慢性吗啡暴露和GABA对猫视皮层神经元反应特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.慢性吗啡暴露影响猫V1区神经元的对比度反应功能
     迄今为止,阿片类药物滥用仍然是国际范围内一个重要的社会问题和严重的医学药物问题。长期的阿片滥用不仅会导致生理性和精神性依赖,也会造成神经系统损伤。由于阿片受体在哺乳动物的中枢神经系统中广泛分布,并且大量存在于视觉系统中,所以人们推测阿片可能会影响视觉系统的多方面功能。已有研究表明慢性吗啡暴露会导致视皮层发生显著的形态变化,会改变视皮层神经元的一些视觉反应特性,包括方向和方位选择性、反应调制特性以及反应潜伏期等。
     图形对比度编码功能在视觉系统信息处理过程中起着非常重要的作用。视皮层神经元对视觉空间里的对比度参数特征有一定的反应特性。视觉信息对比度的变化不仅会影响人类对运动的感知,例如速度感知、方位方向辨别以及图形-背景分离等运动知觉,而且会影响到神经元调谐的一些参数,会导致空间频率和速度调谐曲线的改变。目前,关于慢性吗啡暴露对视皮层细胞对比度反应功能影响的研究还很缺乏。
     本研究中,我们采用在体胞外单细胞记录的方法研究和比较了慢性吗啡暴露猫和盐水暴露猫(对照组)初级视皮层神经元的对比度反应功能。实验结果显示,这两组实验动物的C50(反应值为1/2饱和反应值时的对比度值)都是呈近似于正态分布并且这两组分布之间有着显著性差异。与盐水对照组C50分布(0.07-0.32)相比,慢性吗啡暴露组的C50分布范围更广(0.10-0.77)。吗啡组中有超过一半的细胞(51.3%,41of80)表现出低对比敏感度(C50≥0.3),而盐水对照组中只有7.0%的细胞(4of57)表现出相似的反应特性。另一方面,高对比敏感度(C50≤0.1)的细胞占盐水对照组细胞总数的8.8%(5of57),高于其占吗啡暴露组细胞总数的比例(2.5%,2of80)。因此,与对照组相比,慢性吗啡暴露组神经元的对比敏感度显著性下降。另外,我们还记录并分析了两组实验动物的所记录神经元的最大视觉反应、自发放反应和信噪比。我们发现,吗啡暴露组神经元的最大视觉反应和自发放反应都显著性增大,信噪比变差。这意味着前者从噪声的背景中提取和传递信息的能力比后者弱。
     通过本次实验,我们发现慢性吗啡暴露组和生理盐水对照组的对比度反应功能存在显著性差异。我们的实验结果证明了慢性吗啡暴露会影响视觉通路神经元的一个重要反应属性——对比度编码特性,这为研究慢性吗啡暴露导致视觉系统神经元功能障碍及相关行为学改变提供了又一个重要证据,也有助于我们更好地理解吗啡对视觉感知能力损害的机制。
     二.GABA能系统影响猫视皮层神经元速度特性
     感知物体运动信息是视觉系统的重要功能,而外界物体的速度信息在指导知觉判断和行为过程中扮演着关键角色。对视觉系统而言,速度是由时空频率决定的。如果一个神经元的最优速度并不随着时空频率的变化而改变,这样的神经元则被认为是“速度调谐”(speed tuned)的;反之,如果神经元的最优速度随着空间频率的变化而变化,那么这样的神经元则认为具有“时空频率分离调谐’'(separable tuning)特征。研究空间频率和速度之间的关系对于深入了解运动调谐具有重要意义。目前,对于猫视皮层神经元的最优速度和空间频率的关系还没有研究报道。
     GABA能系统在维持视觉功能中发挥了重要的作用。一系列的研究表明GABA及其受体激动剂能改善视皮层神经元受损的细胞功能,而对于GABA能系统是否会影响到皮层神经元的速度特性尚未见报道。
     在本实验中,我们分别研究了猫的初级视皮层V1区和纹外皮层PMLS区神经元的最优速度和空间频率之间的关系,并采用细胞外微电泳实验来研究GABA和GABAA受体选择性拮抗剂Bicuculline这两种药物对视皮层神经元最优速度与空间频率关系的影响。研究发现,GABA导致初级视皮层V1区和PMLS区神经元最优速度对空间频率的依赖减弱,而Bicuculline则导致初级视皮层V1区和PMLS区神经元最优速度对空间频率的依赖增大。此外,我们还发现与PMLS区相比,V1区神经元最优速度对空间频率的依赖性更强。
     通过这次实验,我们发现微电泳药物组和对照组的速度调谐指数(Q)存在明显差异,不同脑区神经元的速度调谐指数也存在差异。我们的实验结果证明了GABA能系统会影响神经元的速度特性,从而影响其运动编码。
1. Chronic morphine exposure affects contrast response functions of V1neurons in cats
     Drug abuse is a serious social and medical problem in the world. Chronic exposure to opiates eventually leads to physiological and psychological dependence and causes severe damage to the nervous system. It has been indicated that the visual system is rich in opiate receptors. Morphological and electrophysiological studies reveal that chronic morphine administration leads to the prominently structural modification in the primary visual cortex. Many visual response properties of the neurons in LGN and V1, such as response modulation, orientation and direction selectivity and the visual response latency, are found to be significantly affected by chronic morphine exposure.
     Coding of contrast plays an important role in the visual information processing. Psychophysical studies indicate that human motion perception is contrast-dependent, such as speed perception, orientation discrimination and figure-ground segregation. It has als.o been suggested that variation of stimulus contrast can influence the neuronal tuning for other parameters, like spatial frequency and speed. Up to now, few studies have focused on the effects of opiates on contrast response function of the neurons in the visual cortex
     In the present study, we have studied and compared contrast response functions of neurons in primary visual cortex (V1) in chronic morphine-treated cats (MCs) and saline-treated cats (SCs)(control) using extracellular single-unit recording techniques. We found that C50(half-saturation contrast) of both groups were normally distributed and significant differences were seen between these two distributions. C50in MCs varied with a wider range (from0.10to0.77) than those in SCs (from0.07to0.32), More than half of the cells (51.3%,41of80) in MCs showed low contrast sensitivity (C50≥0.3) while only7.0%of the cells (4of57) in SCs exhibited similar response property. On the other hand, the percentage of the cells that were highly contrast sensitive (C50<0.1) is greater in SCs (8.8%,5of57) than in MCs (2.5%,2of80) These findings indicate a substantial decline in contrast sensitivity induced by chronic morphine exposure. We also analyzed the maximum visual responses (Rmax), baseline responses (M) and the signal-to-noise ratios (SNR) of all recorded neurons in MCs and SCs. We found that cells in MCs exhibited significantly higher maximum visual responses and baseline responses than those in SCs. Signal-to-noise ratios of neurons in MCs were much smaller than those in SCs.
     Our results that significant changes exist in contrast response function between MCs and SCs provide the first evidence of the influence of chronic morphine exposure on neuronal contrast encoding, which is an important response property of the neurons in the visual pathway. These findings provide new neurobiology evidence that chronic morphine exposure induces functional degradation of vision system and could be helpful for better understanding of the mechanism by which chronic morphine treatment impairs many aspects of visual perception,
     2. GABA affects the neural representation of speed in Cats
     The perception of speed is important for vision and plays a key role in perceptual judgments and motion actions. The speed of a grating stimulus is given by its temporal frequency divided by its spatial frequency. If the preferred speed is the same at all spatial frequency, then the temporal frequency tuning must vary as a function of spatial frequency:we say that the neuron is "speed tuned". If the preferred temporal frequency does not vary as a function of spatial frequency, then the preferred speed must vary with spatial frequency:we say that the neuron has "separable tuning" for spatial and temporal frequency. So far the speed tuning properties of neurons in cats are largely unknown.
     GABAnergic system is critical for maintaining normal visual function. A lot of studies have demonstrated that GABA and GABAa receptor agonist could improve impaired neuronal functions in visual cortex. However, it is still unknown whether GABAnergic system affects speed tuning of neurons in cats.
     In the present study, we used extracellular single-unit recording techniques to study the effect of spatial frequency on the preferred speed of neurons in areas V1and PMLS of anesthetized cats. Furthermore, we also studied the effects of electrophoretic application of the inhibitory transmitter GABA and the GABAA antagonist bicuculline on speed tuning properties of V1and PMLS neurons. We found that the preferred speed of V1and PMLS neurons became less dependent on spatial frequency following GABA treatment. On the contrary, bicuculline resulted in increased dependence of preferred speed of V1and PMLS neurons on spatial frequency. In addition, we also found the speed tuning of PMLS neurons depended less on spatial frequency than that of V1neurons.
     In conclusion, the results of this study show that the speed tuning properties of V1and PMLS neurons are different and GABAnergic system affects speed tuning of neurons in cats.The present study also has implications for understanding speed tuning properties of neurons and visual motion processing.
引文
Abdelhamid E E, Sultana M, Portoghese P S, et al.,1991. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther.258,299-303.
    Ahn S, Nelson C D, Garrison T R, et al.,2003. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proceedings of the National Academy of Sciences of the United States of America.100,1740-4.
    Albrecht D G, Hamilton D B,1982. Striate cortex of monkey and cat:contrast response function. Journal of neurophysiology.48,217-37.
    Alitto H J, Usrey W M,2004. Influence of contrast on orientation and temporal frequency tuning in ferret primary visual cortex. J Neurophysiol.91,2797-808.
    Ammon S, Mayer P, Riechert U, et al.,2003. Microarray analysis of genes expressed in the frontal cortex of rats chronically treated with morphine and after naloxone precipitated withdrawal. Brain Res Mol Brain Res.112,113-25.
    Atack J R, Wafford K A, Tye S J, et al.,2006. TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluor ophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for alpha2-and alpha3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates. The Journal of pharmacology and experimental therapeutics.316,410-22.
    Balasubramanian S, Fam S R, Hall R A,2007. GABAB receptor association with the PDZ scaffold Mupp 1 alters receptor stability and function. The Journal of biological chemistry. 282,4162-71.
    Barnard E A, Skolnick P, Olsen R W, et al.,1998. International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors:classification on the basis cf subunit structure and receptor function. Pharmacological reviews.50,291-313.
    Barral J, Toro S, Galarraga E, et al.,2000. GABAergic presynaptic inhibition of rat neostriatal afferents is mediated by Q-type Ca(2+) channels. Neuroscience letters.283,33-6.
    Beckett A H, Casy A F,1954. Synthetic analgesics:stereochemical considerations. The Journal of pharmacy and pharmacology.6,986-1001.
    Bedford F K, Kittler J T, Muller E, et al.,2001. GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nature neuroscience.4, 908-16.
    Belley M, Sullivan R, Reeves A, et al.,1999. Synthesis of the nanomolar photoaffinity GABA(B) receptor ligand CGP 71872 reveals diversity in the tissue distribution of GABA(B) receptor forms. Bioorganic & medicinal chemistry.7,2697-704.
    Berrendero F, Kieffer B L, Maldonado R,2002. Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci.22, 10935-40.
    Bertorelli R, Bastia E, Citterio F, et al.,2002. Lack of the nociceptin receptor does not affect acute or chronic nociception in mice. Peptides.23,1589-96.
    Besse D, Lombard M C, Zajac J M, et al.,1990. Pre-and postsynaptic distribution of mu, delta and kappa opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain research.521,15-22.
    Beuten J, Ma J Z, Payne T J, et al.,2005. Single- and multilocus allelic variants within the GABA(B) receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence. American journal of human genetics.76,859-64.
    Biermann B, Ivankova-Susankova K, Bradaia A, et al.,2010. The Sushi domains of GABAB receptors function as axonal targeting signals. The Journal of neuroscience:the official journal of the Society for Neuroscience.30,1385-94.
    Blumberg H, Dayton H B,1973. Naloxone, naltrexone, and related noroxymorphones. Advances in biochemical psychopharmacology.8,33-43.
    Bogdanov Y, Michels G, Armstrong-Gold C, et al.,2006. Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. The EMBO journal.25,4381-9.
    Bowery N G, Doble A, Hill D R, et al.,1981. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. European journal of pharmacology.71,53-70.
    Bowery N G,1993. GABAB receptor pharmacology. Annual review of pharmacology and toxicology.33,109-47.
    Brainard D H,1997. The Psychophysics Toolbox. Spatial vision.10,433-6.
    Breslow M F, Fankhauser M P, Potter R L, et al.,1989. Role of gamma-aminobutyric acid in antipanic drug efficacy. The American journal of psychiatry.146,353-6.
    Bridges R S, Grimm C T,1982. Reversal of morphine disruption of maternal behavior by concurrent treatment with the opiate antagonist naloxone. Science.218,166-8.
    Broom D C, Jutkiewicz E M, Rice K C, et al.,2002. Behavioral effects of delta-opioid receptor agonists:potential antidepressants? Japanese journal of pharmacology.90,1-6.
    Brunig I, Scotti E, Sidler C, et al.,2002. Intact sorting, targeting, and clustering of gamma-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro. The Journal of comparative neurology.443,43-55.
    Buda-Levin A, Wojnicki F H, Corwin R L,2005. Baclofen reduces fat intake under binge-type conditions. Physiology & behavior.86,176-84.
    Bunzow J R, Saez C, Mortrud M, et al.,1994. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS letters.347,284-8.
    Burgess J W, Villablanca J R,2007. Ontogenesis of morphine-induced behavior in the cat. Brain research.1134,53-61.
    Bussieres N, El Manira A,1999. GABA(B) receptor activation inhibits N-and P/Q-type calcium channels in cultured lamprey sensory neurons. Brain research.847,175-85.
    Calver A R, Medhurst A D, Robbins M J, et al.,2000. The expression of GABA(B1) and GABA(B2) receptor subunits in the cNS differs from that in peripheral tissues. Neuroscience.100,155-70.
    Caraiscos V B, Elliott E M, You-Ten K E, et al.,2004. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proceedings of the National Academy of Sciences of the United States of America.101,3662-7.
    Carr D B, Goudas L C, Balk E M, et al.,2004. Evidence report on the treatment of pain in cancer patients. Journal of the National Cancer Institute. Monographs.23-31.
    Celerier E, Laulin J P, Corcuff J B, et al.,2001. Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration:a sensitization process. The Journal cf neuroscience:the official journal of the Society for Neuroscience.21,4074-80.
    Chalifoux J R, Carter A Q 2011. GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. The Journal of neuroscience:the official journal of the Society for Neuroscience.31,4221-32.
    Chambers M S, Atack J R, Carling R W, et al.,2004. An orally bioavailable, functionally selective inverse agonist at the benzodiazepine site of GABAA alpha5 receptors with cognition enhancing properties. Journal of medicinal chemistry.47,5829-32.
    Chavkin C, James I F, Goldstein A,1982. Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science.215,413-5.
    Chen G, Kittler J T, Moss S J, et al.,2006. Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens. The Journal of neuroscience:the official journal of the Society for Neuroscience.26, 2513-21.
    Chen S R, Pan H L,2004. Activation of muscarinic receptors inhibits spinal dorsal horn projection neurons:role of GABAB receptors. Neuroscience.125,141-8.
    Chen Y, Mestek A, Liu J, et al.,1993. Molecular cloning of a rat kappa opioid receptor reveals sequence similarities to the mu and delta opioid receptors. Biochem J.295 (Pt 3),625-8.
    Cheng P Y, Svingos A L, Wang H, et al.,1995. Ultrastructural immunolabeling shows prominent presynaptic vesicular localization of delta-opioid receptor within both enkephalin-and nonenkephalin-containing axon terminals in the superficial layers of the rat cervical spinal cord.J Neurosci.15,5976-88.
    Clapham D E, Neer E J,1997. G protein beta gamma subunits. Annual review of pharmacology and toxicology.37,167-203.
    Collinson N, Kuenzi F M, Jarolimek W, et al.,2002. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABAA receptor. The Journal of neuroscience:the official journal of the Society for Neuroscience. 22,5572-80.
    Connor M, Vaughan C W, Jennings E A, et al.,1999. Nociceptin, Phe(1)psi-nociceptin(1-13), nocistatin and prepronociceptin(154-181) effects on calcium channel currents and a potassium current in rat locus coeruleus in vitro. British journal of pharmacology.128, 1779-87.
    Cox B M, Goldstein A, Hi C H,1976. Opioid activity of a peptide, beta-lipotropin-(61-91), derived from beta-lipotropin. Proceedings of the National Academy of Sciences of the United States of America.73,1821-3.
    Crain S M, Shen K F,1990. Opioids can evoke direct receptor-mediated excitatory effects on sensory neurons. Trends Pharmacol Sci.11,77-81.
    Crestani F, Keist R, Fritschy J M, et al.,2002. Trace fear conditioning involves hippocampal alpha5 GABA(A) receptors. Proceedings of the National Academy of Sciences of the United States of America.99,8980-5.
    Cross J A, Horton R W,1987. Are increases in GABAB receptors consistent findings following chronic antidepressant administration? European journal of pharmacology.141,159-62.
    Cross J A, Horton R W,1988. Effects of chronic oral administration of the antidepressants, desmethylimipramine and zimelidine on rat cortical GABAB binding sites:a comparison with 5-HT2 binding site changes. British journal of pharmacology.93,331-6.
    Crunelli V, Leresche N,1991. A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends in neurosciences.14,16-21.
    Cryan J F, Kaupmann K,2005. Don't worry 'B' happy!:a role for GABA(B) receptors in anxiety and depression. Trends in pharmacological sciences.26,36-43.
    Dhawan B N, Cesselin F, Raghubir R, et al.,1996. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacological reviews.48,567-92.
    Di Chiara G, North R A,1992. Neurobiology of opiate abuse. Trends in pharmacological sciences. 13,185-93.
    Dondio G, Ronzoni S, Eggleston D S, et al.,1997. Discovery of a novel class of substituted pyrrolooctahydroisoquinolines as potent and selective delta opioid agonists, based on an extension of the message-address concept. J Med Chem.40,3192-8.
    Dutar P, Nicoll R A,1988. Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron.1,585-91.
    Ebenezer I S, Patel S M,2004. Effects of the GABAB receptor agonists baclofen and 3-aminopropylphosphinic acid (3-APA) on food intake in rats. Methods and findings in experimental and clinical pharmacology.26,627-30.
    Edwards M, Badcock D R, Nishida S,1996. Contrast sensitivity of the motion system. Vision Res. 36,2411-21.
    Eisenach J C, Carpenter R, Curry R,2003. Analgesia from a peripherally active kappa-opioid receptor agonist in patients with chronic pancreatitis. Pain.101,89-95.
    Enna S J,1997. GABAB receptor agonists and antagonists:pharmacological propertles and therapeutic possibilities. Expert opinion on investigational drugs.6,1319-25.
    Enna S J, McCarson K E,2006. The role of GABA in the mediation and perception of pain. Advances in pharmacology.54,1-27.
    Erchegyi J, Kastin A J, Zadina J E,1992. Isolation of a novel tetrapeptide with opiate and antiopiate activity from human brain cortex:Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1). Peptides.13,623-31.
    Essrich C, Lorez M, Benson J A, et al.,1998. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nature neuroscience.1,563-71.
    Feldman P L, James M K, Brackeen M F, et al.,1991. Design, synthesis, and pharmacological evaluation of ultrashort- to long-acting opioid analgetics. Journal of medicinal chemistry. 34,2202-8.
    Filliol D, Ghozland S, Chluba J, et al.,2000. Mice deficient for delta-and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet.25,195-200.
    Fishbein D H, Krupitsky E, Flannery B A, et al.,2007. Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug and alcohol dependence.90,25-38.
    Foster A C, Kemp J A,2006. Glutamate- and GABA-based CNS therapeutics. Current opinion in pharmacology.6,7-17.
    Freeman T C, Durand S, Kiper D C, et al.,2002. Suppression without inhibition in visual cortex. Neuron.35,759-71.
    Friend S M, Baker C L, Jr.,1993. Spatio-temporal frequency separability in area 18 neurons of the cat. Vision research.33,1765-71.
    Fuchs P N, Roza C, Sora I, et al.,1999. Characterization of mechanical withdrawal responses and effects of mu-, delta- and kappa-opioid agonists in normal and mu-opioid receptor knockout mice. Brain Res.821,480-6.
    Fundytus M E, Schiller P W, Shapiro M, et al.,1995. Attenuation of morphine tolerance and dependence with the highly selective delta-opioid receptor antagonist TIPP[psi]. Eur J Pharmacol.286,105-8.
    Gahwiler B H, Brown D A,1985. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proceedings of the National Academy of Sciences of the United States of America.82,1558-62.
    Garzon J, Castro M, Sanchez-Blazquez P,1998. Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to mu receptors. Eur J Neurosci.10,2557-64.
    Gaveriaux-Ruff C, Kieffer B L,2002. Opioid receptor genes inactivated in mice:the highlights. Neuropeptides.36,62-71.
    Gaveriaux-Ruff C, Simonin F, Filliol D, et al.,2003. Enhanced humoral response in kappa-opioid receptor knockout mice. J Neuroimmunol.134,72-81.
    Gebhart G F, Su X, Joshi S, et al.,2000. Peripheral opioid modulation of visceral pain. Ann N Y Acad Sci.909,41-50.
    Ghozland S, Matthes H W, Simonin F, et al.,2002. Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci.22,1146-54.
    Gold M S, Dackis C A, Pottash A L, et al.,1982. Naltrexone, opiate addiction, and endorphins. Medicinal research reviews.2,211-46.
    Goldstein A, Tachibana S, Lowney L I, et al.,1979. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proceedings of the National Academy of Sciences of the United States of America.76,6666-70.
    Greenwald M, Johanson C E, Bueller J, et al.,2007. Buprenorphine duration of action:mu-opioid receptor availability and pharmacokinetic and behavioral indices. Biological psychiatry. 61,101-10.
    Grevel J, Yu V, Sadee W,1985. Characterization of a labile naloxone binding site (lambda site) in rat brain. Journal of neurochemistry.44,1647-56.
    Hall F S, Sora I, Uhl G R,2001. Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl).154,43-9.
    Hanner M, Moebius F F, Flandorfer A, et al.,1996. Purification, molecular cloning, and expression of the mammalian sigmal-binding site. Proceedings of the National Academy of Sciences of the United States of America.93,8072-7.
    Harris L S,1986. Nathan B. Eddy Memorial Award lecture. NIDA research monograph.67,4-13.
    Hashimoto T, Kuriyama K,1997. In vivo evidence that GABA(B) receptors are negatively coupled to adenylate cyclase in rat striatum. Journal of neurochemistry.69,365-70.
    Hawkins K N, Knapp R J, Gehlert D R, et al.,1988. Quantitative autoradiography of [3H]CTOP binding to mu opioid receptors in rat brain. Life sciences.42,2541-51.
    He L, Li X, Hua T, et al.,2005a. Chronic morphine exposure affects the visual response properties of V1 neurons in cat. Brain research.1060,81-8.
    He L, Li X, Hua T, et al.,2005b. Degradation of response modulation of visual cortical cells in cats with chronic exposure to morphine. Neurosci Lett.384,168-71.
    He L H, Li G X, Li X R, et al.,2005c. Chronic morphine exposure induces degradation of receptive field properties of LGN cells in cats. Acta pharmacologica Sinica.26,1034-8.
    Heeger D J,1992. Normalization of cell responses in cat striate cortex. Vis Neurosci.9,181-97.
    Henderson G,1983. Electrophysiological analysis of opioid action in the central nervous system. British medical bulletin.39,59-64.
    Hendry I A, Kelleher K L, Bartlett S E, et al.,2000. Hypertolerance to morphine in G(z alpha)-deficient mice. Brain Res.870,10-9.
    Herring D, Huang R, Singh M, et al.,2003. Constitutive GABAA receptor endocytosis is dynamin-mediated and dependent on a dileucine AP2 adaptin-binding motif within the beta 2 subunit of the receptor. The Journal of biological chemistry.278,24046-52.
    Horvath A, Kastin A J,1990. Evidence for presence of Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) in human brain cortex. International journal of peptide and protein research.36,281-4.
    Houde R W,1979. Analgesic effectiveness of the narcotic agonist-antagonists. British journal of clinical pharmacology.7 Suppl 3,297S-308S.
    Hu F, Li G, Liang Z, et al.,2008a. The morphological changes of pyramidal and spiny stellate cells in the primary visual cortex of chronic morphine treated cats. Brain Research Bulletin.77, 77-83.
    Hua T, Li X, He L, et al.,2006. Functional degradation of visual cortical cells in old cats. Neurobiology of aging.27,155-62.
    Hughes J, Smith T W, Kosterlitz H W, et al,1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature.258,577-80.
    Jacob T C, Bogdanov Y D, Magnus C, et al.,2005. Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. The Journal of neuroscience:the official journal of the Society for Neuroscience.25,10469-78.
    Jarolimek W, Misgeld U,1997. GABAB receptor-mediated inhibition of tetrodotoxin-resistant GABA release in rodent hippocampal CA1 pyramidal cells. The Journal of neuroscience: the official journal of the Society for Neuroscience.17,1025-32.
    Joyce C J,2007. In silico comparative genomic analysis of GABAA receptor transcriptional regulation. BMC genomics.8,203.
    Kantamneni S, Correa S A, Hodgkinson G K, et al.,2007. GISP:a novel brain-specific protein that promotes surface expression and function of GABA(B) receptors. Journal of neurochemistry.100,1003-17.
    Kaupmann K, Huggel K, Heid J, et al.,1997. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature.386,239-46.
    Kawamoto H, Ozaki S, Itoh Y, et al.,1999. Discovery of the first potent and selective small molecule opioid receptor-like (ORL1) antagonist:1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397). Journal of medicinal chemistry.42,5061-3.
    Kest B, Hopkins E, Palmese C A, et al.,2001. Morphine tolerance and dependence in nociceptin/orphanin FQ transgenic knock-out mice. Neuroscience.104,217-22.
    Khachaturian H, Watson S J, Lewis M E, et al.,1982. Dynorphin immunocytochemistry in the rat central nervous system. Peptides.3,941-54.
    Khachaturian H, Lewis M E, Watson S J,1983. Enkephalin systems in diencephalon and brainstem of the rat. J Comp Neurol.220,310-20.
    Kieffer B L,1995. Recent advances in molecular recognition and signal transduction of active peptides:receptors for opioid peptides. Cellular and molecular neurobiology.15,615-35.
    Kitchen I, Slowe S J, Matthes H W, et al.,1997. Quantitative autoradiographic mapping of mu-, delta-and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain research.778,73-88.
    Kittler J T, Delmas P, Jovanovic J N, et al.,2000. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. The Journal of neuroscience:the official journal of the Society for Neuroscience.20,7972-7.
    Kittler J T, Thomas P, Tretter V, et al.,2004. Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proceedings of the National Academy of Sciences of the United States of America.101,12736-41.
    Knealing T W, Schaal D W,2002. Disruption of temporally organized behavior by morphine. Journal of the experimental analysis of behavior.77,157-69.
    Knight A R, Bowery N G,1996. The pharmacology of adenylyl cyclase modulation by GABAB receptors in rat brain slices. Neuropharmacology.35,703-12.
    Koch T, Schulz S, Schroder H, et al.,1998. Carboxyl-terminal splicing of the rat mu opioid receptor modulates agonist-mediated internalization and receptor resensitization. The Journal of biological chemistry.273,13652-7.
    Kohn A, Movshon J A,2003. Neuronal adaptation to visual motion in area MT of the macaque. Neuron.39,681-91.
    Koob G F, Le Moal M,1997. Drug abuse:hedonic homeostatic dysregulation. Science.278,52-8.
    Korpi E R, Grunder G, Luddens H,2002a. Drug interactions at GABA(A) receptors. Progress in neurobiology.67,113-59.
    Korpi E R, Mihalek R M, Sinkkonen S T, et al.,2002b. Altered receptor subtypes in the forebrain of GABA(A) receptor delta subunit-deficient mice:recruitment of gamma 2 subunits. Neuroscience.109,733-43.
    Koster A, Montkowski A, Schulz S, et al.,1999. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci U S A.96,10444-9.
    Kralic J E, O'Buckley T K, Khisti R T, et al.,2002. GABA(A) receptor alpha-1 subunit deletion alters receptor subtype assembly, pharmacological and behavioral responses to benzodiazepines and zolpidem. Neuropharmacology.43,685-94.
    Laurie D J, Seeburg P H, Wisden W,1992. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. The Journal of neuroscience: the official journal of the Society for Neuroscience.12,1063-76.
    Lesscher H M, Bailey A, Burbach J P, et al.,2003. Receptor-selective changes in mu-, delta-and kappa-opioid receptors after chronic naltrexone treatment in mice. The European journal of neuroscience.17,1006-12.
    Leventhal A G, Thompson K G, Liu D, et al.,1995. Concomitant sensitivity to orientation, direction, and color of cells in layers 2,3, and 4 of monkey striate cortex. J Neurosci.15, 1808-18.
    Leventhal A G, Wang Y, Pu M, et al.,2003. GABA and its agonists improved visual cortical function in senescent monkeys. Science.300,812-5.
    Lewis M E, Pert A, Pert C B, et al.,1983. Opiate receptor localization in rat cerebral cortex. The Journal of comparative neurology.216,339-58.
    Li G, Yang Y, Liang Z, et al.,2008. GABA-mediated inhibition correlates with orientation selectivity in primary visual cortex of cat. Neuroscience.155,914-22.
    Li G L, Qiao Z M, Han J S, et al.,2010. Dissociated behavior of low-frequency responses and high-frequency oscillations after systemic morphine administration in conscious rats. Neuroreport.21,2-7.
    Li S P, Park M S, Kim J H, et al.,2004. Chronic nicotine and smoke treatment modulate dopaminergic activities in ventral tegmental area and nucleus accumbens and the gamma-aminobutyric acid type B receptor expression of the rat prefrontal cortex. Journal of neuroscience research.78,868-79.
    Li Y, He L, Chen Q, et al.,2007a. Changes of micro-opioid receptors and GABA in visual cortex of chronic morphine treated rats. Neurosci Lett.428,11-6.
    Li Y, Wang H, Niu L, et al.,2007b. Chronic morphine exposure alters the dendritic morphology of pyramidal neurons in visual cortex of rats. Neurosci Lett.418,227-31.
    Lichtman A H, Sheikh S M, Loh H H, et al.,2001. Opioid and cannabinoid modulation of precipitated withdrawal in delta(9)-tetrahydrocannabinol and morphine-dependent mice. J Pharmacol Exp Ther.298,1007-14.
    Livingstone M S, Conway B R,2007. Contrast affects speed tuning, space-time slant, and receptive-field organization of simple cells in macaque V1. J Neurophysiol.97,849-57.
    Lloyd K G, Thuret F, Pile A,1985. Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex:a common action of repeated administration of different classes of antidepressants and electroshock. The Journal of pharmacology and experimental therapeutics.235,191-9.
    Loh H H, Liu H C, Cavalli A, et al.,1998. mu Opioid receptor knockout in mice:effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res.54,321-6.
    Long Z, Liang Z, He L, et al.,2008. Chronic morphine exposure affects visual response latency of the lateral geniculate nucleus in cats. Clin Exp Pharmacol Physiol.35,1222-6.
    Lord J A, Waterfield A A, Hughes J, et al.,1977. Endogenous opioid peptides:multiple agonists and receptors. Nature,267,495-9.
    Lorente P, Lacampagne A, Pouzeratte Y, et al.,2000. gamma-aminobutyric acid type B receptors are expressed and functional in mammalian cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America.97,8664-9.
    Machelska H, Pfluger M, Weber W, et al.,1999. Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans. The Journal of pharmacology and experimental therapeutics.290,354-61.
    Magnan J, Paterson S J, Tavani A, et al.,1982. The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn-Schmiedeberg's archives of pharmacology.319,197-205.
    Malcangio M, Bowery N G,1996. GABA and its receptors in the spinal cord. Trends in pharmacological sciences.17,457-62.
    Mamiya T, Noda Y, Ren X, et al.,2001. Morphine tolerance and dependence in the nociceptin receptor knockout mice. J Neural Transm.108,1349-61.
    Mansour A, Lewis M E, Khachaturian H, et al.,1986. Pharmacological and anatomical evidence of selective mu, delta, and kappa opioid receptor binding in rat brain. Brain Res.399, 69-79.
    Mansour A, Khachaturian H, Lewis M E, et al.,1987. Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci.7, 2445-64.
    Martin W R, Eades C G, Thompson J A, et al.,1976. The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. The Journal of pharmacology and experimental therapeutics.197,517-32.
    Martin W R,1979. History and development of mixed opioid agonists, partial agonists and antagonists. British journal of clinical pharmacology.7 Suppl 3,273S-279S.
    Matthes H W, Maldonado R, Simonin F, et al.,1996. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 383,819-23.
    Matthes H W, Smadja C, Valverde O, et al.,1998. Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor. J Neurosci.18,7285-95.
    McKernan R M, Rosahl T W, Reynolds D S, et al.,2000. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nature neuroscience.3,587-92.
    McLaughlin J P, Marton-Popovici M, Chavkin C,2003. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci.23, 5674-83.
    Meunier J C, Mollereau C, Toll L, et al.,1995. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature.377,532-5.
    Mintz I M, Bean B P,1993. GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Neuron.10,889-98.
    Mogil J S, Grisel J E, Reinscheid R K, et al.,1996. Orphanin FQ is a functional anti-opioid peptide. Neuroscience.75,333-7.
    Mogil J S, Pasternak G W,2001. The molecular and behavioral pharmacology of the orphanin FQ/nociceptin peptide and receptor family. Pharmacol Rev.53,381-415.
    Mollereau C, Parmentier M, Mailleux P, et al.,1994. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS letters.341,33-8.
    Mollereau C, Simons M J, Soularue P, et al.,1996. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proceedings of the National Academy of Sciences of the United States of America.93,8666-70.
    Mombereau C, Kaupmann K, Gassmann M, et al.,2005. Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. Neuroreport.16,307-10.
    Montecucchi P C, de Castiglione R, Piani S, et al.,1981. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. International journal of peptide and protein research.17,275-83.
    Neal C R, Jr., Mansour A, Reinscheid R, et al.,1999. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system:comparison of ORL1 receptor mRNA expression with (125)I-[(14)Tyr]-orphanin FQ binding. The Journal of comparative neurology.412,563-605.
    Nielsen E B, Appel J B,1983. The effects of drugs on the discrimination of color following a variable delay period:a signal detection analysis. Psychopharmacology.80,24-8.
    Nyberg F, Sanderson K, Glamsta E L,1997. The hemorphins:a new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers.43,147-56.
    Ohzawa I, Sclar G, Freeman R D,1982. Contrast gain control in the cat visual cortex. Nature.298, 266-8.
    Okuda-Ashitaka E, Minami T, Tachibana S, et al.,1998. Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature.392,286-9.
    Palczewski K, Kumasaka T, Hori T, et al.,2000. Crystal structure of rhodopsin:A G protein-coupled receptor. Science.289,739-45.
    Pande A C, Pyke R E, Greiner M, et al.,1996. Analgesic efficacy of enadoline versus placebo or morphine in postsurgical pain. Clinical neuropharmacology.19,451-6.
    Paterson N E, Froestl W, Markou A,2005. Repeated administration of the GABAB receptor agonist CGP44532 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine-seeking in rats. Neuropsychopharmacology:official publication of the American College of Neuropsychopharmacology.30,119-28.
    Pelton J T, Kazmierski W, Gulya K, et al.,1986. Design and synthesis of conformationally constrained somatostatin analogues with high potency and specificity for mu opioid receptors. Journal of medicinal chemistry.29,2370-5.
    Peng Z, Hauer B, Mihalek R M, et al.,2002. GABA(A) receptor changes in delta subunit-deficient mice:altered expression of alpha4 and gamma2 subunits in the forebrain. The Journal of comparative neurology.446,179-97.
    Perrone J A, Thiele A,2001. Speed skills:measuring the visual speed analyzing properties of primate MT neurons. Nature neuroscience.4,526-32.
    Pert C B, Snyder S H,1973. Opiate receptor:demonstration in nervous tissue. Science.179, 1011-4.
    Pilc A, Nowak G,2005. GABAergic hypotheses of anxiety and depression:focus on GABA-B receptors. Drugs of today.41,755-66.
    Pin J P, Kniazeff J, Binet V, et al.,2004. Activation mechanism of the heterodimeric GABA(B) receptor. Biochemical pharmacology.68,1565-72.
    Portoghese P S,1965. A new concept on the mode of interaction of narcotic analgesics with receptors. Journal of medicinal chemistry.8,609-16.
    Potes C S, Neto F L, Castro-Lopes J M,2006. Administration of baclofen, a gamma-aminobutyric acid type B agonist in the thalamic ventrobasal complex, attenuates allodynia in monoarthritic rats subjected to the ankle-bend test. Journal of neuroscience research.83, 515-23.
    Priebe N J, Cassanello C R, Lisberger S G,2003. The neural representation of speed in macaque area MT/V5. The Journal of neuroscience:the official journal of the Society for Neuroscience.23,5650-61.
    Priebe N J, Ferster D,2006. Mechanisms underlying cross-orientation suppression in cat visual cortex. Nat Neurosci.9,552-61.
    Princivalle A P, Pangalos M N, Bowery N G, et al.,2001. Distribution of GABA(B(1a)), GABA(B(lb)) and GABA(B2) receptor protein in cerebral cortex and thalamus of adult rats. Neuroreport.12,591-5.
    Prior P, Schmitt B, Grenningloh G, et al.,1992. Primary structure and alternative splice variants of gephyrin, a putative glycine receptor-tubulin linker protein. Neuron.8,1161-70.
    Pu L, Bao G B, Xu N J, et al.,2002. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. The Journal of neuroscience:the official journal of the Society for Neuroscience.22,1914-21.
    Qiu C, Sora I, Ren K, et al.,2000. Enhanced delta-opioid receptor-mediated antinociception in mu-opioid receptor-deficient mice. Eur J Pharmacol.387,163-9.
    Regan D, Beverley K I,1984. Figure-ground segregation by motion contrast and by luminance contrast. J Opt Soc Am A.1,433-42.
    Reinscheid R K, Nothacker H P, Bourson A, et al.,1995. Orphanin FQ:a neuropeptide that activates an opioidlike G protein-coupled receptor. Science.270,792-4.
    Robbins M J, Calver A R, Filippov A K, et al.,2001. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. The Journal of neuroscience:the official journal of the Society for Neuroscience.21,8043-52.
    Roberts A J, Gold L H, Polis I, et al.,2001. Increased ethanol self-administration in delta-opioid receptor knockout mice. Alcohol Clin Exp Res.25,1249-56.
    Roberts D C, Andrews M M,1997. Baclofen suppression of cocaine self-administration: demonstration using a discrete trials procedure. Psychopharmacology.131,271-7.
    Robinson T E, Kolb B,1997. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. The Journal of neuroscience:the official journal of the Society for Neuroscience.17,8491-7.
    Robinson T E, Kolb B,1999. Morphine alters the structure of neurons in the nucleus accumbens and neocortex of rats. Synapse.33,160-2.
    Robinson T E, Kolb B,2004. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology.47 Suppl 1,33-46.
    Rothenberg S, Peck E A, Schottenfeld S, et al.,1979. Methadone depression of visual signal detection performance. Pharmacology, biochemistry, and behavior.11,521-7.
    Rubin B S, Bridges R S,1984. Disruption of ongoing maternal responsiveness in rats by central administration of morphine sulfate. Brain research.307,91-7.
    Rudolph U, Crestani F, Benke D, et al.,1999. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature.401,796-800.
    Rudolph U, Mohler H,2004. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annual review of pharmacology and toxicology.44,475-98.
    Saint D A, Thomas T, Gage P W,1990. GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neuroscience letters.118,9-13.
    Samways D S, Henderson G,2006. Opioid elevation of intracellular free calcium:possible mechanisms and physiological relevance. Cellular signalling.18,151-61.
    Satoh M, Minami M,1995. Molecular pharmacology of the opioid receptors. Pharmacology & therapeutics.68,343-64.
    Schmolesky M T, Wang Y, Pu M, et al.,2000. Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nature neuroscience.3,384-90.
    Schuller A G, King M A, Zhang J, et al.,1999. Retention of heroin and morphine-6 beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci. 2,151-6.
    Schwenk J, Metz M, Zolles G, et al.,2010. Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature.465,231-5.
    Sclar G, Maunsell J H, Lennie P,1990. Coding of image contrast in central visual pathways of the macaque monkey. Vision research.30,1-10.
    Seth P, Fei Y J, Li H W, et al.,1998. Cloning and functional characterization of a sigma receptor from rat brain. Journal of neurochemistry.70,922-31.
    Shuster S J, Riedl M, Li X, et al.,1999. Stimulus-dependent translocation of kappa opioid receptors to the plasma membrane. The Journal of neuroscience:the official journal of the Society for Neuroscience.19,2658-64.
    Sieghart W,1995. Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacological reviews.47,181-234.
    Simon E J, Hiller J M, Edelman I,1973. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proceedings of the National Academy of Sciences of the United States of America.70,1947-9.
    Simonin F, Valverde O, Smadja C, et al.,1998. Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J.17, 886-97.
    Sora I, Funada M, Uhl G R,1997. The mu-opioid receptor is necessary for [D-Pen2,D-Pen5]enkephalin-induced analgesia. Eur J Pharmacol.324, R1-2.
    Soto A, Arce A, M K K, et al.,1998. Effect of the cation and the anion of an electrolyte on the solubility of DL-aminobutyric acid in aqueous solutions:measurement and modelling. Biophysical chemistry.73,77-83.
    Sternfeld F, Carling R W, Jelley R A, et al.,2004. Selective, orally active gamma-aminobutyric acidA alpha5 receptor inverse agonists as cognition enhancers. Journal of medicinal chemistry.47,2176-9.
    Stone L S, Thompson P,1992. Human speed perception is contrast dependent. Vision Res.32, 1535-49.
    Svingos A L, Cheng P Y, Clarke C L, et al.,1995. Ultrastructural localization of delta-opioid receptor and Met5-enkephalin immunoreactivity in rat insular cortex. Brain Res.700, 25-39.
    Taira T, Kawamura H, Tanikawa T, et al.,1995. A new approach to control central deafferentation pain:spinal intrathecal baclofen. Stereotactic and functional neurosurgery.65,101-5.
    Tolhurst D J, Movshon J A,1975. Spatial and temporal contrast sensitivity of striate cortical neurones. Nature.257,674-5.
    Towers S, Princivalle A, Billinton A, et al.,2000. GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. The European journal of neuroscience.12,3201-10.
    Tsao P, Cao T, von Zastrow M,2001. Role of endocytosis in mediating downregulation of G-protein-coupled receptors. Trends in pharmacological sciences.22,91-6.
    Ueda H, Yamaguchi T, Tokuyama S, et al.,1997. Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci Lett.237,136-8.
    Uusi-Oukari M, Heikkila J, Sinkkonen S T, et al.,2000. Long-range interactions in neuronal gene expression:evidence from gene targeting in the GABA(A) receptor beta2-alpha6-alphal-gamma2 subunit gene cluster. Molecular and cellular neurosciences. 16,34-41.
    Varga E V, Yamamura H I, Rubenzik M K, et al.,2003. Molecular mechanisms of excitatory signaling upon chronic opioid agonist treatment. Life sciences.74,299-311.
    Vigot R, Barbieri S, Brauner-Osborne H, et al.,2006. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron.50,589-601.
    Vonvoigtlander P F, Lahti R A, Ludens J H,1983. U-50,488:a selective and structurally novel non-Mu (kappa) opioid agonist. The Journal of pharmacology and experimental therapeutics.224,7-12.
    Walker J M, Bowen W D, Thompson L A, et al.,1988. Distribution of opiate receptors within visual structures of the cat brain. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale.73,523-32.
    Wamsley J K, Palacios J M, Kuhar M J,1981. Autoradiographic localization of opioid receptors in the mammalian retina. Neurosci Lett.27,19-24.
    Wang H, Wei H, Chen B, et al,2006. Chronic morphine exposure impairs short-term synaptic depression of geniculo-cortical visual pathway in vivo. Neuroscience letters.410,228-33.
    Wei Z Y, Brown W, Takasaki B, et al.,2000. N,N-Diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide:a novel, exceptionally selective, potent delta opioid receptor agonist with oral bioavailability and its analogues. J Med Chem.43,3895-905.
    Williams J T, Christie M J, Manzoni O,2001. Cellular and synaptic adaptations mediating opioid dependence. Physiological reviews.81,299-343.
    Wisden W, Laurie D J, Monyer H, et al.,1992. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. The Journal of neuroscience:the official journal of the Society for Neuroscience.12,1040-62.
    Wisden W, Seeburg P H,1992. GABAA receptor channels:from subunits to functional entities. Current opinion in neurobiology.2,263-9.
    Wisden W, Cope D, Klausberger T, et al.,2002. Ectopic expression of the GABA(A) receptor alpha6 subunit in hippocampal pyramidal neurons produces extrasynaptic receptors and an increased tonic inhibition. Neuropharmacology.43,530-49.
    Wise S P, Herkenham M,1982. Opiate receptor distribution in the cerebral cortex of the Rhesus monkey. Science.218,387-9.
    Wuster M, Schulz R, Herz A,1979. Specificity of opioids towards the mu-, delta- and epsilon-opiate receptors. Neuroscience letters.15,193-8.
    Xu J, Wojcik W J,1986. Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells:blockade by islet-activating protein. The Journal of pharmacology and experimental therapeutics.239,568-73.
    Yang Y, Liang Z, Li G, et al.,2008. Aging affects contrast response functions and adaptation of middle temporal visual area neurons in rhesus monkeys. Neuroscience.156,748-57.
    Yang Y, Zhang J, Liang Z, et al.,2009. Aging affects the neural representation of speed in Macaque area MT. Cerebral cortex.19,1957-67.
    Zadina J E, Hackler L, Ge L J, et al.,1997. A potent and selective endogenous agonist for the mu-opiate receptor. Nature.386,499-502.
    Zagon I S, Gibo D M, McLaughlin P J,1991. Zeta (zeta), a growth-related opioid receptor in developing rat cerebellum:identification and characterization. Brain research.551,28-35.
    Zagon I S, Verderame M F, Allen S S, et al.,1999. Cloning, sequencing, expression and function of a cDNA encoding a receptor for the opioid growth factor, [Met(5)]enkephalin. Brain research.849,147-54.
    Zaratin P F, Petrone G, Sbacchi M, et al.,2004. Modification of nociception and morphine tolerance by the selective opiate receptor-like orphan receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-l-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). The Journal of pharmacology and experimental therapeutics.308,454-61.
    Zhu Y, King M A, Schuller A G, et al.,1999. Retention of supraspinal delta-like analgesia and loss of morphine tolerance in delta opioid receptor knockout mice. Neuron.24,243-52.