新型α-MSH类似物对大鼠急性肺损伤的保护作用的机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Alpha-黑素细胞刺激素(alpha-melanocyte-stimulating hormone,α-MSH)是由其前体——阿黑皮素原(proopiomelanoeortin)裂解产生,其通过与黑皮素受体(melanocortin receptor,MCR)结合而发挥作用。α-MSH具有很强的抗炎、免疫调节作用。α-MSH具有独特的抗炎特点:它可直接作用于脑细胞,抑制脑局部促炎症细胞因子的产生,保护神经元功能;通过下行神经通路抑制细菌内毒素诱导的外周循环中促炎症细胞因子生成;又可直接作用于外周组织细胞,抑制促炎症细胞因子的产生及活性。α-MSH抑制多种类型的人体细胞产生细胞因子和其他的炎症介质,包括NO和前列腺素等。α-MSH不是完全消除炎症介质的产生,而是适度地抑制其生成量,可以减轻炎症反应程度但却不损害宿主的防御能力。α-MSH的抗炎作用在某种程度上是通过抑制核因子NF-κB完成的。但是α-MSH作为抗炎免疫调节剂,本身也存在缺点,其对MC1-R和MC3-R有较高的选择性,对MC4-R和MC5-R的亲和力很低。我室研制的新型α-MSH类似物显示出对MC1-R和MC5-R的选择性,能减少一定的副作用。
     急性肺损伤(acute lung injury,ALI)/急性呼吸窘迫综合征(acute respiratory distresssyndrome,ARDS)是一种常见危重症,病死率极高,严重威胁重症患者的生命并影响其生存质量。ALI/ARDS是在严重感染、休克、创伤及烧伤等非心源性疾病过程中,肺毛细血管内皮细胞和肺泡上皮细胞损伤造成弥漫性肺间质及肺泡水肿,导致的急性低氧性呼吸功能不全或衰竭。以肺容积减少、肺顺应性降低、严重的通气/血流比例失调为病理生理特征,临床上表现为进行性低氧血症和呼吸窘迫,肺部影像学上表现为非均一性的渗出性病变。流行病学调查显示ALI/ARDS是临床常见危重症。尽管ARDS已经研究了近40年,临床重症监护在期间取得了长足的进步。然而ARDS的死亡率仍高达40%~60%。人们对于ALI/ARDS发病机理的研究从未间断,当务之急是建立趋于完善的模拟临床的动物模型。越来越多的研究发现不同原因所致ALI/ARDS的发病原理及病理过程可能会有很大的不同,因而对ALI/ARDS致病动物模型的选用至关重要。目前认为“两次打击理论”更能反映体内的实际发病情况。此理论认为严重多发骨折等创伤作为第1次打击使机体处于中等状态的全身炎症反应综合征,此时如果遭受感染因素或不恰当复苏、手术打击、再次致伤因素等第二次打击,放大了已存在的炎症状态而发生过度的全身炎症反应综合征,会继发急性肺损伤/急性呼吸窘迫综合征以及多器官功能障碍综合征。失血性休克与内毒素血症都是临床多发病,特别是对于战伤,更具有重要的实际意义。因此,本研究选择了先失血性休克,1h后再气道内直接滴入LPS的方式来建立大鼠ALI模型,这样可以造成直接的肺损伤为主的ALI模型。
     近年来,许多研究人员对α-MSH在各种脏器炎症中的作用进行了大量的研究并给予了充分的肯定。但是,新型α-MSH类似物在ALI/ARDS中是否有保护作用仍未可知。因此,本课题采用大鼠的二次打击ALI模型研究我室的新型α-MSH类似物对大鼠急性肺损伤的保护作用,并试图探讨一些新的作用机制,同时以α-MSH作为对照。首先是建立大鼠失血性休克+LPS二次打击模型,即采用自制的装置从大鼠颈动脉放血,在15 min内使血压降至40 mmHg,并维持此血压1h。之后,在2h内将全部失血回输至体内,并补充适当的生理盐水以恢复到最初的压力水平。休息1h后,再从气管内滴入LPS进行二次打击,完成ALI模型的制作并维持6h。另有动物除了给予LPS外,还同时给予α-MSH或α-MSH类似物,观察其保护作用。这样可将动物分为四组,即假手术(sham)组,LPS组以及LPS+α-MSH组和LPS+α-MSH类似物组。实验结束后,采用放血法处死大鼠,分别收集血浆、肺泡灌洗液(BALF)及肺组织待检。本实验采用HE染色观察了各组肺组织的病理改变情况;采用ELISA分别检测了BALF中的TNF-α、IL-1β、巨噬细胞移动抑制因子(MIF)及IL-10的浓度;采用化学法测定了BALF和肺组织中LDH、MDA、MPO、总蛋白含量和SOD的活性;采用免疫组化(Immunohistochemistry)方法观察了肺组织的P-选择素(P-selectin)的表达情况;用Western Blot检测了肺组织中血管紧张素转换酶2(ACE2)水平变化;以Real-time PCR方法检测了纤溶酶原激活物抑制剂-1(PAI-1)、细胞因子诱导中性粒细胞化学趋化因子-1(CINC-1)、Clara细胞蛋白(CC16)、血红素加氧酶-1(HO-1)等的表达。结果显示:与sham组比较,LPS组肺组织损伤严重,出现肺泡壁增厚,炎细胞浸润并伴有轻度水肿等病理改变,α-MSH类似物和α-MSH能明显改善这种情况。BALF中TNF-α、IL-1β、MIF、总蛋白含量和LDH代表了肺内炎症状况,前三者为促炎因子,LDH与总蛋白含量相互配合常用来表示肺组织的损伤程度。MDA和SOD反应了肺内的氧化应激水平。肺组织中MPO是用来反映中性粒细胞浸润的一个比较灵敏的指标。在二次打击后,这几项指标显著增高(P<0.05),而抗炎因子IL-10则无明显降低(P>0.05),由于其作用的复杂性,其在ALI中的作用还有待于进一步研究。P-选择素在中性粒细胞黏附血管壁的过程中起着很重要的作用,免疫组化结果表明,在给予LPS后,P-选择素表达量增加,同时给予α-MSH类似物或α-MSH则能抑制其表达。大量研究证实,纤溶系统参与了ALI的发生过程,其中PAI-1最为关键。ALI的一个显著特征就是大量的中性粒细胞在肺内被扣押,而CINC-1是大鼠体内最重要的中性粒细胞趋化因子,类似于人体内的IL-8。HO-1和CC16是两个肺内有着重要作用的抗炎因子。Real-time PCR结果显示,二次打击后肺组织内PAI-1、CINC-1和HO-1 mRNA水平显著上调,CC16则下调,α-MSH类似物和α-MSH均能抑制前三者的上调和抑制CC16的下调(P<0.05)。
     本课题的创新点在于:①研究了我室自主设计的新型α-MSH类似物对急性肺损伤的保护作用,各种实验结果表明:α-MSH类似物与α-MSH都能有效地抑制促炎因子TNF-α、IL-1β、粘附分子P-选择素、趋化因子CINC-1以及纤溶系统中的关键因子PAI-1上调,以及能显著地促进抗炎因子HO-1的活性,显示了其抗炎特性。②对α-MSH这种神经内分泌肽调节炎症的作用机制有新的探讨,揭示出α-MSH在趋化因子,粘附分子及纤溶系统方面以前不为人所知的抗炎机制。ALI中最关键的因素是中性粒细胞的浸润,而P-选择素在中性粒细胞穿越内皮细胞的过程中起着重要的作用,介导了中性粒细胞于肺微循环内皮细胞的起始粘附,而α-MSH类似物能有效地抑制这一过程。PAI-1是体内纤溶系统中最重要的抑制物,对于稳定体内正常的血流起着很重要的作用。肺纤溶活性异常是急性和慢性炎症性肿损伤的共同表现。α-MSH能够有效地抑制PAI-1的上调,促进血液循环正常化,缓解肿部炎症。CINC-1是大鼠体内最重要的中性粒细胞趋化因子,而α-MSH也能有效地阻止其上调,这对于抑制中性粒细胞向肺部迁徙和穿越起着不可估量的作用。本课题还研究了与肺部关系密切的两个抗炎因子:HO-1和CC16。α-MSH可以促进CC16的上调和HO-1的下调,这对于判定ALI的病情也具有一定的帮助。③本研究还改进了动物模型的制作。以往的2次打击模型,死亡率高,稳定性和重复性很难令人满意,加之动物个体之间有很大的差异,用这样的模型很难得出令人信服的结论。本研究采用自动调整血压的装置代替注射器抽取,这样更宜于使血压保持稳定,减少大鼠的死亡率,采用定压和定容相结合的办法,来弥补仅基于一项指标的动物模型的不足。实验证明这是一种很好的控制动物失血休克的方法。采用这一方法能最大程度地减少动物的个体差异。既能使血压稳定在某一水平又能保证一定的失血量,更加真实地模拟了休克过程。
Alpha-melanocyte stimulating hormone (α-MSH), an endogenous neuropeptide, is derived from a larger precursor molecule pro-opiomelanocortin (POMC). POMC is a 29-kDa polypeptide that yields the biologically active peptides adrenocorticotropin (ACTH), endorphins (α,β,γ) and melanotropins (α-,β-, andγ-MSH).α-MSH was originally isolated and characterized from the intermediate lobe of the pituitary and it was first recognized by its effect on skin melanophores in lower vertebrates. Although necessary for its influence on pigmentation,α-MSH mediates other biologic functions. It has antipyretic, anti-inflammatory and antimicrobial effects. It is also involved in the control of food intake and body weight.α-MSH is produced by pituitary cells and astrocytes, as well as the cells of skin and other peripheral tissues. Studies revealed that endogenousα-MSH level increases in various clinical and experimental pathologic conditions such as rheumatoid arthritis, myocardial infarction, endotoxemia and HIV infection. Moreover, endotoxin injection to normal subjects causes a marked increase in plasma peptide concentration. In addition to plasmaα-MSH that reaches the tissues, local peptide production at inflammatory sites also increases. These observations suggest that increase inα-MSH concentration during inflammation is a compensatory mechanism and if the peptide is not sufficient to counteract the action of inflammatory mediators, the disease becomes more severe.
     The roles ofα-MSH were supported by the gene cloning of a family of specific receptors. To date five melanocortin receptors have been described (MC1R to MC5R). All of them belong to the heterodimeric guanine nucleotide-binding protein (G-protein) coupled family of receptors, characterized by the presence of seven transmembrane repeat spanning domains. Five melanocortin receptor subtypes (MC1-MC5) are recognized. MC1 is expressed in melanocytes, melanoma cells and cells involved in the immune/inflammatory response including monocytes, dendritic cells and lymphocytes. MC2, the ACTH receptor, is mainly expressed in the adrenal glands but also in white adipose tissue and in the skin. MC3 is expressed in the brain, placenta, gut and heart. MC4 occurs in various brain areas but has been recently recognized also in peripheral organs in the rat. The MC5 receptor, initially recognized in the brain, was subsequently found to be ubiquitous, but mainly in the periphery. Antipyretic and anti-inflammatory activities ofα-MSH have been traced to a "message sequence" contained within the COOH-terminal region, the tripeptide Lys-Pro-Val. Although the mechanism of the antimicrobial action is poorly understood, it is conceivable thatα-MSH could be useful in the treatment of various infectious conditions.
     However,α-MSH has its limitation as a novel melanogenic drugs, such as higher selective to MC1R and MC3R but lower to MC4R and MC5R. Therefore, a novel alpha-melanocyte stimulating hormone analogue was developmented by our laboratory. This new peptide has been proved to be more selective to MC1R and MC5R. thanα-MSH, two key receptors which the peptide is depended on for its anti-inflammatory activity. Besides, the novel peptide is also an agonist to MC1R, MC3R, MC4R and MC5R. The result shows that our peptide has a good applicative prospect.
     The ALI/ARDS may occur as a consequence of critical illness of diverse etiologies, including direct injury to lung, such as pneumonia, aspiration, toxic inhalation, near-drowning, or lung contusion, as well as indirect mechanisms, such as sepsis, burn, pancreatitis, gynecological insults (abruption of placenta, amniotic embolism, eclampsia), or massive blood transfusion. The mortality rate associated with ARDS has declined from 90% about twenty years ago to 30%~40% at present. However, it is still one of the major causes of pulmonary and nonpulmonary morbidity in patients after discharge. Animal studies that have attempted to mimic human ALI/ARDS have been useful and will likely continue to provide valuable observations regarding both the mechanisms underlying the pathogenesis, progression and resolution of this syndrome and ways in which its course can be modulated therapeutically. However, the lack of an animal model that unequivocally mimics key aspects of human ALI/ARDS has been limiting in mechanistic studies and in providing meaningful and rapid extrapolations to the clinical syndrome. Furthermore, there is uncertainty as to which of the many available animal models best reflects the human clinical syndrome. Animal models are usually monitored over a shorter term than the human syndrome, which requires hours or days to develop. A two-hit theory suggests that an initial insult, such as hemorrhage and resuscitation (H/R), primes the host for an exaggerated or abnormal response to a second insult, often infection. Hemorrhagic shock is the most important cause of early death after major trauma. There is increasing evidence that lipopolysaccharide (LPS) induces an inflammatory response in the lung. Therefore, in the present studies, a two-hit model of resuscitated hemorrhagic shock followed by intratracheal LPS in the rodent was used to evaluate the protective mechanisms ofα-MSH and our novel peptide to the lung.
     Melanocortins are potent modulators of inflammation. Administration of melanocortins is immunoprotective in models of systemic inflammation, peritonitis, myocardial ischemia, renal ischemia, allergic airway inflammation, experimental heart transplantation, and colonic inflammation. In many of these studies, administration of melanocortin peptides results in the suppression of cytokine production, inhibition of leukocyte infiltration, and preservation of tissue histology. But, according to our present comprehension, its protection on ALI has not been researched. In this paper, a two-hit model of ALI is used to test the anti-inflammatory activity of our novel alpha-melanocyte stimulating hormone analogue and traditionalα-MSH. In this model, characteristic hallmarks of ARDS such as lung edema and interstitial neutrophil infiltration were observed by the evaluation of total protein, TNF-α, IL-1β, MPO, SOD, MDA, P-selectin, PAI-1, CINC-1, CC16, HO-1 and ACE2 by means of histopathology, Real-Time PCR, ELISA, and immunohistochemistry. The data demonstrate that both our new peptide andα-MSH have good protective effect on ALI. For example, the alpha-melanocyte stimulating hormone analogue and traditionalα-MSH can significantly inhibit the upregulation of TNF-α, IL-1β, MPO, SOD and MDA. Besides, some new protective mechanisms of them have been explored, including the regulatory effects ofα-MSH and its noval analogue on the expression of P-selectin, PAI-1, CINC-1, CC16, HO-1 and ACE2. CINCs are known to be potent chemotactic factors for rat neutrophils, and to belong to the IL-8 superfamily. CINCs can induce a marked increase in neutrophils adherent to the venular endothelium, and enhance their transendothelial migration across the venular wall. It is well established that neutrophil-mediated tissue injury is a common mechanism underlying the development of organ dysfunction during acute lung injury including ARDS. Our data demonstrate that both the new peptide andα-MSH have significant inhibition to CINC-1. The accumulation of neutrophils in the lung tissue is initially mediated through increased adhesion of neutrophils to endothelial cells of the inflamed pulmonary microvasculature, and this process requires the upregulation of various adhesion molecules expressed on the surface of pulmonary microvessel endothelial cells as well as circulating neutrophils. Extensive research has demonstrated that activation of coagulation and inhibition of fibrinolysis are thought to underlie the events in ALI. Mechanisms that contribute to the changes in the homeostatic balance include both tissue factor expression and increased plasminogen activator inhibitor (PAI-1) synthesis or release. Similar experiments exposing PAI-1 knockout mice to bleomycin showed a decrease in fibrin deposition in the PAI-1 knockout mice, while controls showed PAI-1 to be increased by bleomycin. Clara cells act as stem cells in the repair of the bronchial epithelium, have a high xenobiotic biotransformation capacity and secrete several substances with important biological activities. One of the major proteins secreted by Clara cells is the 16 kDa Clara cell protein (CC16). Even though the exact in vivo function of the CC16 remains to be clarified, there is growing evidence that this protein plays a protective role against pulmonary inflammatory response. During several months of 2002, severe acute respiratory syndrome (SARS) caused by SARS-coronavirus (SARS-CoV) spread rapidly from China throughout the world, causing more than 800 deaths due to the development of acute respiratory distress syndrome (ARDS), which is the severe form of acute lung injury (ALI). Interestingly, a novel homologue of angiotensin-converting enzyme, termed angiotensin-converting enzyme 2 (ACE2), has been identified as a receptor for SARS-CoV. Angiotensin-converting enzyme and ACE2 share homology in their catalytic domain and provide different key functions in the renin-angiotensin system (RAS). Angiotensin-converting enzyme cleaves angiotensin I to generate angiotensin II, which is a key effector peptide of the system and exerts multiple biological functions, whereas ACE2 reduces angiotensin II levels. Importantly, recent studies using ACE2 knockout mice have demonstrated that ACE2 protects murine lungs from ARDS. Furthermore, SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo, which can be attenuated by blocking the renin-angiotensin pathway, suggesting its key role in ALI. Both the new peptide andα-MSH can significantly inhibit the upregulation of PAI-1 and P-selectin and downregulation of and CC16. However, failure to induce the downregulation of ACE2 after hemorrhagic shock and LPS hits underscores an incomplete understanding of the two-hit model. In general,α-MSH and its new analogue could attenuate the progression of the inflammation, thereby preventing the development of chronic lung disease.
     There are three originality of this experiment: first, the novel alpha-melanocyte stimulating hormone analogue has been proved to be effective in the protection against acute lung injury. Second, some new mechanisms of this protection has been discovered, including inhibition of PAI-1, CINC-1 and P-selectin and the modulation of ACE2, HO-1 and CC16 byα-MSH. The third, the two-hit model has been improved to mimic hemorrhagic shock and endotoxemia better.
引文
1.应楹,兰小鹏,田野苹.新型α-黑素细胞刺激素类似物亲和力和生物学效应的测定.药学学报,2007,42(3):269-273.
    2.Fan J,Shek PN,Suntres ZE,et al.Liposomal antioxidants provide prolonged protection against acute respiratory distress syndrome.Surgery,2000,128(2):332-338.
    3.He L,Gao Y,Lin Y,et al.Improvement of pulmonary absorption of insulin and other water-soluble compounds by polyamines in rats.J Control Release,2007,122(1):94-101.
    4.Fan J,Ye RD,Malik AB.Transcriptional mechanisms of acute lung injury.Am J Physiol Lung Cell Mol Physiol,2001,281(5):L1037-1050.
    5.Bhatia M,Moochhala S.Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome.J Pathol,2004,202(2):145-156.
    6.Frevert CW,Huang S,Danaee H,et al.Functional characterization of the rat chemokine KC and its importance in neutrophil recruitment in a rat model of pulmonary inflammation.J Immunol,1995,154(1):335-344.
    7.Iwamura H,Inushima K,Takeuchi K,et al.Prophylactic effect of JTE-607 on LPS-induced acute lung injury in rats with CINC-1 inhibition.Inflamm Res,2002,51(3):160-166.
    8.Idell S.Coagulation,fibrinolysis,and fibrin deposition in acute lung injury.Crit Care Med,2003,31(4 Suppl):S213-220.
    9.Schultz MJ,Haitsma JJ,Zhang H,et al.Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia—a review.Crit Care Med,2006,34(3):871-877.
    10.Wiggers HC,Goldberg H,Roemhild F,et al.Impending hemorrhagic shock and the course of events following administration of dibenamine.Circulation,1950,2(2):179-185.
    11.Getting SJ.Targeting melanocortin receptors as potential novel therapeutics.Pharmacol Ther,2006,111(1):1-15.
    12.Catania A,Gatti S,Colombo G,et al.Targeting melanocortin receptors as a novel strategy to control inflammation.Pharmacol Rev,2004,56(1):1-29.
    13.Wikberg JE,Muceniece R,Mandrika I,et al.New aspects on the melanocortins and their receptors.Pharmacol Res,2000,42(5):393-420.
    14.Mountjoy KG,Jenny Wu CS,Dumont LM,et al.Melanocortin-4 receptor messenger ribonucleic acid expression in rat cardiorespiratory,musculoskeletal,and integumentary systems.Endocrinology,2003,144(12):5488-5496.
    15.Giuliani D,Mioni C,Bazzani C,et al.Selective melanocortin MC4 receptor agonists reverse haemorrhagic shock and prevent multiple organ damage.Br J Pharmacol,2007,150(5):595-603.
    16.Taylor A,Namba K.In vitro induction of CD25+ CD4+ regulatory T cells by the neuropeptide alpha-melanocyte stimulating hormone(alpha-MSH).Immunol Cell Biol,2001,79(4):358-367.
    17.Ashbaugh DG,Bigelow DB,Petty TL,et al.Acute respiratory distress in adults.Lancet,1967,2(7511):319-323.
    18.Russell DH,Barreto JC,Klemm K,et al.Hemorrhagic shock increases gut macromolecular permeability in the rat.Shock,1995,4(1):50-55.
    19. Moore FA, Moore EE. Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am, 1995, 75(2): 257-277.
    20. Botha AJ, Moore FA, Moore EE, et al. Postinjury neutrophil priming and activation: an early vulnerable window. Surgery, 1995, 118(2): 358-364; discussion 364-355.
    21. Powers KA, Szaszi K, Khadaroo RG, et al. Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J Exp Med, 2006, 203(8): 1951-1961.
    22. Baue AE. Multiple organ failure, multiple organ dysfunction syndrome, and systemic inflammatory response syndrome. Why no magic bullets? Arch Surg, 1997, 132(7): 703-707.
    23. Le Tulzo Y, Shenkar R, Kaneko D, et al. Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catecholamines in nuclear factor-kappaB regulation and cytokine expression. J Clin Invest, 1997, 99(7): 1516-1524.
    24. Cockerill GW, McDonald MC, Mota-Filipe H, et al. High density lipoproteins reduce organ injury and organ dysfunction in a rat model of hemorrhagic shock. Faseb J, 2001, 15(11): 1941-1952.
    25. McDonald MC, Mota-Filipe H, Paul A, et al. Calpain inhibitor I reduces the activation of nuclear factor-kappaB and organ injury/dysfunction in hemorrhagic shock. Faseb J, 2001, 15(1): 171-186.
    26. Tracey KJ. The inflammatory reflex. Nature, 2002,420(6917): 853-859.
    27. Hildebrand F, Pape HC, Krettek C. [The importance of cytokines in the posttraumatic inflammatory reaction]. Unfallchirurg, 2005, 108(10): 793-794, 796-803.
    28. Hassoun HT, Kone BC, Mercer DW, et al. Post-injury multiple organ failure: the role of the gut. Shock, 2001, 15(1): 1-10.
    29. Guarini S, Altavilla D, Cainazzo MM, et al. Efferent vagal fibre stimulation blunts nuclear factor-kappaB activation and protects against hypovolemic hemorrhagic shock. Circulation, 2003, 107(8): 1189-1194.
    30. Lohmann-Matthes ML, Steinmuller C, Franke-Ullmann G. Pulmonary macrophages. Eur Respir J, 1994,7(9): 1678-1689.
    31. Rubins JB. Alveolar macrophages: wielding the double-edged sword of inflammation. Am J Respir Crit Care Med, 2003, 167(2): 103-104.
    32. Peitzman AB, Billiar TR, Harbrecht BG, et al. Hemorrhagic shock. Curr Probl Surg, 1995, 32(11): 925-1002.
    33. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature, 2000,406(6797): 782-787.
    34. Yamamoto T, Ebe Y, Hasegawa G, et al. Expression of scavenger receptor class A and CD 14 in lipopolysaccharide-induced lung injury. Pathol Int, 1999, 49(11): 983-992.
    35. Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol, 2000, 164(11): 5998-6004.
    36. Guo RF, Lentsch AB, Warner RL, et al. Regulatory effects of eotaxin on acute lung inflammatory injury. J Immunol, 2001, 166(8): 5208-5218.
    37. Monick MM, Hunninghake GW. Activation of second messenger pathways in alveolar macrophages by endotoxin. Eur Respir J, 2002, 20(1): 210-222.
    38. Shenkar R, Yum HK, Arcaroli J, et al. Interactions between CBP, NF-kappaB, and CREB in the lungs after hemorrhage and endotoxemia. Am J Physiol Lung Cell Mol Physiol, 2001, 281(2): L418-426.
    39. Shenkar R, Abraham E. Hemorrhage induces rapid in vivo activation of CREB and NF-kappaB in murine intraparenchymal lung mononuclear cells. Am J Respir Cell Mol Biol, 1997, 16(2): 145-152.
    40. Moine P, McIntyre R, Schwartz MD, et al. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock, 2000, 13(2): 85-91.
    41. Schwartz MD, Moore EE, Moore FA, et al. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med, 1996, 24(8): 1285-1292.
    42. Fan J, Li Y, Vodovotz Y, et al. Hemorrhagic shock-activated neutrophils augment TLR4 signaling-induced TLR2 upregulation in alveolar macrophages: role in hemorrhage-primed lung inflammation. Am J Physiol Lung Cell Mol Physiol, 2006, 290(4): L738-L746.
    43. Nishida T, Miyata S, Itoh Y, et al. Anti-inflammatory effects of alpha-melanocyte-stimulating hormone against rat endotoxin-induced uveitis and the time course of inflammatory agents in aqueous humor. Int Immunopharmacol, 2004, 4(8): 1059-1066.
    44. Chiao H, Foster S, Thomas R, et al. Alpha-melanocyte-stimulating hormone reduces endotoxin-induced liver inflammation. J Clin Invest, 1996, 97(9): 2038-2044.
    45. Donn R, Alourfi Z, De Benedetti F, et al. Mutation screening of the macrophage migration inhibitory factor gene: positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritis. Arthritis Rheum, 2002, 46(9): 2402-2409.
    46. Donnelly SC, Haslett C, Reid PT, et al. Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Nat Med, 1997, 3(3): 320-323.
    47. Makita H, Nishimura M, Miyamoto K, et al. Effect of anti-macrophage migration inhibitory factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation. Am J Respir Crit Care Med, 1998, 158(2): 573-579.
    48. Roger T, David J, Glauser MP, et al. MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature, 2001, 414(6866): 920-924.
    49. Artigas A, Bernard GR, Carlet J, et al. The American-European Consensus Conference on ARDS, part 2: Ventilatory, pharmacologic, supportive therapy, study design strategies, and issues related to recovery and remodeling. Acute respiratory distress syndrome. Am J Respir Crit Care Med, 1998, 157(4 Pt 1): 1332-1347.
    50. Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med, 2007, 42(2): 153-164.
    51. Schlag G, Redl H, Hallstrom S. The cell in shock: the origin of multiple organ failure. Resuscitation, 1991,21(2-3): 137-180.
    52. Redl H, Gasser H, Schlag G, et al. Involvement of oxygen radicals in shock related cell injury. Br Med Bull, 1993, 49(3): 556-565.
    53. Guarini S, Bazzani C, Ricigliano GM, et al. Influence of ACTH-(1-24) on free radical levels in the blood of haemorrhage-shocked rats: direct ex vivo detection by electron spin resonance spectrometry. Br J Pharmacol, 1996,119(1): 29-34.
    54. Victor VM, Rocha M, Esplugues JV, et al. Role of free radicals in sepsis: antioxidant therapy. Curr Pharm Des,2005, 11(24): 3141-3158.
    55. Tsuji C, Minhaz MU, Shioya S, et al. The importance of polymorphonuclear leukocytes in lipopolysaccharide-induced superoxide anion production and lung injury: ex vivo observation in rat lungs. Lung, 1998, 176(1): 1-13.
    56. MacNee W. Oxidants/antioxidants and COPD. Chest, 2000, 117(5 Suppl 1): 303S-317S.
    57. Zhang H, Slutsky AS, Vincent JL. Oxygen free radicals in ARDS, septic shock and organ dysfunction. Intensive Care Med, 2000, 26(4): 474-476.
    58. Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol, 2001, 280(4): C719-741.
    59. Szabo C, Saunders C, O'Connor M, et al. Peroxynitrite causes energy depletion and increases permeability via activation of poly (ADP-ribose) synthetase in pulmonary epithelial cells. Am J Respir Cell Mol Biol, 1997, 16(2): 105-109.
    60. Poltorak A, He X, Smimova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 1998, 282(5396): 2085-2088.
    61. Bihl F, Salez L, Beaubier M, et al. Overexpression of Toll-like receptor 4 amplifies the host response to lipopolysaccharide and provides a survival advantage in transgenic mice. J Immunol, 2003, 170(12): 6141-6150.
    62. Kalis C, Kanzler B, Lembo A, et al. Toll-like receptor 4 expression levels determine the degree of LPS-susceptibility in mice. Eur J Immunol, 2003, 33(3): 798-805.
    63. Jeyaseelan S, Manzer R, Young SK, et al. Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. Am J Respir Cell Mol Biol, 2005, 32(6): 531-539.
    64. Jeyaseelan S, Chu HW, Young SK, et al. Distinct roles of pattern recognition receptors CD14 and Toll-like receptor 4 in acute lung injury. Infect Immun, 2005, 73(3): 1754-1763.
    65. van der Vliet A, Cross CE. Oxidants, nitrosants, and the lung. Am J Med, 2000, 109(5): 398-421.
    66. Morcillo EJ, Estrela J, Cortijo J. Oxidative stress and pulmonary inflammation: pharmacological intervention with antioxidants. Pharmacol Res, 1999,40(5): 393-404.
    67. Gonzalez PK, Zhuang J, Doctrow SR, et al. EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine. J Pharmacol Exp Ther, 1995, 275(2): 798-806.
    68. Fan J, Marshall JC, Jimenez M, et al. Hemorrhagic shock primes for increased expression of cytokine-induced neutrophil chemoattractant in the lung: role in pulmonary inflammation following lipopolysaccharide. J Immunol, 1998, 161(1): 440-447.
    69. Adams DH, Lloyd AR. Chemokines: leucocyte recruitment and activation cytokines. Lancet, 1997, 349(9050): 490-495.
    70. Yamasawa H, Ishii Y, Kitamura S. Cytokine-induced neutrophil chemoattractant in a rat model of lipopolysaccharide-induced acute lung injury. Inflammation, 1999,23(3): 263-274.
    71. Guo RF, Ward PA. Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. Free Radic Biol Med, 2002, 33(3): 303-310.
    72. Pugin J, Verghese G, Widmer MC, et al. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med, 1999, 27(2): 304-312.
    73. Pugin J, Ricou B, Steinberg KP, et al. Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1. Am J Respir Crit Care Med, 1996, 153(6 Pt 1): 1850-1856.
    74. Goodman RB, Strieter RM, Martin DP, et al. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome. Am J Respir Crit Care Med, 1996, 154(3 Pt 1): 602-611.
    75. Siler TM, Swierkosz JE, Hyers TM, et al. Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome. Exp Lung Res, 1989, 15(6): 881-894.
    76. Agouridakis P, Kyriakou D, Alexandrakis MG, et al. The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome. Respir Res, 2002, 325.
    77. Wang Q, Wang Y, Hyde DM, et al. Reduction of bleomycin induced lung fibrosis by transforming growth factor beta soluble receptor in hamsters. Thorax, 1999, 54(9): 805-812.
    78. Opal SM, Cross AS. Clinical trials for severe sepsis. Past failures, and future hopes. Infect Dis Clin North Am, 1999, 13(2): 285-297, vii.
    79. Pittet JF, Mackersie RC, Martin TR, et al. Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med, 1997, 155(4): 1187-1205.
    80. Murata A, Kikuchi M, Mishima S, et al. [Cytokine imbalance in critically ill patients: SIRS and CARS]. Nippon Geka Gakkai Zasshi, 1999, 100(7): 414-418.
    81. Mocellin S, Panelli MC, Wang E, et al. The dual role of IL-10. Trends Immunol, 2003, 24(1): 36-43.
    82. Conti P, Kempuraj D, Kandere K, et al. IL-10, an inflammatory/inhibitory cytokine, but not always. Immunol Lett, 2003, 86(2): 123-129.
    83. Xu XL, Xie QM, Shen YH, et al. Mannose prevents lipopolysaccharide-induced acute lung injury in rats. Inflamm Res, 2008, 57(3): 104-110.
    84. Khadaroo RG, Fan J, Powers KA, et al. Impaired induction of IL-10 expression in the lung following hemorrhagic shock. Shock, 2004, 22(4): 333-339.
    85. J Fan YL, A Kapus and OD Rotstein. Hemorrhagic shock suppresses IL-10 transcription: role in pulmonary inflammation following LPS. Surgical Infection Society, Snowbird 2001.
    86. Schulman AM, Claridge JA, Ghezel-Ayagh A, et al. Differential local and systemic tumor necrosis factor-alpha responses to a second hit of lipopolysaccharide after hemorrhagic shock. J Trauma, 2003, 55(2): 298-307.
    87. Jersmann HP, Hii CS, Hodge GL, et al. Synthesis and surface expression of CD14 by human endothelial cells. Infect Immun, 2001, 69(1): 479-485.
    88. Faure E, Equils O, Sieling PA, et al. Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem, 2000, 275(15): 11058-11063.
    89. Mulligan MS, Paulson JC, De Frees S, et al. Protective effects of oligosaccharides in P-selectin-dependent lung injury. Nature, 1993, 364(6433): 149-151.
    90. Bevilacqua MP, Nelson RM. Selectins. J Clin Invest, 1993, 91(2): 379-387.
    91. Ashitani J, Mukae H, Ihiboshi H, et al. [Serum-soluble adhesion molecules in patients with idiopathic pulmonary fibrosis and acute respiratory distress syndrome]. Nihon Kyobu Shikkan Gakkai Zasshi, 1997, 35(9): 942-947.
    92. Sakamaki F, Ishizaka A, Handa M, et al. Soluble form of P-selectin in plasma is elevated in acute lung injury. Am J Respir Crit Care Med, 1995, 151(6): 1821-1826.
    93. Kushimoto S, Okajima K, Uchiba M, et al. Pulmonary vascular injury induced by hemorrhagic shock is mediated by P-selectin in rats. Thromb Res, 1996, 82(1): 97-106.
    94. Donnarumma G, Paoletti I, Buommino E, et al. Alpha-MSH reduces the internalization of Staphylococcus aureus and down-regulates HSP 70, integrins and cytokine expression in human keratinocyte cell lines. Exp Dermatol, 2004, 13(12): 748-754.
    95. Scholzen TE, Sunderkotter C, Kalden DH, et al. Alpha-melanocyte stimulating hormone prevents lipopolysaccharide-induced vasculitis by down-regulating endothelial cell adhesion molecule expression. Endocrinology, 2003, 144(1): 360-370.
    96. Morandini R, Boeynaems JM, Hedley SJ, et al. Modulation of ICAM-1 expression by alpha-MSH in human melanoma cells and melanocytes. J Cell Physiol, 1998, 175(3): 276-282.
    97. Chiao H, Kohda Y, McLeroy P, et al. Alpha-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils. Kidney Int, 1998, 54(3): 765-77'4.
    98. Kalden DH, Scholzen T, Brzoska T, et al. Mechanisms of the antiinflammatory effects of alpha-MSH. Role of transcription factor NF-kappa B and adhesion molecule expression. Ann N Y Acad Sci, 1999,885254-261.
    99. Wang YX, Dong N, Wu C, et al. Lipopolysaccharide attenuates thrombolysis in batroxobin-induced lung vasculature fibrin deposition but not in ferrous chloride-induced carotid artery thrombus in rats: role of endogenous PAM. Thromb Res, 2003, 111(6): 381-387.
    100. Muth H, Maus U, Wygrecka M, et al. Pro- and antifibrinolytic properties of human pulmonary microvascular versus artery endothelial cells: impact of endotoxin and tumor necrosis factor-alpha. Crit Care Med, 2004, 32(1): 217-226.
    101. Prabhakaran P, Ware LB, White KE, et al. Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2003, 285(1): L20-28.
    102. El Solh AA, Bhora M, Pineda L, et al. Alveolar plasminogen activator inhibitor-1 predicts ARDS in aspiration pneumonitis. Intensive Care Med, 2006, 32(1): 110-115.
    103. Eitzman DT, McCoy RD, Zheng X, et al. Bleomycin-induced pulmonary fibrosis in transgenic mice that either lack or overexpress the murine plasminogen activator inhibitor-1 gene. J Clin Invest, 1996, 97(1): 232-237.
    104. Sisson TH, Hanson KE, Subbotina N, et al. Inducible lung-specific urokinase expression reduces fibrosis and mortality after lung injury in mice. Am J Physiol Lung Cell Mol Physiol, 2002, 283(5): L1023-1032.
    105. Idell S. Endothelium and disordered fibrin turnover in the injured lung: newly recognized pathways. Crit Care Med, 2002, 30(5 Suppl): S274-280.
    106. Zouki C, Ouellet S, Filep JG. The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. Faseb J, 2000, 14(3): 572-580.
    107. Lesur O, Bernard A, Arsalane K, et al. Clara cell protein (CC-16) induces a phospholipase A2-mediated inhibition of fibroblast migration in vitro. Am J Respir Crit Care Med, 1995, 152(1): 290-297.
    108. Szabo E, Goheer A, Witschi H, et al. Overexpression of CC10 modifies neoplastic potential in lung cancer cells. Cell Growth Differ, 1998, 9(6): 475-485.
    109. Arsalane K, Broeckaert F, Knoops B, et al. Clara cell specific protein (CC16) expression after acute lung inflammation induced by intratracheal lipopolysaccharide administration. Am J Respir Crit Care Med, 2000, 161(5): 1624-1630.
    110. Broeckaert F, Arsalane K, Hermans C, et al. Serum clara cell protein: a sensitive biomarker of increased lung epithelium permeability caused by ambient ozone. Environ Health Perspect, 2000, 108(6): 533-537.
    111. Van Miert E, Dumont X, Bernard A. CC16 as a marker of lung epithelial hyperpermeability in an acute model of rats exposed to mainstream cigarette smoke. Toxicol Lett, 2005, 159(2): 115-123.
    112. Yin XJ, Ma JY, Antonini JM, et al. Roles of reactive oxygen species and heme oxygenase-1 in modulation of alveolar macrophage-mediated pulmonary immune responses to Listeria monocytogenes by diesel exhaust particles. Toxicol Sci, 2004, 82(1): 143-153.
    113. Koike E, Hirano S, Furuyama A, et al. cDNA microarray analysis of rat alveolar epithelial cells following exposure to organic extract of diesel exhaust particles. Toxicol Appl Pharmacol, 2004, 201(2): 178-185.
    114. Hirano S, Furuyama A, Koike E, et al. Oxidative-stress potency of organic extracts of diesel exhaust and urban fine particles in rat heart microvessel endothelial cells. Toxicology, 2003, 187(2-3): 161-170.
    115. Morse D, Choi AM. Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med, 2005, 172(6): 660-670.
    116. Mazzola S, Forni M, Albertini M, et al. Carbon monoxide pretreatment prevents respiratory derangement and ameliorates hyperacute endotoxic shock in pigs. Faseb J, 2005, 19(14): 2045-2047.
    117. Ryter SW, Choi AM. Therapeutic applications of carbon monoxide in lung disease. Curr Opin Pharmacol, 2006, 6(3): 257-262.
    118. Sethi JM, Otterbein LE, Choi AM. Differential modulation by exogenous carbon monoxide of TNF-alpha stimulated mitogen-activated protein kinases in rat pulmonary artery endothelial cells. Antioxid Redox Signal, 2002, 4(2): 241-248.
    119. Pittet JF, Lu LN, Geiser T, et al. Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats. J Physiol, 2002, 538(Pt 2): 583-597.
    120. Armstrong L, Medford AR, Uppington KM, et al. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am J Respir Cell Mol Biol, 2004, 31(2): 241-245.
    121. Farberman MM, Hoffmann JW, Ryerse JS, et al. Diffusible signal to murine alveolar macrophages from lipopolysaccharide- and Escherichia coli-stimulated lung Type II epithelial cells. Inflamm Res, 2004, 53(9): 475-483.
    122. dos Santos CC, Han B, Andrade CF, et al. DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFalpha, LPS, and cyclic stretch. Physiol Genomics, 2004,19(3):331-342.
    123.Sunil VR,Connor AJ,Guo Y,et al.Activation of type Ⅱ alveolar epithelial cells during acute endotoxemia.Am J Physiol Lung Cell Mol Physiol,2002,282(4):L872-880.
    124.Schulz C,Farkas L,Wolf K,et al.Differences in LPS-induced activation of bronchial epithelial cells(BEAS-2B) and type Ⅱ-like pneumocytes(A-549).Scand J Immunol,2002,56(3):294-302.
    125.Rudkowski JC,Barreiro E,Harfouche R,et al.Roles of iNOS and nNOS in sepsis-induced pulmonary apoptosis.Am J Physiol Lung Cell Mol Physiol,2004,286(4):L793-800.
    126.Fujita M,Kuwano K,Kunitake R,et al.Endothelial cell apoptosis in lipopolysaccharide-induced lung injury in mice.Int Arch Allergy Immunol,1998,117(3):202-208.
    127.Watson RW,Rotstein OD,Nathens AB,et al.Neutrophil apoptosis is modulated by endothelial transmigration and adhesion molecule engagement.J Immunol,1997,158(2):945-953.
    128.Tipnis SR,Hooper NM,Hyde R,et al.A human homolog of angiotensin-converting enzyme.Cloning and functional expression as a captopril-insensitive carboxypeptidase.J Biol Chem,2000,275(43):33238-33243.
    129.Donoghue M,Hsieh F,Baronas E,et al.A novel angiotensin-converting enzyme-related carboxypeptidase(ACE2) converts angiotensin Ⅰ to angiotensin 1-9.Circ Res,2000,87(5):E1-9.
    130.Harmer D,Gilbert M,Borman R,et al.Quantitative mRNA expression profiling of ACE 2,a novel homologue of angiotensin converting enzyme.FEBS Lett,2002,532(1-2):107-110.
    131.Jia HP,Look DC,Shi L,et al.ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia.J Virol,2005,79(23):14614-14621.
    132.Hamming I,Timens W,Bulthuis ML,et al.Tissue distribution of ACE2 protein,the functional receptor for SARS coronavirus.A first step in understanding SARS pathogenesis.J Pathol,2004,203(2):631-637.
    133.Li W,Moore MJ,Vasilieva N,et al.Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature,2003,426(6965):450-454.
    134.Imai Y,Kuba K,Rao S,et al.Angiotensin-converting enzyme 2 protects from severe acute lung failure.Nature,2005,436(7047):112-116.
    135.Arndt PG,Young SK,Poch KR,et al.Systemic inhibition of the angiotensin-converting enzyme limits lipopolysaccharide-induced lung neutrophil recruitment through both bradykinin and angiotensin Ⅱ-regulated pathways.J Immunol,2006,177(10):7233-7241.
    136.Zhang H,Sun GY.LPS induces permeability injury in lung microvascular endothelium via AT(1) receptor.Arch Biochem Biophys,2005,441(1):75-83.
    137.Kuba K,Imai Y,Rao S,et al.A crucial role of angiotensin converting enzyme 2(ACE2) in SARS coronavirus-induced lung injury.Nat Med,2005,11(8):875-879.
    138.Grobe JL,Mecca AP,Lingis M,et al.Prevention of angiotensin Ⅱ-induced cardiac remodeling by angiotensin-(1-7).Am J Physiol Heart Circ Physiol,2007,292(2):H736-742.
    139.Kapas S,Purbrick A,Barker S,et al.Alpha-melanocyte-stimulating hormone-induced inhibition of angiotensin Ⅱ receptor-mediated events in the rat adrenal zona glomerulosa.J Mol Endocrinol,1994,13(1):95-104.
    140. Toga H, Tobe T, Ueda Y, et al. Inducible nitric oxide synthase expression and nuclear factor-kappaB activation in alveolar type II cells in lung injury. Exp Lung Res, 2001, 27(6): 485-504.
    141. Lipton JM, Macaluso A, Hiltz ME, et al. Central administration of the peptide alpha-MSH inhibits inflammation in the skin. Peptides, 1991, 12(4): 795-798.
    1.CATANIA,A.,S.GATTI,G.COLOMBO,et al.2004.Targeting melanocortin receptors as a novel strategy to control inflammation.Pharmacol.Rev.56:1-29.
    2.GETTING,S.J.2002.Melanocortin peptides and their receptors:new targets for anti-inflammatory therapy.Trends Pharmacol.Sci.23:447-449.
    3.PRITCHARD,L.E.,A.V.TURNBULL &A.WHITE.2002.Pro-opiomelanocortin pro-cessing in the hypothalamus:impact on melanocortin signalling and obesity.J.Endocrinol.172:411-421.
    4.THODY,A.J.,K.RIDLEY,R.J.PENNY,et al.1983.MSH peptides are present in mammalian skin.Peptides 4:813-816.
    5.WINTZEN,M.& B.A.GILCHREST.1996.Proopiomelanocortin,its derived peptides,and the skin.J.Invest.Dermatol.106:3-10.
    6.LUGER,T.A.,T.BRZOSKA,T.E.SCHOLZEN,et al.2000.The role of alpha-MSH as a modulator of cutaneous inflammation.Ann.N.Y.Acad.Sci.917:232-238.
    7.BHARDWAJ,R.S.& T.A.LUGER.1994.Proopiomelanocortin production by epidermal cells:evidence for an immune neuroendocrine network in the epidermis.Arch.Dermatol.Res.287:85-90.
    8.BOTCHKAREV,V.A.,N.V.BOTCHKAREVA & A.SLOMINSKI.1999.Developmentally regulated expression of alpha-MSH and MC-1 receptor in C57BL/6 mouse skin suggests functions beyond pigmentation.Ann.N.Y.Acad.Sci.885:433-439.
    9.SCHOLZEN,T.E.,D.H.KALDEN & T.BRZOSKA.2000.Expression of proopiomelanocortin peptides in human dermal microvascular endothelial cells:evidence for a regulation by ultraviolet light and interleukin-1.J.Invest.Dermatol.115:1021-1028.
    10.NEUMANN ANDERSEN,G.,O.NAGAEVA,I.MANDRIKA,et al.2001.MC(1) receptors are constitutively expressed on leucocyte subpopulations with antigen presenting and cytotoxic functions.Clin.Exp.Immunol.126:441-446.
    11.SLOMINSKI,A.,J.WORTSMAN,T.LUGER,et al.2000.Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress.Physiol.Rev.80:979-1020.
    12.MOUNTJOY,K.G.,L.S.ROBBINS,M.T.MORTRUD,et al.1992.The cloning of a family of genes that encode the melanocortin receptors.Science 257:1248-1251.
    13. CHHAJLANI, V. & J.E. WIKBERG. 1992. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett. 309: 417-420.
    14. STAR, R.A., N. RAJORA, J. HUANG, et al. 1995. Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocyte-stimulating hormone. Proc. Natl. Acad. Sci. USA 92: 8016-8020.
    15. CATANIA, A., N. RAJORA, F. CAPSONI, et al. 1996. The neuropeptide alpha-MSH has specific receptors on neutrophils and reduces chemotaxis in vitro. Peptides 675-679.
    16. BECHER, E., K.MAHNKE, T. BRZOSKA, et al. 1999. Human peripheral blood-derived dendritic cells express functional melanocortin receptor MC-1R. Ann. N. Y. Acad. Sci. 885: 188-195.
    17. LUGER, T.A., T. SCHOLZEN, T. BRZOSKA, et al. 1998. Cutaneous immunomodulation and coordination of skin stress responses by alpha-melanocyte-stimulating hormone. Ann. N. Y. Acad. Sci. 840:381-394.
    18. MOUNTJOY, K.G. 1994. The human melanocyte stimulating hormone receptor has evolved to become "super-sensitive" to melanocortin peptides. Mol. Cell. Endocrinol.102: R7-R11.
    19. MANNA, S.K. & B.B. AGGARWAL. 1998. Alpha-melanocyte-stimulating hormone inhibits the nuclear transcription factor NF-kappaBactivation induced by various inflammatory agents. J. Immunol. 161:2873-2880.
    20. MAASER, C., K. KANNENGIESSER, C. SPECHT, et al. 2006. Crucial role of the melanocortin receptor MC1R in experimental colitis. Gut. E-publication ahead of print.
    21. XIA, Y. & J.E. WIKBERG. 1996. Localization of ACTH receptor mRNA by in situ hybridization in mouse adrenal gland. Cell. Tissue. Res. 286: 63-68.
    22. BUCKLEY, D.I. &J.RAMACHANDRAN. 1981. Characterization of corticotrophin receptors on adrenocortical cells. Proc. Natl. Acad. Sci. USA 78: 7431-7435.
    23. TSIGOS, C., K. ARAI, W.HUNG, et al. 1993. Hereditary isolated glucocorticoid deficiency is associated with abnormalities of the adrenocorticotropin receptor gene. J. Clin. Invest. 92: 2458-2461.
    24. KONDA, Y., I. GANTZ, J.DELVALLE, et al. 1994. Interaction of dual intracellular signaling pathways activated by the melanocortin-3 receptor. J. Biol. Chem. 269: 13162-13166.
    25. GANTZ, I., Y. KONDA, T.TASHIRO, et al. 1993. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268: 8246-8250.
    26. CHHAJLANI, V. 1996. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem. Mol. Biol. Int. 38: 73-80.
    27. LOW, M.J. 2004. Role of proopiomelanocortin neurons and peptides in the regula-tion of energy homeostasis. J. Endocrinol. Invest. 27(6 Suppl): 95-100.
    28. CHEN, A.S., D.J. MARSH, M.E. TRUMBAUER, et al. 2000. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26: 97-102.
    29. GETTING, S.J., H.C. CHRISTIAN, R.J. FLOWER, etal. 2002. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis. Rheum. 46: 2765-2775.
    30. GETTING, S.J., H.C. CHRISTIAN, C.W. LAM, et al. 2003. Redundancy of a functional melanocortin 1 receptor in the anti-inflammatory actions of melanocortin peptides: studies in the recessive yellow (e/e) mouse suggest an important role for melanocortin 3 receptor. J. Immunol. 170: 3323-3330.
    31. GETTING, S.J., G.H. ALLCOCK, R.FLOWER, et al. 2001. Natural and synthetic agonists of the melanocortin receptor type 3 possess anti-inflammatory properties. J. Leukoc. Biol. 69: 98-104.
    32. GETTING, S.J., L. GIBBS, A J. CLARK, et al. 1999. POMC gene-derived peptides activate melanocortin type3 receptor on murine macrophages, suppress cytokine release, and inhibit neutrophil migration in acute experimental inflammation. J Immunol 162: 7446-7453.
    33. FAROOQI, I.S., J.M. KEOGH, G.S. YEO, et al. 2003. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N. Engl. J. Med. 348: 1085-1095.
    34. BRANSON, R., N. POTOCZNA, J.G. KRAL, et al. 2003. Binge eating as a major pheno-type of melanocortin 4 receptor genemutations. N.Engl.J.Med. 348:1096-1103.
    35. HUSZAR, D., CA. LYNCH, V. FAIRCHILD-HUNTRESS, et al. 1997. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88: 131-141.
    36. MARSH, D.J., G. HOLLOPETER, D. HUSZAR, et al. 1999. Response of meianocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21: 119-122.
    37. MOUNTJOY, K.G., M.T. MORTRUD, M.J. LOW, et al. 1994. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8: 1298-1308.
    38. GANTZ, I., H. MIWA, Y. KONDA, et al. 1993. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268: 15174- 15179.
    39. VAN DER PLOEG, L.H., W.J. MARTIN, A.D. HOWARD, et al. 2002. A role for the melanocortin 4 receptor in sexual function. Proc. Natl. Acad. Sci. USA 99: 11381-11386.
    40. CHEN, W., M.A. KELLY, X. OPITZ-ARAYA, et al. 1997. Exocrine gland dysfunction in MC5-R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell 91: 789-798.
    41. BUGGY, J.J. 1998. Binding of alpha-melanocyte-stimulating hormone to its G-protein-coupled receptor on B-lymphocytes activates the Jak/STAT pathway. Biochem. J. 331: 211-216.
    42. ADACHI, S., T. NAKANO, H. VLIAGOFTIS, et al. 1999. Receptor-mediated modulation of murine mast cell function by alpha-melanocyte stimulating hormone. J. Immunol. 163: 3363-3368.
    43. LUGER, T.A., T.E. SCHOLZEN, T. BRZOSKA, et al. 2003. New insights into the functions of alpha-MSH and related peptides in the immune system. Ann. N. Y. Acad Sci. 994: 133-140.
    44. LUGER, T.A., R.S. BHARDWAJ, S. GRABBE, et al. 1996. Regulation of the immune response by epidermal cytokines and neurohormones. J. Dermatol. Sci. 13:5-10.
    45. MANNA, S.K., A. SARKAR &Y.SREENIVASAN. 2006. Alpha-melanocyte-stimulating hormone down-regulates CXC receptors through activation of neutrophil elastase. Eur. J. Immunol.
    46. KALDEN, D.H., T. SCHOLZEN, T. BRZOSKA, et al. 1999. Mechanisms of the antiinflammatory effects of alpha-MSH: role of transcription factor NF-kappa B and adhesion molecule expression. Ann. N. Y. Acad. Sci. 885: 254-261.
    47. ICHIYAMA, T., T. SAKAI, .CATANIA, et al. 1999. Inhibition of peripheral NF-kappaB activation by central action of alpha-melanocyte-stimulating hormone. J. Neuroimmunol. 99: 211-217.
    48. ICHIYAMA, T., I.L. CAMPBELL, S.FURUKAWA, et al. 1999. Autocrine alpha melanocyte stimulating hormone inhibits NF-kappaB activation in human glioma. J. Neurosci. Res. 58: 684-689.
    49. GETTING, S.J., H.B. SCHIOTH &M.PERRETTI. 2003. Dissection of the anti-inflammatory effect of the core and C-terminal (KPV) alpha-melanocyte-stimulating hormone peptides. J. Pharmacol. Exp.Ther. 306:631-637.
    50. CUTULI, M., S. CRISTIANI, J.M. LIPTON, et al. 2000. Antimicrobial effects of alpha-MSH peptides. J. Leukoc. Biol. 67: 233-239.
    51. CATANIA, A., M. CUTULI, L. GAROFALO, et al. 2000. Plasma concentrations and anti-L-cytokine effects of alpha-melanocyte stimulating hormone in septic patients. Crit. Care. Med. 28:1403-1407.
    52. SLOMINSKI, A., J. WORTSMAN, J.E. MAZURKIEWICZ, et al. 1993. Detection of proopiomelanocortin-derived antigens in normal and pathologic human skin.J. Lab. Clin. Med. 122: 658-666.
    53. SLOMINSKI, A., R. PAUS &J.WORTSMAN. 1993. On the potential role of proopiomelanocortin in skin physiology and pathology. Mol. Cell. Endocrinol. 93: C1-C6.
    54. BAYERL, C., J. LAUK, I.MOLL, et al. 1997. Immunohistochemical characterization of HSP, alpha-MSH, Merkel cells and neuronal markers in acute UV dermatitis and acute contact dermatitis in vivo. Inflamm. Res. 46: 409-411.
    55. GRABBE, S., R.S. BHARDWAJ, K. MAHNKE, et al. 1996. Alpha-melanocyte-stimulating hormone induces hapten-specific tolerance in mice. J. Immunol. 156: 473-478.
    56. RHEINS, L.A., A.L. COTLEUR, R.S. KLEIER, et al. 1998. Alpha-melanocyte stimulating hormone modulates contact hypersensitivity responsiveness in C57/BL6 mice. J. Invest. Dennatol. 93: 511-517.
    57. ICHIYAMA, T., K. OKADA, I.L. CAMPBELL, et al. 2000. NF-kappaB activation is inhibited in human pulmonary epithelial cells transfected with alpha-melanocyte-stimulating hormone vector. Peptides 21: 1473-1477.
    58. RAAP, U., T. BRZOSKA, S. SOHL, et al. 2003. Alpha-melanocyte-stimulating hormone inhibits allergic airway inflammation. J. Immunol. 171: 353-359.
    59. COLOMBO, G., R. BUFFA, M.T. BARDELLA, et al. 2002. Anti-inflammatory effects of alpha-melanocyte-stimulating hormone in celiac intestinal mucosa. Neuroim-munomodulation 10: 208-216.
    60. HASSOUN, H.T., L. ZOU, F.A. MOORE, et al. 2002. Alpha-melanocyte-stimulating hormone protects against mesenteric ischemia-reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 282:G1059-G1068.
    61. ZOU, L., B. ATTUWAYBI & B.C. KONE. 2003. Effects of NF-kappa B inhibition on mesenteric ischemia-reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 284: G713-G721.
    62. SAN, T., B.K. OKTAR, E.SALIK, et al. 2001.The effect of alpha-melanocyte stimulating hormone on endotoxin-induced intestinal injury. Peptides 22: 2077-2082.
    63. RAJORA, N., G. BOCCOLI, A.CATANIA, et al. 1997. Alpha-MSH modulates experimental inflammatory bowel disease. Peptides 18: 381-385.
    64. OKTAR, B.K., F. ERCAN, B.C. YEGEN, et al. 2000. The effect of alpha-melanocyte stimulating hormone on colonic inflammation in the rat. Peptides 21:1271-1277.