黄土高原清水河流域土地利用/气候变异对径流泥沙的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地区面临着水土流失严重和水资源短缺等关键的生态问题,在气候变化和黄土高原以植被恢复、保持水土为主要内容的生态恢复与治理工程实施的背景下,黄土高原区河川径流和输沙演变规律及其成因的研究越来越受到广泛的关注和重视。本文以黄土高原区典型中尺度流域清水河流域(面积436km~2)为研究对象,采用非参数统计(Mann-Kendall)秩检验方法结合滑动T检验和跃变参数分析法对流域内径流、输沙及气候因素进行趋势分析和突变点检验;同时基于流域内土地利用变化特点,分析土地利用和气候因素变异对径流和输沙变化的贡献率;最后结合SWAT模型和情景模拟的手段分析清水河流域土地利用/植被变化下流域径流和输沙的变化,旨在为黄土高原中尺度流域建设高效水资源利用和有效防治水土流失的植被配置方式提供理论依据。
     对航片和TM影像解译土地利用数据及土地利用现状图分析,清水河流域1959-2007年间土地利用/植被覆盖变化特征为乔木林面积增加,灌木林面积增加,草地面积减少,农地面积减少,园地面积增加,居民区面积迅速增加。流域内针叶林和阔叶林分布在高海拔、204~0°的阴坡和沟谷;农地和园地分布于低海拔、缓坡的阳坡;灌木林和草地分布在海拔850~1550m的范围内。结合Fragstats软件分析,整个清水河流域景观斑块数目减少,斑块平均面积扩大,面积加权平均形状因子减小,反映出景观的破碎度降低,景观连接性增强,景观异质性减弱;景观多样性方面,原有的优势景观类型优势度降低,各种类型斑块在景观中的分布向着均匀化方向演变。
     MK趋势性分析和突变点检验表明:降雨量及极端降雨指数均无趋势性变化;平均气温、最高气温、最低气温有显著的上升趋势,突变点位于1997年、1994年和1998年;潜在蒸发散有极显著的上升趋势,突变点在1997年;径流量和输沙量都有极显著的下降趋势,突变点同在1980年。根据水量平衡原理分析,气候因素对径流减少的贡献率为48.17%。而土地利用的贡献率为51.83%。根据通用土壤流失方程分析,降雨因素对输沙量减少的贡献率为9.89%。而土地利用的贡献率为90.11%。土地利用变化中主要是林地的变化,可见,清水河流域林地面积的增加是导致径流和输沙减少的原因之一。
     SWAT模型模拟结果表明:平均径流、输沙在校准期与验证期的模型效率系数Ens都在0.5以上,相对误差小于20%,R~2达到0.7以上,表明模型在模拟清水河流域的径流和输沙方面具有良好的适用性。对降雨、径流深和输沙量的空间分布分析表明,降雨对径流和泥沙的影响有直接和间接两个方面,间接影响表现在其对植被分布的影响,另外地形因素起着重要的作用,坡度大的子流域,其径流和输沙都高于其它子流域。不确定性分析结果表明,径流和输沙对DEM的分辨率响应显著,两者都表现出随DEM分辨率的增大而增加的变化趋势。不同潜在蒸发散计算径流量高低次序为Priestley-Taylor>Penman-Monteith>Hargreaves。
     极端土地利用情景下,径流的高低次序依次为灌木林地>草地>阔叶林地>园地>针叶林,与原地类相比灌木林地和草地均使模拟径流增加,其余的情景都使模拟径流减少。不同情景的输沙量依次为草地>灌木林地>阔叶林地>园地>针叶林地,与原地类比较草地使模拟输沙量增加,其余的情景都使模拟输沙量减少;不同森林覆盖率情景下年均径流和输沙量都随森林覆盖率的增大呈下降趋势,森林覆盖率在40-70%之间的输沙量下降速率最大。
     根据极端土地利用情景模拟结果和土地利用的地形分异特点,为高效利用水资源同时减少土壤侵蚀,设计土地利用/植被覆盖的最优情景,并模拟径流和输沙,结果表明:最优情景下径流深增加16.34%,输沙模数减小94.71%,可见,最优情景的植被配置起到了高效利用水资源和减少土壤侵蚀的作用。同时,最优情景下径流的空间分布与原地类相比没有太大的改变,输沙模数的空间分布呈现出高值区由集中到分散的变化趋势,说明在地类发生改变的同时,影响输沙因素的敏感性也发生了变化,植被因素的敏感性降低,径流和降雨的敏感性增加,同时地形因素依然是最敏感的因素。
The decreasing Yellow River streamflow during the past fifty years has been attributed to land use/land cover change and climate variability in addition to the uptake by water projects.Large scale re-vegetation based soil and water conservation deployed to combat the severe soil erosion since 50s of last century on the Loess Plateau of China have resulted in the dramatic change of land use and land cover during the past six decades or so.On the other hand,the region is considered one of the most sensitive aera for globle climate variability.Therefore,it is critically important to understand and predict the coupling effects of land use and cliamate variability on the runoff and sediment characteristics for integrated watershed management and ecological restoration.The study examined the trend of annual streamflow,sediment,precipitation,temperature and PET and their change points for a typical mesoscale Qingshui River watershed located on the Loess Plateau by using non-parametric Mann-Kendall test,Moving t-test technique,and hopped parameter analysis.A simple water balance and mass balance based methodology was used to separate the landuse change effects on the runoff and sediment yields from that of climate variability.To predict the future land use/land cover change effects on the runoff and sediment yield,the calibrated and validated at both annual and monthly scales SWAT was used to analyze the potential effects of land use/ land cover scenarios on the sediment and streamflow.The ultimate objective of model excercises was to provide the sound theoretical basis for vegetation restoration and management aiming at optimized configuration of vegetation across the watershed to improve the soil erosion control while reduced water use.
     Based on the land use data and the land use map which interpretated by aerial photo and TM images,the main transfer characters of land use/land cover is woodland increased,shrubland increased, grassland decreased,cropland decreased,orchard increased and urban rapidly increased.In the basin broed-leaved forests and coniferous forests are located in the high-altitude,shadow slope and bottom valley with slope of 20~40°;cropland and orchard are located in the low-altitude of gentle and sunny slope;shrubland and grassland are located in the altitude of 850~1550m.By using fragstats software analysis,the number of landscape patches decreased,the average area of patches increased and AWMSI decreased,which indicated that the fragmentation of landscape become lower,the landscape connectivity become better and the landscape heterogeneity become weaken.On the side of landscape diversity,the dominance of original dominance landscape reduced and the distribution of various patches were apt to homogenization.
     The results of MK trend analysis and change point test showed that precipitation and extreme precipitation had no significant trend,;while mean temperature,maximum temperature and minimum temperature exhibited significant increasing trend,the change points occurred in 1997、1994 and 1998. There was a significant upward trend in PET and its change point was 1997.Both runoff and sediment discharge exhibited downward trend and they shared the same change point of 1980.Based on the principle of water balance,it was estimated that climatic variables accounted for 48.17%of the reduction in mean annual streamflow,and the other 51.83%contribution to the change of land-use. Then by using USLE,it was found that precipitation contributed 9.89%to the sediment discharge relief and the contribution of land-use was 90.11%.Among the land-use changes,the woodland's change play an important role,so the increase of forest area appeared to be the main cause of the reduced streamflow and sediment discharge.
     The simulated results by SWAT model showed that:in the calibration and verifcation periods the efficient coefficient Ens of the average runoff and sediment discharge were over 0.5,the relative error were less than 20%and R~2 reached more than 0.7,which indicated that the model had good applicability in Qingshui River Watershed.According to the distribution of the precipitation,depth of runoff and sediment discharge,it was known that precipitation effected runoff and sediment discharge on both direct and indirect,the indirect showed the effects on the distribution of vegetation.On the other hand terrain factors played an important role especially in the slope,runoff and sediment discharge of sub-basins with the steep slope were higher than others.Uncertainty analysis results showed that runoff and sediment discharge were significantly in response to the resolution of the DEM, and exhibited increasing trend with the DEM resolution increased.The order of runoff calculated by different PET method was Priestley-Taylor>Penmon>Hargreaves.
     The runoff followed the order of shrubland>grassland>broad-leaved woodland>orchard>coniferous woodland under the extreme scenarios.Compared with the original landuse type,the shrub land and grassland made the runoff increase,and the rest of scenarios led runoff reduce.With different scenarios sediment discharge followed by grassland>shrubland>broad-leaved woodland>orchard>coniferous woodland,among the scenarios grassland made sediment diacharge increase while the others made sediment discharge reduce.Along with the forest cover increased,the runoff and sediment discharge decreased;meanwhile the sediment discharge had the maximum rate of descent with the forest coverage rate between 40-70%.
     For efficient using of water resources and reducing the soil erosion,the optimal landuse scenario was designed according to the simulated results of extreme landuse sceniaros and the characters of landuse with differential terrain.The simulated results of runoff and sediment diacharge with optimal scenario showed that:the depth of runoff and sediment modulus decrease16.34%and 94.71%.It seemed that the optimal scenario played an active role in efficient use water resources and lessen soil erosion.At the same time,the spatial distribution of runoff of optimal scenario had no change,but the spatial distribution of sediment modulus had a great change that high-value areas was from concentration to scatter which illustrated that the sensitivity of the factors affected sediment had changed,the sensitivity of vegetation was decreased and the sensitivity of precipitation and runoff was increased,while the terrain factor is still the most sensitive factor.
引文
[1]摆万奇,赵世洞,土地利用/植被覆盖变化研究模型综述[J],自然资源学报,1997,12(2):169-175
    [2]蔡庆,唐克丽.植被对土壤侵蚀影响的动态分析[J].水土保持学报,1992,(2):47-51.
    [3]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRIS预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
    [4]蔡永明,张科利,李双才.不同粒径制间土壤质地资料的转换问题研究[J].土壤学报,2003,40(4):511-517
    [5]陈军峰,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,(16):474-480.
    [6]陈松林.基于GIS的土壤侵蚀与土地利用关系研究[J].福建师范大学学报(自然科学版),2000,16(1):106-109.
    [7]陈静谊,张志强,王新杰,黄土高原清水河流域植被景观动态变化研究[J].水土保持研究,2008,155():53-56。
    [8]陈静谊,黄土高原清水河流域植被景观格局变化与水土流失的影响研究[D].北京林业大学硕士论文,2008.
    [9]崔启武.林冠对降水的截留作用[J].林业科学,1980,16(2):141-146.
    [10]邓慧平,李秀彬,陈军锋,等.流域土地覆被变化水文效应的模拟——以长江上游源头区梭磨河为例[J].地理学报,2003,58(1):53-62.
    [11]邓慧平,唐来华.沱江流域水文对全球气候变化的响应[J].地理学报,1998,53(1):42-48.
    [12]邓世宗,韦炳贰.不同森林类型林冠对大气降雨量再分配的研究[J].林业科学,1990,26(3):271-276.
    [10]丁永建,叶柏生,刘时银.祁连山区流域径流影响因子分析[J].地理学报,1999,54(5):431-437.
    [11]丁瑞强,王式功,尚可政,等.近45a我国沙尘暴和扬沙天气变化趋势和突变分析[J].中国沙漠,2003,23(3):306-310.
    [12]傅伯杰.景观生态学原理及应用[M].北京:科学出版社,2001.
    [13]符淙斌,王强.气候突变的定义与检测方法[J].大气科学,1992,16(4):482-492.
    [14]高成德,余新晓.水源涵养林研究综述[J].北京林业大学学报,2000,22(5):78-82.
    [15]高人,周广柱.辽东山区不同森林植被类型枯落物质截留降雨行为研究[J].辽宁林业科技,2002,5,1-4.
    [16]桂峰,于革.洪湖流域传统农业条件下营养盐输移模拟研究[M].第四纪研究.2006,26(5):849-856.
    [17]郭生练,杨井,等.气候异常变化对长江中下游水文水资源的影响评价,2l世纪中国水文 科学研究的新问题新技术和新方法[M].北京:科学出版社,2001:175-180.
    [18]郭生练,等.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版),2001,34(1):1-5.
    [19]郭生练,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [20]国家“九五”重中之重96-908科技项目办公室项目执行专家组.我国短期气候变化预测系统的研究(之三).气候异常对国民经济影响评估业务系统的研究[M].北京:气象出版社,2001.
    [21]郝芳华,陈利群,刘昌明,戴东.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-8.
    [22]郝芳华,程红光,杨胜天,等.非点源污染模型—理论方法与应用,中国环境科学出版社,北京,2006.
    [23]范丽萍,贾忠华,罗纨,景卫华.西安地区Priestley-Taylor和Hargreaves方法应用比较[J].水资源与水工程学报,2007,18(2)57-61,65.
    [24]侯喜禄,杜呈样.不同植被类型小区的径流泥沙观测分析[J].水土保持通报,1985,5(6):35-37.
    [25]侯喜禄,梁一民,曹清玉.黄土丘陵沟壑区主要水保林类型及草地水保效益研究[J].中国科学院水利部西北水土保持研究所集刊,1991,14.96-103.
    [26]胡晓静.基于MMS的三峡库区森林流域暴雨水文过程研究[D].北京林业大学博士论文,2007.
    [27]胡远安,程声通,贾海峰.非点源模型中的水文模拟—以SWAT模型在芦溪小流域的应用为例[J].环境科学研究,2003,16(5):29-34.
    [28]黄嘉佑,黄茂怡.主分量逐步筛选因子典型相关分析及其预报试验[J],应用气象学报,2000,11增刊,72-78.
    [29]黄清华,张万昌.SWAT分布式水文模型在黑河干流山区流域的改进及应用[J].南京林业大学学报(自然科学版),2004,28(2):22-26.
    [30]贾仰文,高辉,牛存稳,等.气候变化对黄河源区径流过程的影响[J].水利学报,2008,391():52-58.
    [31]贾仰文,王浩,倪广恒,等.分布式流域水文模型原理与实践汇[M].北京:中国水利电出版社,2005.
    [32]焦菊英,王万中,郝小品.黄土高原不同类型暴雨的降水侵蚀特征[J].干旱区资源与环境,1999,13(1):34-42.
    [33]李道峰.黄河河源区径流对气候和土地覆被变化的响应[D].北京师范大学博士学位论文,2003.
    [34]李道峰,田英,刘昌明.黄河河源区变化环境下分布式水文模拟[J].地理学报,2004,59(4): 565-573.
    [35]李兰,等.流域水文分布动态参数反问题模型[A].见:朱尔明编.中国水利学会优秀论文集[C].北京:中国三峡出版社,2000,48-54.
    [36]李兰,等.流域水文数学物理耦合模型[A].见:朱尔明编.中国水利学会优秀论文集[C].北京:中国三峡出版社,2000,322-329.
    [37]李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398-406.
    [38]李文华.长江洪水与生态建设[J].自然资源学报,1999,14(1):1-8.
    [39]李嘉峻,许有鹏,桑银江.GIS支持下的土壤侵蚀动态变化研究:浙江一例[J].南京大学学报,2005,41(3):297-303.
    [40]李向阳.水文参数优选及不确定性分析方法研究.大连理工大学博士学位论文,2005.
    [41]李月臣,何春阳,中国北方土地利用/植被覆盖变化的情景模拟与预测[J].科学通报,2008,(06):713-723
    [42]刘晓清,赵景波,于学峰.黄土高原气候变暖干旱化趋势及适应对策[J].干早区研究.2006,23(4):627-631.
    [43]刘昌明,曾燕.植被变化对产水量影响的研究[J].中国水利,2002,10:112-117.
    [44]刘昌明,郑红星,王中根,等.流域水循环分布式模拟[M].河南郑州:黄河水利出版社,2007.
    [45]刘昌明,钟俊襄.黄土高原森林对年径流量影响的初步分析[J].地理学报,1978,33(2):112-126.
    [46]刘昌明等.黄河中游黄土高原森林减沙效应研究的梗概[J].地理研究,1982,1-13.
    [47]刘春蓁,张世法,张新仁,等.气候变化对水文水资源影响及适应对策研究(85-913-03-03)专题技术报告[R].水利部水利信息中心,1996.
    [48]刘士余,降雨与植被变化对赣西北大坑小流域水文特征的影响研究[D].北京林业大学博士论文,2008.
    [49]刘世荣等,中国森林生态系统水文生态规律[M].北京:中国林业出版社,1996,61-62.
    [50]刘向东,吴钦孝,韩冰.黄土丘陵区油松人工林和山杨林林冠对降水的再分配及其对土壤水分的影响[J].西北水土保持研究所集刊,1991,(14):9-20.
    [51]刘新卫,陈百明,史学正.国内LUCC研究进展综述[J].土壤,2004,36(2):132-135.
    [52]刘艳辉.黄土区影响土壤侵蚀的林地植被因子研究[D].北京林业大学硕士学位论文,2007,06.
    [53]刘运河,唐德富.水土保持[M].哈尔滨:黑龙江科学技术出版社,1988.
    [54]刘小宁,我国暴雨极端事件的气候变化特征[J].灾害学,1999,14(1):54-59.
    [55]柳长顺,齐实,史明昌.土地利用变化与土壤侵蚀关系的研究进展[J].水土保持学报,2001,15(5):10-13.
    [56]卢金发,黄河中游流域地貌形态对流域产沙量的影响[J].地理研究,2002,21(2):171-178.
    [57]鲁克新,黄土高原流域生态环境修复中的水沙响应模拟研究[D].西安理工大学;,2006.
    [58]罗伟祥,白立墙,宋西德.不同覆盖度林地和草地的径流量和冲刷量[J].水土保持学报,1990,4(1):30-34.
    [59]马跃先,王丰,李世英,杨天平.淮河流域干江河年径流演变特征及动因分析[M].水文,2008,28(1):77-80.
    [60]马柱国,华丽娟,任小波.中国近代北方极端干湿事件的演变规律[J].地理学报,2003,58(增刊):69-74.
    [61]孟广涛.滇中华山松人工林的水文特征及水量平衡[J].林业科学研究,2001,14(1):78-84.
    [62]彭世彰,徐俊增.参考作物蒸发蒸腾量计算方法的应用比较[J].灌溉排水学报,2004,23(6):5-9.
    [63]任希岩,张雪松,郝芳华,等.DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004,11(1):1-4.
    [64]冉大川,罗全华,刘斌,等.黄河中游地区淤地坝减洪减沙及减蚀作用研究[J].水利学报.2004(5):7-14.
    [65]沈大军,刘昌明.水文水资源系统对气候变化的响应[J].地理研究,1998,17(4):435-43.
    [66]施雅风,中国气候与海面变化及其趋势和影响[M].济南:山东科学技术出版社,1995.
    [67]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    [68]史志华,蔡崇法,丁树文,等,基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报,2002,18(4):172-175.
    [69]孙惠南.近20年来关于森林作用研究的进展[J].自然资源学报,2001,16(5):408-412.
    [70]熊立华,郭生练,三水源新安江模型异参同效现象的研究[A].夏军,水问题的复杂性与不确定性研究与进展[C].北京:中国水利水电出版社,2004,151-155.
    [71]索安宁,李金朝,王天明,葛剑平.黄土高原流域土地利用变化的水土流失效应,水利学报,2008,39(7),767-772
    [72]仙巍.嘉陵江中下游地区近30年土地利用与覆被变化过程研究[J].地理科学进展,2005,24(2):114-121.
    [73]水利部水文信息中心.国家“十·五”科技攻关专题(2001-BA 611B-02-04)气候变化对我国淡水资源的阈值影响及综合评价[R].2003.
    [74]孙阁,张志强,周国逸,等.森林流域水文模拟模型的概念、作用及其在中国的应用[J].北京林业大学学报.2007,29(03):178-184.
    [75]万荣荣,杨桂山.流域土地利用/覆被变化的水文效应与洪水响应研究[J].湖泊科学,2004,16(3):258-264.
    [76]汪有科.森林植被保持水土功能评价[J].水土保持研究,1994,1(3):24-30.
    [77]王费新,王兆印.非线性植被侵蚀动力学模型初探[J].北京林业大学学报,2007,29(6),123-128.
    [78]王根绪,张钰,刘桂民,等.马营河流域1967~2000年土地利用变化对河流径流的影响[J].中国科学D辑地球科学,2005,35(7):671-681.
    [79]王晗生,刘国彬.植被结构及其防治土壤侵蚀作用分析[J].干旱区资源与环境,1999,13(2):62-68.
    [80]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,(6):1423.
    [81]王力,赵红莉,蒋云钟.HEC-HMS模型在南水北调东线水资源调度中的应用[J].南水北调与水利科技,2007,6(12),58-61.
    [82]王盛萍.典型小流域土地利用与气候变异的生态水文响应研究[D].北京林业大学博士论文,2007.
    [83]王万忠,焦菊英,郝小品.黄土高原暴雨空间分布的不均匀性及点面关系[J].水科学进展,1999,10(2):165-169.
    [84]王万忠,焦菊英.黄土高原侵蚀产沙强度的时空变化特征[J].地理学报,2002,37(2):210-217.
    [85]王绍武,翟盘茂,龚道溢,等.2002年是近百年来中国第二个最暖的年[J].气候变化通讯,2003,2(3):11-12.
    [86]王冀,江志红,严明良,张金玲.1960—2005年长江中下游极端降水指数变化特征分析[J].气象科学,2008,28(4):384-388.
    [87]王菱,谢贤群,李运生,等.中国北方地区40年来湿润指数和气候干湿带界线的变化[J].地理研究,2004,23(1):45-54.
    [88]王艳君,吕宏军,姜彤.子流域划分和DEM分辨率对SWAT径流模拟的影响研究[J].水文,2008,28(3),22-25.
    [89]王海龙,余新晓,武思宏,等.SWAT模型灵敏度分析模块在黄土高原典型流域的应用[J],北京林业大学学报,2007,29(增刊2),238-242.
    [90]王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,26(1):61-65.
    [91]王佑民.我国林冠降水再分配研究综述[J].西北林学院学报,2000,15(3):1-7.
    [92]王兆印,郭彦彪,李昌志,等.植被侵蚀状态图在典型流域的应用[J].地球科学进展,2005,20(2):149-157.
    [93]王兆印,王光谦,高菁.侵蚀地区植被生态动力学模型[J].生态学报,2003,23(1):98-105
    [94]王中根,刘昌明,黄友波.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [95]王义凤.黄土高原地区植被资源及其合理利用[M].北京:中国科学技术出版社,1991.
    [96]卫正新,李树怀.不同林地林冠截留降雨特征的研究[J].中国水土保持,1997,(5):19-21.
    [97]卫伟,陈利顶,傅伯杰,等.黄土丘陵沟壑区极端降雨事件及其对径流泥沙的影响[J].干旱区地理.2007,30(6):896-901.
    [98]温汝俊,黄川,罗清泉.等.重庆主城区污水排放截留处理方案的比较[J].煤矿环境保护,2001,15(2):48-52.
    [99]吴发启,赵晓光,刘秉正,等.黄土高原南部缓坡耕地降雨与侵蚀的关系[J].水土保持研究,1999,6(2):53-60.
    [100]吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报,1998,4(2):23-28.
    [101]吴险峰,刘昌明,郝芳华.黄河小花间暴雨径流过程分布式模拟[J].水科学进展,2004,154():511-516.
    [102]吴险峰,王中根.基于DEM的数字降水径流模型在黄河小花间的应用[J].地理学报,2002,576():671-678.
    [103]吴险峰,刘昌明,王中根.栅格DEM的水平分辨率对流域特征的影响分析[J].自然资源学报,2003,18(2):148-154.
    [104]吴秀芹,蔡运龙.土地利用/土地覆盖变化与土壤侵蚀关系研究进展[J].地理科学进展,2003,22(6):576-584.
    [105]邬建国,景观生态学——格局、过程、尺度和等级[M].北京:高等教育出版社,2003.
    [106]夏军,王纲盛,谈戈,等.水文非线性系统与分布式时变增益模型,中国科学(D辑),2004,341(1):1072-1082.
    [107]肖笃宁,李秀珍等.景观生态学[M].北京:科学出版社,2003,1-10.
    [108]信忠保,许炯心,郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑:地球科学).2007,37(11):1504-1514.
    [109]熊贵枢,徐建华,顾弼生,等,黄河上中游水利水保工程减沙作用的预估[J],人民黄河,1988,1,3-7
    [110]徐宗学,和宛琳.黄河流域近40年蒸发皿蒸发量变化趋势分析[M].水文,2005,25(6):6-11.
    [111]徐建华,吴发启,等.黄土高原产流产沙机制及水土保持措施对水资源和泥沙影响的机理研究,黄河水利出版社[M].2005,10,30.
    [112]闫俊华.森林水文学研究进展(综述)[J].热带亚热带植物学报,1999,7(4):347-356.
    [113]严中伟,季劲钧,叶笃正.60年代北半球夏季气候跃变—降雨和温度变化[J].中国科学(B 辑),1990,20(1):97-103.
    [114]殷水清,谢云.黄土高原降雨侵蚀力时空分布,水土保持通报,2005,25(4):29-33.
    [115]尹雄锐,夏军,张翔,等.水文模拟与预测中的不确定性研究现状与展望,水力发电,2006,3210),27-31.
    [116]杨辉,宋亚山.华北地区水资源多时间尺度分析[J].高原气象,1999,18(4):496-507.
    [117]杨金虎,江志红,王鹏祥,等.中国西北极端降水事件年内非均匀性特征分析[J].中国沙漠,2008,28(1):178-184.
    [118]杨建平,丁永建,陈仁升,等.近50年来中国干湿气候界线的10年际波动[J].地理学报,2002,57(6):655-661.
    [119]杨兴国,马鹏里,,王润元,等.陇中黄土高原夏季地表辐射特征分析[J].中国沙漠,2005,25(1):55-62.
    [120]杨雨行,韩熙春.山西省吉县清水河流域森林动态变化对水沙影响的初报[J].北京林业大学学报,1991,13(2),59-67.
    [121]姚志君,廖俊国,陈传友.云南玉龙山东南坡降雨因子与土壤流失关系的研究[J].自然资源学报,1991,6(1):45-54.
    [122]姚玉璧,王毅荣,李耀辉,等.中国黄土高原气候变暖干化及其对生态环境的影响[J].资源科学.2005,27(5):146-152.
    [123]叶佰生,赖祖铭,施雅风.气候变化对天山伊犁河上游河川径流的影响[J].冰川冻土,1996,18(1):29-36.
    [124]雍斌,张万昌,赵登忠,等.HEC-HMS水文模型系统在汉江褒河流域的应用研究[J].水土保持通报,2006,26(3):86-90.
    [125]余钟波.流域分布式水文学原理及应用[M].科学出版社,2008,6.
    [126]张建云,王国庆,等.气候变化对水文水资源影响研究[M].科学出版社,2007,182-205.
    [127]张建云,章四龙.水文科学面临的气候变化问题,中国水文科学与技术研究进展[M].南京:河海大学出版社,2004,1-13.
    [128]张蕾娜.白河流域土地覆被变化水文效应的分析与模拟[D].北京:中国科学院地理科学与资源研究所博士学位论文,2004.
    [129]张明旭.SWAT模型初步研究[J].吉林师范大学学报(自然科学版),2006,1,13-15.
    [130]张兴昌,刘国彬,付会芳.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,2000,(6):16-19.
    [131]张银辉.SWAT模型及其应用研究进展[J].地理科学进展,2005,24(5):121-130.
    [132]张志强,王礼先,王盛萍.中国森林水文学研究进展[J].中国水土保持科学,2004,2(2):68-73.
    [133]张志强,余新晓,赵玉涛,等.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113-116.
    [134]张志强,王盛萍,孙阁.流域径流泥沙对多尺度植被变化响应研究进展[J].生态学报,2006,26(7):2356-2364.
    [135]张志强.森林水文:过程与机制[M].北京:中国环境科学出版社,2003.
    [136]张建云,王国庆,等.气候变化对水文水资源影响研究,科学出版社,2007,182-205.
    [137]张岩,朱清科,黄土高原侵蚀性降雨特征分析[J].干旱区资源与环境,2006,20(6),99-103.
    [138]张志,朱金兆,朱清科,等.晋西黄土区蔡家川流域景观地形分异格局研究[J].北京林业大学学报,2005,27(2):43-48.
    [139]章文波,谢云,刘宝元.降雨侵蚀力研究进展[J].水土保持学报,2002,16(5)43-46.
    [140]赵鸿雁,吴钦孝,等.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,164():381-385.
    [141]赵护兵,刘国彬,曹清玉.黄土丘陵区不同植被类型对水土流失的影响[J].水土保持研究,2004,11(2):153-155.
    [142]翟盘茂,任福民,张强.中国降水极端值变化趋势检测[J],气象学报.1999,57(2):208-216.
    [143]翟盘茂,章国材.气候变化与气象灾害[J].科技导报,2004(7):11-14.
    [144]周剑,李新,王根绪,等.一种基于MMS的改进降水径流模型在中国西北地区黑河上游流域的应用[J].自然资源学报,2008,23(4):724-736.
    [145]周金龙,董新光.内陆十旱区潜在蒸发量的计算[J].灌溉排水,2002,21(2),21-23.
    [146]周晓东,朱启疆,孙中平,等.中国荒漠化气候类型划分方法的初步探讨[J].自然灾害学报,2002,11(2):125-131.
    [147]周晓红,赵景波.黄土高原气候变化与植被恢复[J].干旱区研究.2005,23(01):116-119.
    [148]朱金兆,吴钦孝,等.森林凋落物层水文生态功能研究[J].北京林业大学学报,2002,24(5):30-34.
    [149]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,27(2):16-21.
    [150]邹亚荣,张增祥,周全斌,等.基于GIS的土壤侵蚀与土地利用关系分析[J].水土保持研究,2002,9(1):67-69.75.
    [151]Abbaspour,K.C.,Johnson,A.Van Genuchten,M.Th.Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure[J].Vadose Zone J,2004,3,1340-1352.
    [152]Abbott M B,Bathurst J C,Cringe J A,et al.An Introduction to the European Hydrologic System-System Hydrologique European,SHE[J].J.Hydrol,1986,87(1-2):45-77.
    [153]Abdedbi H,Maurice R.Stem flow determination in forest stands[J].Forest Ecology and Management,1997(97):231-235.
    [154]Afifi A.A.and S.P.Azen,1972.Statistical analysis,a computer oriented approach,Academic Press,Harcourt Btace Jovanonich Publishers,New York,366.
    [155]Andrea W,Fuehrer N,Miller D.Long-term land use changes in mesoscale watershed due to socioeconomic,factors-Effects on landscape structure and functions[J].Ecological modeling,2001,140(1/2):125-140.
    [156]Arnold J G,Allen P M.Estimating hydrologic budgets for three Illinois Watersheds [J].Journal of Hydrology,1996,176,57-77.
    [157]Arnold,J.G.and Williams.J.R.SWRRB—A watershed scale model for soil and water resources management[J].Computer models of watershed hydrology.Water Resources Publications,1995,847-908.
    [158]Beck M B.Water quality modeling:A review of the analysis of uncertainty[J].Water Resources Research,1987,23(8):1393-1442.Benson V W.,Potter K N.,Bogusch H C.,et al.Nitrogen leaching sensitivity to evapotranspiration and soil water storage estimates in EP IC[J].Soil and Water Cons.1992,47(4):334-337.
    [159]Beven K J,Kirkby M J.A physically based variable contributing model of basin hydrology[J].Hydrological Sciences Bulletin,1979,24(1):43-69.
    [160]Beven K J.Prophecy,reality and uncertainty in distributed hydrological modeling[J].Advaneesin Water Resourees,1993,16(1):41-51
    [161]Bewket W.Sterk G.Dynamics in land cover and its effect on stream flow in the Chemoga watershed,Blue Nile basin,Ethiopia[J].Hydrological Process,2004,17,2542-2550.
    [162]Bicknell B R,Imhoff J C,Kirtle J L,et al.Hydrological Simulation Program-Fortran user's for release 11[EB/OL].http://www.epa.gov/waterscience/basins/bsnsdocs.html,1996-09-01.
    [163]Bosch J M.,Hewlett J D..A review of catchment experiments to determine the effect of vegetation change on water yield and evapotranspiration[J].Journal of Hydrology,1982,55,3-22.
    [164]Bloschl G.& Sivapalan M.Scale issues in hydrological modeling:a review[J].Hydrological Processes,1995,9:251-290.
    [165]Buffoni L.,Maugeri M.,Nanni T.Precipitation in Italy from 1833 to 1996[J].Theoretical and Applied Climatology,1999,63:33-40,417-425.
    [166]Carroll C.,L.Merton,P.Burger.Impact of vegetation cover and slope on runoff,erosion,and water quality for field plots in a range of soil and spoil materials on center Queensland's coal mines Australia[J].Soil Resource,2000,38:313-327.
    [167]Calder I.R.Evaporation in the Uplands[J].Chichester,England:Wiley,1990.
    [168]Calder I.R.,土地利用变化的水文影响[M].水文学手册,北京:科学出版社,2002.
    [169]Carlson TN.,Arthur S T.The impact of land use—Land cover changes due to urbanization on surface microclimate and hydrology[J].A satellite perspective,Global and Planetary Change,2000,25(1-2):49-65.
    [170]Chanasyk D S.,Mapfumo E.,Willms W.Quantification and simulation of surface runoff from fescue grassland watersheds[J].Agricultural Water Management,23(59):137-153.
    [171]Claudia Libiseller Multivariate and partial Man-Kendall test[M].2002
    [172]Chiew.F H S,M c Mahon TA..Application of the daily rainfall-runoffmodel modelhydrolog to 28 Australian catchments[J].Journal of Hydrology,1994,153,386-416.
    [173]Dawn C.P,Steven M.M,Marco A J,et al.Multi-Agent systems for the simulation of land-use and land-cover change:A review[J].Annals of the Association of American Geographers,2002,8:93-100
    [174]Delphis F.Levia.,Jr,Ethan E.Frost.A review and evaluation of stem flow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J].Journal of Hydrology,2003,(274):1-29.
    [175]Dendy F E,Boilton G C,Sediment yield-nmoff-dralnage area relationships in the United States[J].Journal of soil and water conservation.1976.32:264-266.
    [176]Douglas N.Graham,Michael B.Butts.Flexible integrated watershed modeling with MIKESHE[M].In,V P Singh and D.K.Frevert(Eds.),Watershed Models.CRC Press,2005.
    [177]Dugas W A.,Ainsworth C G.Agro climatic atlas of Texas.Part 6.Potential evapotranspiration [C].Texas Agric ExpStn 1983,Mp1543,82.
    [178]Dunn,S.M.,Mackay,R.,Spatial variation in evapotranspiration and influence of land use on catchment hydrology[J].Journal of Hydrology,1995,171:49-73.
    [179]Eckhandt K,Havkerkamp S,Fuehrer N,et al.SWAT—G,a version of SWAT99.2 modified for application to low mountain range catchment[J].Physics and Chemistry of Earth,2002,27,641-644.
    [180]Foody G M,Boyd D S,Improving neural network performance on the classification of complex geographic datasets.Journal of Geographical System,19991(1):23-35.
    [181]Freeze R A,Harlan R L.Blue print of a physically-based digitally-simulated hydro logical response model[J].Journal of Hydrology,1969,9237-258
    [182]Fuehrer N,Haverkamp S.,Eckhardt K.,et al,Hydrologic response to land use changes on the catchments scale[J],Physics and Chemistry of Earth(B),2001,26:577-582.
    [183]Fuehrer N,Miller,D.,Steiner N.,An interdisciplinary modeling approach to evaluate the effects of land use change[J].Physics and Chemistry of Earth,2002,27:655-662.
    [184]Francisco,etc.Vegetation and soil erosion under a semi-arid Mediterranean climate[M].A case study from Murcia(Spain).Geomorphology,1998,24:51-58.
    [185]Garbreeht J,Martz L.W..TOPAZ Overview.USDA—ARS,1999,Grazing and Research Laboratory,7207WeSt Cheyenne St.,EI Reno,Oklahoma.73036.http://grl.ars.usd/gov./topaz TOPAZ.htm.
    [186]Ghidey F,Alberts EE.Plant root effects on soil erodibility,splash detachment,soil strength,and aggregate stability.Transactions of the American Society of Agricultural Engineers,1997.40:129-135
    [187]Chaplot V.Impact of DEM mesh size and soil map scale on SWAT runoff,sediment,and NO3-N loads predictions[J].Journal of Hydrology,2005,312:207-222.
    [188]Christiaens K.,Feyen J.Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model[J].Water Resources Research,2002,38(9):10-18.
    [189]Goossens CH,Berger A.,Annual and seasonal climatic variations over the Northern Hemisphere and Europe during the last century,Ann[J].Geophys.1986,4,385-400.
    [190]Grayson R B,Bloschl G,Moore I D.Distributed parameter hydrological modeling using vector elevation data:THALES and TAPES-c[A].In Singh V.P.(ed.) Computer Models of Watershed Hydrology[C].Water Resources Publications,Highlands Ranch,CO,1995,669-696.
    [191]Gupta,H.V.,S.Sorooshian and P.O.Yapo.Toward improved calibration of hydrologic models:multiple and non-commensurable measures of information[J],Water.Resourc.Res.,1998,34:751-763.
    [192]Harr R.D,McCorison,F.M.,Initial effects of clear out logging on size and timing of peak flows in a small watershed in western Oregon[J].Water Resource Research,1979,15:90-94.
    [193]Hamon,W.R.,Computation of Direct Runoff Amounts from Storm Rainfall.Int.Assoc.Sci.Hydrol.Pub.1963,63:52-62.
    [194]Hargreave,G.H.and Samani,Z.A.Reference crop evapotranspiration from temperature Applied Engineering in Agriculture 1985(1):96-99.
    [195]HERZOGF,LAUSCH A,MULLER E,et al.Landscape metrics for assessment of landscape destruction and rehabilitation[J].Environmental Management,2001,27(1):91-107.
    [196]Hewlett J D,Troendle C A.Non-point and diffused water sources,A variable source area problem,Proceedings of a Symposium on Watershed Management[M].Am.Soc.Civ.Eng,New York:1975:65-83.
    [197]Hickel K.The effect of pine afforestation on flow regime in small upland catchments[D].University of Stutgart,Stutgart,2001.
    [198]HOLVOET K,VAN GRIENSVEN A,SEUNTJENS P,et al.Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT[J].Physics and Chemistry of the Earth,2005(30):518-526.
    [199]Hornbeck J.W.,Swank W.T.Watershed ecosystem analysis as a basis for multiple use management of eastern forests[J].Ecol.Appl,1992,(2):238-247.
    [200]Hui Shi,Mingan Shao.Soil and water loss from the Loess Plateau in China[J].Journal of Arid Environments,2000,45:9-20.
    [201]HUISMAN J A,BREUER L,FREDE H G.Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change[J].Physics and Chemistry of the Earth, 2004,29:749-758.
    [202]IPCC,ClimateChange1995,Impacts Adaptation,and Mitigation[M].Cambridge:Cambridge University Press,1996.
    [203]IPCC,ClimateChange2001,Impacts Adaptation,and Mitigation[M].Cambridge:Cambridge University Press,2001.
    [204]IPCC,ClimateChange2007,Impacts Adaptation,and Mitigation[M].Cambridge:Cambridge University Press,2007.
    [205]Julien,P.Y.and Saghafian,B.CASC2D Users Manual-A Two Dimensional Watershed Ralnfall-Runoff Model[R].Civil Engineering Report,CER90-91PYJ-BS-12.Colorado State University,Fort Collins:1991,66.
    [206]Karl T R,Knight R W.Secular trends of precipitation a-mount,frequency,and intensity in the USA[J].Bull Am Met Soc,1998,79:231-241.
    [207]Kell B.Wilson,et al.A comparison of methods for determining forest evapotranspiration and its components:sap-flow,soil water budget,eddy covariance and catchment water balance [J].Agriculture and Forest Meteorology,2001,106(2):153-168.
    [208]Kendall,M.G.,Rank Correlation Methods.London:Charles Gdffin,1955.
    [209]Kite G W.The SLUPP model[A].In Singh V.P.(ed) Computer Models of Watershed Hydrology[C].Water Resources Publications,Highlands Ranch,CO,1995.521-561.
    [210]KLAUS E,LUTZ B,HANS2GEORG F.Parameter uncertainty and the significance of simulated land use change effects[J].Journal of Hydrology,2003,273(2):164-176.
    [211]Kwadijk J,Rotmans J.The impact of climate change on the River Rhine[M].a scenario study.Climatic Change,1995,30:397-425.
    [212]Langbein W.B.and Schumm S.A.Yield of sediment in relation to mean annual precipitation.Trans[M].Amer.Geophys.Union.1958,76-84.
    [213]Leavesley G H,Markstrom S L,Restrepo P J,et al.A modular approach to addressing models design,scale,and parameter estimation issues in distributed hydrological modeling[J].Hydrological Processes,2002,16(2):173-187.
    [214]Legates,D.R.and G.J.McCabe,Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation[J],Water.Resourc.Res.,1999,35:233-241.
    [215]Li,L.J.,L.Zhang,H.Wang,J.Wang,J.W.Yang,D.J.Jiang,J.Y.Li,D.Y.Qin.Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China.Hydrological Processes,2007,25:3485-3491.
    [216]Lftup J,Refsgaaxd J,zvimavi D.Accessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modeling:Case studies from Zimbabwe[J].Journal of Hydrology,1998,205:147-163.
    [217]Mann,H.B.,Non-parametric test against trend[J],Econometrika,1945,13,245-259
    [218]Manton M J,Della-Marta P M,Haylock M R,et al.Trends in extreme daily rainfall and temperature in Southeast Asia and South Pacific:1961-1998[J].Int.J Climatology,2001,21269-284.
    [219]McKay M.D.Beckman R.J.,Conover W.J.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Techno metrics,1979,21(2):239-245.
    [220]Mclean S.Baseflow response to vegetation change,Gleendnu State Forest,Otago,NewZealand[D].Department of Geography.University of Otago,Dunedin,2001.
    [221]Monteith,J.L.Evaporation and the environment.In The state and movement of water in living organisms,ⅩⅨth Symposium.Soc.For Exp.Biol.,Swansea,Cambridge University Press.1965,205-234.
    [222]Milly P.C.D.,and K.A.Dunne,Macro scale water fluxes 2.Water and energy supply control of their inter-annual variability[J].Water Resources Research,2002,38(10):1206.
    [223]Munroe D K,Southworth J,TuckerC M.The dynamics of land-cover change in western Honduras:exploring spatial and temporal complexity[J].Agricultural economics,2002,27:355-369.
    [224]Muleta M K,Nicklowj W.Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model[J].Journal of Hydrology,2005,306(1/4):127-145.
    [225]Mu X.M.,Zhang L.,T.R.McVicar,B.S.Chille,P.Gao,Analysis of the impact of conservation measures on streamflow regime in catchments of the Loess Plateau,China[M].Hydrol.Process.2007,(21):2124-2134.
    [226]Neitsch S.L.,Arnold J.G,Williams J.R.,et al,soil and Water Assessment Tool Theoretical Documentation,Version2005.httP://www.brc.tamns.edu..Lane,L.J..Distributed model for small semi-arid watersheds.J.Hydraulic Eng.,ASCE,1982,108(HY10):1114-1131.
    [227]Nash,Sensitivity of streamflow in the Colorado Basin to Climate Change[J].journal of hydrology,1990,125(1):221-241.
    [228]Nemec J,Schaake J,Sensitivity of water resource systems to climate variation[J].Hydrologic Science Journal,1982,27(3):327-343.
    [229]O.CaUaghan,J.O.Land use:the interaction of economics,ecology and hydrology[M].London:1996.
    [230]Paulo Rodolfo Leopoldo,et al.Real evapotranspiration and transpiration through a tropical rain forest in central Amazonia as estimated by the water balance method[J].Forest ecology and management,1995,73(1-3):185-195.
    [231]Pearson S M,Turner M G,Drake J B.Landscape change and habitat availability in the southern highlands and Olympic Peninsula[J].Ecological Applications,1999 9(4):1288-1304.
    [232]Pijanowski B C,Brown D G,Manik G,et al.Using neural nets and GIS to forecast land use changes:A land transformation model[J].Computers,Environment and Urban Systems 2002,26(6):553-575
    [233]Potter K W.Hydrological impacts of changing land management practices in a moderate-sized agricultural catchment[J].Water Resources Research,1991,27:845-855.
    [234]Priestley,C.H.B.and R.J.Taylor,On the Assessment of Surface Heat Flux and Evaporation Using Large Scale Parameters.Mon.Weath.Rev.1972,100:81-92.
    [235]Press,W.H.,Flannery,B.P.,Teukolsky,S.A.,Vetterling,W.T.,Numerical Recipe,the Art of Scientific Computation.2nded.Cambridge University Press,Cambridge,Great Britain.1992.
    [236]Riebsame W E,Patton W J,Calvin K A et al,Integrated modeling of land use and land cover change[M].Bioscience,1994,44(5):350-356.
    [237]Robinson,C A,Ghaffarzadeh,M,Cruse,R M.Vegetative filter strip effects on sediment concentration in cropland runoff Journal of Soil and Water Conservation.1996,51,(3):227.
    [238]Saleh A,Arnold J G,Gassman P W.Application of Swat for the Upper North Bosque River Watershed[J].Transactions of the American Society of Agricultural Engineers.2000,43(5):1077-1087.
    [239]Schofield N.J.Forest management impacts on water values[J].Recent Research Developments in Hydrology.1996,1:1-20.
    [240]Schwazr,H.E.Climate change and water supply:How sensitive is the Northeast?[M].Washington D C:National Academy of Science,1977.
    [241]Shi H,Shao M A.Soil and water loss from the Loess Plateau inChina[J].Journal of Arid Environments,2000,45:9-20.
    [242]Singh V.P Woolhiser D.A.Mathematical modeling of watershed Hydrology[J].Journal of Hydrol.Engng.,2002,7:270-292.
    [243]Sneyers,R.,Sur la,Determination de la stabilite des series climatologiques.Proc.UNESCOWMO symposium of changes of Climate[J],Uneseo Arid Zone Research Series,20,UNESCO,Paris,1963,37-44.
    [244]Sneyers,R.,Sur la,hlanalyse statistique des series d'observations,Technical Note 143,WMO Geneva.1975.
    [245]Stanley A C,Misganaw D.Detection of changes in streamflow and floods resulting from climate fluctuations and landuse-drainage changes[J].Climatic Change,1996,3241 1-421.
    [246]Stednick J.D.Monitoring the effects of timber harvests on annual water yield[J].Journal of Hydrology,1996,(176):79-95.
    [247]Stonefelt M D,Fontane T A,Hotchkiss RH.Impacts of climate change on water yield in the upper Wind River basin[J].Journal of the American Water Resource Association,2000,36(2):321-336.
    [248]Stone D A,Weaver A J,Zwiers F W.Trends in Canadian precipitation intensity[J].Atmos Ocean,1999,2:321-347.
    [249]Swansond F J,Kratz T K,Caine N,Landform effects on ecosystem patterns and processes.BioScience,1988,38,92-98.
    [250]Swank W.T.,et al.Stream flow changes associated with forest cutting,species conversion sand natural disturbance[A]Forest Hydrology and Ecology at Coweeta[C].Ecology Study.NewYork:Springer Verlag.1988,(66):297-312.
    [251]Trenberth K E Atmospheric moisture residence times and cycling:implications for rainfall rates with climate change[J],ClimaticChange,1998,39:667-694.
    [252]Trimble,A.S.,Weirich,F.H.,Hoag,B.L,Reforestation andthe reduction of water yield on the Southern Piedmont Since Circa 1940[J].Water Resources Research,1987,23:425-437.
    [253]Turner K M.Annual evapotranspiration of native vegetation in a Mediteranean—type climate[J].Water Resources Bullet.1991,27(1):1-6.
    [254]VANCLOOSTER M,ROUNSEVELL M,ROMANOWICZ A A,et al.Sensitivity of the SWAT model to the soil and land use data parameterization:a case study in the Thyle Catchment,Belgium[J].Ecological Modeling,2005,187(2):27-39.
    [255]Vieux,B.E.,Needham,S.,1993.Nonpoint-pollution model sensitivity to grid-cell size[J].Journal of Water Resources Planning and Management 119(2),141-157.
    [256]Vorosmarty C J,Green P,Salisbury J,et al.Global water resources:Vulnerability from climate change and population growth[J].Science,2000,289:284-288.
    [257]Wang Z Y,Huang G H,Wang G Q,et al.Modeling of vegetation-erosion dynamics in watershed systems[J].Journal of Enviroumental Engineering,2004(7):792-800.
    [258]Wang Z Y,Wang GQ,LiC Z,et al.A preliminary study on vegetation-erosion dynamics and its applications[J].Science in China:Ser.D.Earth Sciences,2005,48(5):689-700.
    [259]Williams,J.R.:The EPIC model.In V.P.Singh(ed.) Computer models of watershed hydrology.Water Resources Publications,1995,909-1000.
    [260]Wischmeier,W.H.and Smith.D.D.Predicting rainfall erosion losses:a guide to conservation planning,USDA-ARS Agriculture Handbook 1978,282.
    [261]WMO,Water resources and climate change:sensitivity of water resources systems to climate change and variability[R].Geneve:WMO,1987.
    [262]Xiaoping Zhang,,Lu Zhang,,Jing Zhao et al,Responses of streamflow to changes in climate and land use/cover in the Loess Plateau[J].China,Water Resource Research,2008,44.
    [263]Xu Z.X.,Li J.Y.,Liu C.M.,Long-term trend analysis for major climate variables in the Yellow River basin,Hydrol.Process.2007(21),1935-1948
    [264]Yamamoto R,Sakurai Y.Long-term intensification of extremely heavy rainfall intensity in recent 100 years[J].World Resource Rev,1999,11:271-281.
    [265]Yu,B,Rosewell C J.A robust estimation of the R-factor for the universal soil loss equation[J].Transactions of the ASAE,1996,39(2):559-561.
    [266]Zhang W,Montgomery D.R.Digital elevation model grid size,landscape representation,and hydrologic simulations[J].Water Resources Research.1994,30(4):1019-1028
    [267]Zhang L,Dawes W R,Walker G.Response of mean annual evapotranspiration to vegetation changes at catchment scale[J].Water Resources Research.2001,37(3):701-708.
    [268]Zhenmei Ma,Shaozhong Kang,Lu Zhang et al,Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China[J].Journal of Hydrology,2008,352:239-249.