human serum albumin [J]. Exp Ther Med.2011,2:607-613.
    [3] Asanuma T, Ono M, Kubota K, et al. Super paramagnetic iron oxide MRI showsdefective Kupffer cell uptake function in non-alcoholic fatty liver disease [J]. Gut.2010,59:258-266.
    [4] Figuerola A, Di Corato R, Manna L, et al. From iron oxide nanoparticles towardsadvanced iron-based inorganic materials designed for biomedical applications [J].Pharmacol Res.2010,62:126-143.
    [5] Oghabian MA, Guiti M, Haddad P, et al. Detection sensitivity of MRI usingultra-small super paramagnetic iron oxide nano-particles (USPIO) in biologicaltissues [J]. Conf Proc IEEE Eng Med Biol Soc.2006,1:5625-5626.
    [6] Zhang F, Zhu L, Huang X, et al. Differentiation of reactive and tumor metastaticlymph nodes with diffusion-weighted and SPIO-enhanced MRI [J]. Mol ImagingBiol.2013,15:40-47.
    [7]许乙凯,刘杏元,许璇,等.超顺磁性氧化铁粒子(SPIO)的弛豫率及磁化率研究[J].中国医学物理系杂志.1998,15:9-10.
    [8] Yang F, Li Y, Chen Z, et al. Superparamagnetic iron oxide nanoparticle-embeddedencapsulated microbubbles as dual contrast agents of magnetic resonance andultrasound imaging [J]. Biomaterials.2009,30:3882-3890.
    [9] Yang F, Li L, Li Y, et al. Superparamagnetic nanoparticle-inclusion microbubbles forultrasound contrast agents [J]. Phys Med Biol.2008,53:6129-6141.
    [10]陶凯雄,陈道达,王国斌,等.阿霉素磁性蛋白微球靶向治疗胃癌的实验研究及临床应用[J].中国外科杂志,1999,37:205-207.
    [11] Hawley AE, Illum L, Davis SS. Preparation of biodegradable, surface engineeredPLGA nanospheres with enhanced lymphatic drainage and lymph node uptake [J].Pharm Res.1997,14:657-661.
    [12] Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems andintestinal lymphatic drug transport: a mechanistic update [J]. Adv Drug Deliv Rev.2008,60:702-716.
    [13] Ren J, Xu C, Zhou Z, Zhang Y, Li X, Zheng Y, et al. A novel ultrasoundmicrobubble carrying gene and Tat peptide: preparation and characterization [J].Acad Radiol.2009,16:1457-1465.
    [14]戴懿,吴元魁. MR对比剂超顺磁性氧化铁脂质体的研究现状:标记特点及其安全性和局限性[J].中国组织工程研究与临床康复.2010,14:513-516.
    [15] Lee Y, Lee JS, Kim CM, et al. Area of paradoxical signal drop after theadministration of superparamagnetic iron oxide on the T2-weighted image of apatient with lymphangitic metastasis of the liver [J]. Magn Reson Imaging.2008,26:577-582.
    [16] Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide toimaging of hepatocellular carcinoma [J]. Eur J Radiol.2006,58:200-216.
    [17] Schnorr J, Wagner S, Abramjuk C, et al. Focal liver lesions: SPIO-, gadolinium-,and ferucarbotran-enhanced dynamic T1-weighted and delayed T2-weighted MRimaging in rabbits [J]. Radiology.2006,240:90-100.
    [18]吴元魁,许乙凯,张嘉宁,等.超顺磁性氧化铁增强MRI检测转移性淋巴结的实验研究[J].第一军医大学学报.2003,23:62-67.
    [19]刘国华,陈燕明,蔡庆,等.超微超顺磁性氧化铁纳米粒检测良恶性淋巴结的实验研究[J].现代生物医学进展.2010,10:1831-1835.
    [20] Tokuhara T, Tanigawa N, Matsuki M, et al. Evaluation of lymph node metastasesin gastric cancer using magnetic resonance imaging with ultrasmallsuperparamagnetic iron oxide (USPIO): diagnostic performance in post-contrastimages using new diagnostic criteria [J]. Gastric Cancer.2008,11:194-200.
    [21]杨荣平,涂永勤,张小梅,等.靶向给药系统设计理论研究概述[J].重庆中草药研究.2006,53:34-40.
    [22] Liu J, Meisner D, Kwong E, et al. A novel trans-lymphatic drug delivery system:implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres [J].Biomaterials.2007,28:3236-3244.
    [23] Rao DA, Forrest ML, Alani AW, et al. Biodegradable PLGA based nanoparticlesfor sustained regional lymphatic drug delivery [J]. J Pharm Sci.2010,99:2018-2031.
    [24] Jennings LE, Long NJ.'Two is better than one'--probes for dual-modalitymolecular imaging [J]. Chem Commun (Camb).2009,24:3511-3524.
    [25] Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging andtherapy: physical principles and engineering [J]. Phys Med Biol.2009,54: R27-57.
    [26] Raisinghani A, DeMaria AN. Physical principles of microbubble ultrasoundcontrast agents [J]. Am J Cardiol.2002,90:3J-7J.
    [27] Stride E. The influence of surface adsorption on microbubble dynamics [J]. PhilosTransact A Math Phys Eng Sci.2008,366:2103-2115.
    [1] Bostick PJ, Giuliano AE. Vital dyes in sentinel node localization [J]. Semin NuclMed.2000,30:18-24.
    [2] Kelley MC, Hansen N, McMasters KM. Lymphatic mapping and sentinellymphadenectomy for breast cancer [J]. Am J Surg.2004,188:49-61.
    [3] Glass EC, Essner R, Morton DL. Kinetics of three lymphoscintigraphic agents inpatients with cutaneous melanoma [J]. J Nucl Med.1998,39:1185-1190.
    [4] Haque SH, Nossaman BD. Dyed but not dead [J]. Ochsner J.2012,12:135-140.
    [5]郑元义,王志刚,冉海涛,等.聚乳酸-羟基乙酸超声造影剂增强兔淋巴结显像的初步实验研究[J].中华超声影像学杂志.2006,15:54-57.
    [6] Ahsan F, Rivas IP, Khan MA, et al. Targeting to macrophages: role ofphysicochemical properties of particulate carriers--liposomes and microspheres--onthe phagocytosis by macrophages [J]. J Control Release.2002,79:29-40.
    [7] Onoshita T, Shimizu Y, Yamaya N, et al. The behavior of PLGA microspherescontaining rifampicin in alveolar macrophages [J]. Colloids Surf B Biointerfaces [J].2010,76:151-157.
    [8] Diab R, Brillault J, Bardy A, et al. Formulation and in vitro characterization ofinhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres preparedwith sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophagetargeting [J]. Int J Pharm.2012,436:833-839.
    [9] Walter E, Dreher D, Kok M, et al. Hydrophilic poly(DL-lactide-co-glycolide)microspheres for the delivery of DNA to human-derived macrophages and dendriticcells [J]. J Control Release.2001,76:149-168.
    [10] Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres ontheir phagocytosis by macrophage [J]. Biomaterials.1988,9:356-362.
    [11] Brandhonneur N, Chevanne F, Vie V, et al. Specific and non-specific phagocytosisof ligand-grafted PLGA microspheres by macrophages [J]. Eur J Pharm Sci.2009,36:474-485.
    [12] Prior S, Gander B, Blarer N, et al. In vitro phagocytosis and monocyte-macrophageactivation with poly(lactide) and poly(lactide-co-glycolide) microspheres [J]. Eur JPharm Sci.2002,15:197-207.
    [13]杨荣平,涂永勤,张小梅,等.靶向给药系统设计理论研究概述[J].重庆中草药研究.2006,53:34-40.
    [1] Ernst H, Hahn EG, Balzer T, et al. Color doppler ultrasound of liver lesions: signalenhancement after intravenous injection of the ultrasound contrast agent Levovist [J].J Clin Ultrasound.1996,24:31-35.
    [2] Lorenz MW, Thoelen N, Loesel N, et al. Assessment of cerebral autoregulation withtranscranial Doppler sonography in poor bone windows using constant infusion ofan ultrasound contrast agent [J]. Ultrasound Med Biol.2008,34:345-353.
    [3] Sidhu PS, Allan PL, Cattin F, et al. Diagnostic efficacy of SonoVue, a secondgeneration contrast agent, in the assessment of extracranial carotid or peripheralarteries using colour and spectral Doppler ultrasound: a multicentre study [J]. Br JRadiol.2006,79:44-51.
    [4]靳玉慎,柯亨特,戴志飞.多功能超声造影剂[J].化学进展.2012,24:2424-2430.
    [5] Cavalieri F, Zhou M, Ashokkumar M. The design of multifunctional microbubblesfor ultrasound image-guided cancer therapy [J]. Curr Top Med Chem.2010,10:1198-1210.
    [6] Brismar TB, Grishenkov D, Gustafsson B, et al. Magnetite nanoparticles can becoupled to microbubbles to support multimodal imaging [J]. Biomacromolecules.2012,13:1390-1399.
    [7] Yang F, Li Y, Chen Z, et al. Superparamagnetic iron oxide nanoparticle-embeddedencapsulated microbubbles as dual contrast agents of magnetic resonance andultrasound imaging [J]. Biomaterials.2009,30:3882-3890.
    [8] Park JI, Jagadeesan D, Williams R, et al. Microbubbles loaded with nanoparticles: aroute to multiple imaging modalities [J]. ACS Nano.2010,4:6579-6586.
    [9] Fan CH, Ting CY, Lin HJ, et al. SPIO-conjugated, doxorubicin-loaded microbubblesfor concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery [J].Biomaterials.2013,34:3706-3715.
    [10] Escoffre JM, Mannaris C, Geers B, et al. Doxorubicin liposome-loadedmicrobubbles for contrast imaging and ultrasound-triggered drug delivery [J].IEEE Trans Ultrason Ferroelectr Freq Control.2013,60:78-87.
    [11] Chitnis PV, Koppolu S, Mamou J, et al. Influence of shell properties onhigh-frequency ultrasound imaging and drug delivery using polymer-shelledmicrobubbles [J]. IEEE Trans Ultrason Ferroelectr Freq Control.2013,60:53-64.
    [12] Ting CY, Fan CH, Liu HL, et al. Concurrent blood-brain barrier opening and localdrug delivery using drug-carrying microbubbles and focused ultrasound for brainglioma treatment [J]. Biomaterials.2012,33:704-712.
    [13] Anderson CR, Hu X, Zhang H, et al. Ultrasound molecular imaging of tumorangiogenesis with an integrin targeted microbubble contrast agent [J]. InvestRadiol.2011,46:215-224.
    [14] Xing W, Zhigang W, Bing H, et al. Targeting an ultrasound contrast agent to folatereceptors on ovarian cancer cells: feasibility research for ultrasonic molecularimaging of tumor cells [J]. J Ultrasound Med.2010,29:609-614.
    [15] Willmann JK, Kimura RH, Deshpande N, et al. Targeted contrast-enhancedultrasound imaging of tumor angiogenesis with contrast microbubbles conjugatedto integrin-binding knottin peptides [J]. J Nucl Med.2010,51:433-440.
    [16] Walter E, Dreher D, Kok M, et al. Hydrophilic poly(DL-lactide-co-glycolide)microspheres for the delivery of DNA to human-derived macrophages anddendritic cells [J]. J Control Release.2001,76:149-168.
    [17] Hirota K, Hasegawa T, Nakajima T, et al. Delivery of rifampicin-PLGAmicrospheres into alveolar macrophages is promising for treatment of tuberculosis[J]. J Control Release.2010,142:339-346.
    [18] Onoshita T, Shimizu Y, Yamaya N, et al. The behavior of PLGA microspherescontaining rifampicin in alveolar macrophages [J]. Colloids Surf B Biointerfaces[J].2010,76:151-157.
    [1] Cavalieri F, Zhou M, Ashokkumar M. The design of multifunctional microbubblesfor ultrasound image-guided cancer therapy [J]. Curr Top Med Chem.2010,10:1198-1210.
    [2] Radhakrishnan K, Haworth KJ, Huang SL, et al. Stability of echogenic liposomes asa blood pool ultrasound contrast agent in a physiologic flow phantom [J].Ultrasound Med Biol.2012,38:1970-1981.
    [3] Liu Z, Lammers T, Ehling J, et al. Iron oxide nanoparticle-containing microbubblecomposites as contrast agents for MR and ultrasound dual-modality imaging [J].Biomaterials.2011,32:6155-6163.
    [4] Kim C, Qin R, Xu JS, et al. Multifunctional microbubbles and nanobubbles forphotoacoustic and ultrasound imaging [J]. J Biomed Opt.2010,15:010510.
    [5] Geis NA, Katus HA, Bekeredjian R. Microbubbles as a vehicle for gene and drugdelivery: current clinical implications and future perspectives [J]. Curr Pharm Des.2012,18:2166-2183.
    [6] Gunduz O, Ahmad Z, Stride E, et al. Continuous generation of ethyl cellulose drugdelivery nanocarriers from microbubbles [J]. Pharm Res.2013,30:225-237.
    [7] Kiessling F, Bzyl J, Fokong S, et al. Targeted ultrasound imaging of cancer: anemerging technology on its way to clinics [J]. Curr Pharm Des.2012,18:2184-2199.
    [8] Willmann JK, Kimura RH, Deshpande N, et al. Targeted contrast-enhancedultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated tointegrin-binding knottin peptides [J]. J Nucl Med.2010,51:433-440.
    [9] Hamm B, Taupitz M, Hussmann P, et al. MR lymphography with iron oxide particles:dose-response studies and pulse sequence optimization in rabbits [J]. AJR Am JRoentgenol.1992,158:183-190.
    [10]吴元魁,许乙恺,张嘉宁,等.超顺磁性氧化铁增强MRI检测转移性淋巴结的实验研究[J].第一军医大学学报.2003,23:62-67.
    [11]许乙恺,吴元魁,张嘉宁,等.组织间隙注射SPIO磁共振淋巴结增强成像:量效关系和扫描序列优化[J].放射学实践.2001,16:344-346.
    [12]张超,邓又斌.谐波成像技术与微泡造影剂的发展现状[J].放射学实践.2006,21:976-977.
    [13] Stride E. The influence of surface adsorption on microbubble dynamics [J]. PhilosTransact A Math Phys Eng Sci.2008,366:2103-2115.
    [14] Persigehl T, Bieker R, Matuszewski L, et al. Antiangiogenic tumor treatment: earlynoninvasive monitoring with USPIO-enhanced MR imaging in mice [J]. Radiology.2007,244:449-456.
    [15] Triantafyllou M, Studer UE, Birkhauser FD, et al. Ultrasmall superparamagneticparticles of iron oxide allow for the detection of metastases in normal sized pelviclymph nodes of patients with bladder and/or prostate cancer [J]. Eur J Cancer.2013,49:616-624.
    [16] Sigovan M, Gasper W, Alley HF, et al. USPIO-enhanced MR angiography ofarteriovenous fistulas in patients with renal failure [J]. Radiology.2012,265:584-590.
    [17] Metz S, Beer AJ, Settles M, et al. Characterization of carotid artery plaques withUSPIO-enhanced MRI: assessment of inflammation and vascularity as in vivoimaging biomarkers for plaque vulnerability [J]. Int J Cardiovasc Imaging.2011,27:901-912.
    [18]吴元魁. SPIO增强MRI区分肿瘤转移性与良性淋巴结的实验研究[D].广州:第一军医大学,2001.
    [1] Cai S, Yang Q, Bagby TR, et al. Lymphatic drug delivery using engineeredliposomes and solid lipid nanoparticles [J]. Adv Drug Deliv Rev.2011,63:901-908.
    [2] Wisner ER, Ferrara KW, Short RE, et al. Sentinel node detection usingcontrast-enhanced power Doppler ultrasound lymphography [J]. Invest Radiol.2003,38:358-365.
    [3] Liu J, Meisner D, Kwong E, et al. A novel trans-lymphatic drug delivery system:implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres [J].Biomaterials.2007,28:3236-3244.
    [4] Thomas A, Ohlinger R, Hauschild M, et al. Options and limits of surgery afterpre-operative chemotherapy in breast cancer [J]. Anticancer Res.2006,26:1677-1682.
    [5] Hu L, Liang G, Yuliang W, et al. Assessing the effectiveness and safety of liposomalpaclitaxel in combination with cisplatin as first-line chemotherapy for patients withadvanced NSCLC with regional lymph-node metastasis: study protocol for arandomized controlled trial (PLC-GC trial)[J]. Trials.2013,14:45.
    [6] Xie Y, Bagby TR, Cohen MS, et al. Drug delivery to the lymphatic system:importance in future cancer diagnosis and therapies [J]. Expert Opin Drug Deliv.2009,6:785-792.
    [7]崔明,范健.恶性肿瘤的淋巴靶向化疗[J].国外医学肿瘤学分册.2000,27:321-323.
    [8] Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinallymphatic drug transport: a mechanistic update [J]. Adv Drug Deliv Rev.2008,60:702-716.
    [9] Nune SK, Gunda P, Majeti BK, et al. Advances in lymphatic imaging and drugdelivery [J]. Adv Drug Deliv Rev.2011,63:876-885.
    [10]邓文静,曾昭蕾,梁永钜,等.高效液相色谱法检测KB和KBv200细胞裸鼠移植瘤组织中阿霉素浓度[J].癌症.2008,27:364-368.
    [11]王永禄,李学明,顾立,等. HPLC荧光法检测转铁蛋白修饰的阿霉素脂质体在小鼠体内的含量[J].中国现代应用药学杂志.2009,26:528-531.
    [12]冉海涛,任红,王志刚,等.包裹阿霉素的高分子材料微泡声学造影剂制备及显影效果实验研究[J].临床超声医学杂志.2005,7:217-220.
    [13] Escoffre JM, Mannaris C, Geers B, et al. Doxorubicin liposome-loadedmicrobubbles for contrast imaging and ultrasound-triggered drug delivery [J].IEEE Trans Ultrason Ferroelectr Freq Control.2013,60:78-87.
    [14] Cochran MC, Eisenbrey J, Ouma RO, et al. Doxorubicin and paclitaxel loadedmicrobubbles for ultrasound triggered drug delivery [J]. Int J Pharm.2011,414:161-170.
    [15] Rao DA, Forrest ML, Alani AW, et al. Biodegradable PLGA based nanoparticlesfor sustained regional lymphatic drug delivery [J]. J Pharm Sci.2010,99:2018-2031.
    [16] Khullar OV, Griset AP, Gibbs-Strauss SL, et al. Nanoparticle migration anddelivery of Paclitaxel to regional lymph nodes in a large animal model [J]. J AmColl Surg.2012,214:328-337.
    [17] Kaminskas LM, Kota J, McLeod VM, et al. PEGylation of polylysine dendrimersimproves absorption and lymphatic targeting following SC administration in rats[J]. J Control Release.2009,140:108-116.
    [18] Van Ruijssevelt L, Smirnov P, Yudina A, et al. Observations on the viability ofC6-glioma cells after sonoporation with low-intensity ultrasound and microbubbles[J]. IEEE Trans Ultrason Ferroelectr Freq Control.2013,60:34-45.
    [19] Delalande A, Postema M, Mignet N, et al. Ultrasound and microbubble-assistedgene delivery: recent advances and ongoing challenges [J]. Ther Deliv.2012,3:1199-1215.
    [20] Geis NA, Katus HA, Bekeredjian R. Microbubbles as a vehicle for gene and drugdelivery: current clinical implications and future perspectives [J]. Curr Pharm Des.2012,18:2166-2183.
    [21] Zheng Y, Zhang Y, Ao M, et al. Hematoporphyrin encapsulated PLGA microbubblefor contrast enhanced ultrasound imaging and sonodynamic therapy [J]. JMicroencapsul.2012,29:437-444.
    [22] Kang J, Wu X, Wang Z, et al. Antitumor effect of docetaxel-loaded lipidmicrobubbles combined with ultrasound-targeted microbubble activation on VX2rabbit liver tumors [J]. J Ultrasound Med.2010,29:61-70.
    [23] Amin MM, El-Hawary AK, Farouk O. Relation of CD117immunoreactivity andmicrovascular density in invasive breast carcinoma [J]. Indian J Pathol Microbiol.2012,55:456-460.
    [24] Zhou XD, Chen HX, Guan RN, et al. Protein kinase B phosphorylation correlateswith vascular endothelial growth factor a and microvessel density in gastricadenocarcinoma [J]. J Int Med Res.2012,40:2124-2134.
    [25] Harrell MI, Iritani BM, Ruddell A. Tumor-induced sentinel lymph nodelymphangiogenesis and increased lymph flow precede melanoma metastasis [J].Am J Pathol.2007,170:774-786.
    [26]李开智,李珍华,曾思恩.淋巴管新生与肿瘤淋巴结转移[J].华夏医学.2008,21:1019-1021.
    [1]辛军,郭启勇.分子影像学的现状与未来[J].首都医科大学学报.2007,28:679-682.
    [2]张江龙,祁吉.分子影像学探针的研究与进展[J].国外医学:临床放射学分册,2006,29:289-293.
    [3]郑元义,王志刚,冉海涛,等.自制高分子材料超声造影剂及初步实验研究[J].中国超声医学杂志,2004,20:887-890.
    [4] Kaufmann BA, Lindner JR: Molecular imaging with targeted contrast ultrasound.Curr Opin Biotechnol2007,18:11-16.
    [5] Klibanov AL. Molecular imaging with targeted ultrasound contrast microbubbles. JNucl Cardiol,2007,14:876-884.
    [6] Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol.1968,3:356-366.
    [7] Zheng YY. Dextran-coated PFOB emulsion: A potential targeted US contrast agent(Abstract). International Contrast Media Research Symposium (CMR, France),2005,10: s16.
    [8] Oeffinger BE.Wheatley MA.Development and characterization of a nano-scalecontrast agent.Ultrasonics,2004,42:343-347.
    [9]王志刚.超声微泡造影剂在疾病诊断与治疗中的研究进展[J].中国医学影像技术.2005,21:1148-1150.
    [10]伍星,王志刚,许川山.纳米级造影剂在超声分子显像与靶向治疗中的研究进展[J].中华超声影像学杂志.2006,15:539-540.
    [11]杨扬,王志刚,郑元义,等.液态氟碳纳米脂质微球超声对比剂用于增强正常CT显像实验研究[J].中国医学影像技术.2008,24:1341-1344.
    [12] Dayton PA,Pearson D,Clark J,et a1.Ultrasonic analysis of peptide andantibody-targeted microbubble contrast agents for molecular imaging ofalphavbeta3-expressing cells [J].Mol Imaging,2004,3:125-l34.
    [13] Ellegala DB,Leong-Poi H,Carpenter JE,et a1.Imaging tumor angiogenesis withcontrast ultrasound and micr0bubbles targeted to alpha(v)beta3[J].Circulation,2003,108:336-341.
    [14] Weller GE.Wong MK,Modzelewski RA,et a1.Ultrasonic imaging of tumorangiogenesis using contrast microbubbles targeted via the tumor-binding peptidearginine-arginine-leucine [J].Cancer Res,2005,65:533-539.
    [15] Lee DJ, Lyshchik A, Huamani J, et al. Relationship between retention of a vascularendothelial growth factor receptor2(VEGFR2)-targeted ultrasonographic contrastagent and the level of VEGFR2expression in an in vivo breast cancer model. JUltrasound Med,2008,27:855-866.
    [16]卓莉莎,李锐,华兴,等.人前列腺癌靶向超声造影剂对荷瘤裸鼠靶向显像的研究[J].中华超声影像学杂志.2007,16:535-538.
    [17] Reinhardt M, Hauff P, Linker RA, et al. Ultrasound derived imaging andquantification of cell adhesion molecules in experimental autoimmuneencephalomyelitis (eae) by sensitive particle acoustic quantification (spaq).Neuroimage,2005,27:267-278.
    [18] Reinhardt M, Hauff P, Briel A, et al. Sensitive particle acoustic quantification(spaq): A new ultrasound-based approach for the quantification of ultrasoundcontrast media in high concentrations. Invest Radiol,2005,40:2-7.
    [19]许川山,王志刚.肿瘤的分子靶确认与超声纳米分子影像学[J].临床超声医学杂志.2006,8:233-234.
    [20]刘学兵,王志刚,许川山,等.纳米级靶向超声造影剂的制备及对兔VX2肝肿瘤的显影试验[J].中国超声医学杂志.2009,25:5-8.
    [21] Esmaeili F, Ghahremani MH, Ostad SN, et al. Folate-receptor-targeted delivery ofdocetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target,2008,16:415-423.
    [22] Hayama A,Yamamoto T, Yokoyama M, et al. Polymeric micelles modified byFolate-PEG-Lipid for targeted drug delivery to cancer cells in vitro. J Nanoscienceand Nanotechnology,2008,8:3085-3090.
    [23]伍星,王志刚,李攀,等.叶酸靶向超声造影剂的制备及体外寻靶实验研究[J].中国超声医学杂志.2009,25:217-219.
    [24] Klibanov AL, Rasche PT, Hughes MS, et al. Detection of individual microbubblesof an ultrasound contrast agent: Fundamental and pulse inversion imaging. AcadRadiol,2002, Suppl2, S279-S281.
    [25] Klibanov AL, Rasche PT, Hughes MS, et al. Detection of individual microbubblesof an ultrasound contrast agent: imaging of free-floating and targeted bubbles.Invest Radiol,2004,39:187-195.