T细胞电压门控钾通道Kv1.3在再生障碍性贫血中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生障碍性贫血(简称再障)是一种骨髓衰竭性疾病,以骨髓造血功能低下和全血细胞减少为特征。近年来认为,再障的主要发病机制是T细胞介导的骨髓特异性的自身免疫反应。根据T细胞表面跨膜蛋白酪氨酸磷酸酶CD45RA和趋化因子受体CCR7的表达与否,T细胞可分为初始T细胞、中心记忆性T细胞(T_(CM)细胞)和效应记忆性T细胞(T_(EM)细胞)亚群。研究发现再障患者中存在T细胞优势克隆群,呈寡克隆扩增的T细胞具有自身反应性,显示出记忆/效应细胞表型,提示记忆性T细胞亚群可能在再障的发病过程中发挥重要作用。
     T细胞表面钾离子通道与T细胞的活化有着极为重要的关系。人类T细胞表面两种钾离子通道,电压门控钾通道Kv1.3和钙依赖性钾通道KCa3.1可通过对膜电位和Ca~(2+)信号通路的调控,调节T细胞的活化和功能。不同T细胞亚群活化时,钾离子通道的表达有所不同。T_(EM)细胞活化时高表达Kv1.3通道,而低表达KCa3.1通道,Kv1.3通道是T_(EM)细胞活化的主要离子通道。而在初始T细胞和T_(CM)活化时,KCa3.1通道表达增加,发挥主要功能,Kv1.3通道无明显增加。阻断Kv1.3通道,可以有效抑制T_(EM)细胞的增殖及效应功能。
     本研究检测了再障初始和记忆性T细胞亚群的变化及T细胞活化时Kv1.3通道的表达,分析Kv1.3通道在再障T细胞及初始、记忆性T细胞亚群活化中的作用,探讨Kv1.3通道作为再障免疫治疗靶点的可能性。
     第一部分再生障碍性贫血患者初始和记忆性T细胞亚群数量及功能的研究
     目的:研究再障患者骨髓及外周血CD4~+及CD8~+T细胞中初始T细胞、T_(CM)细胞和T_(EM)细胞的数量及分泌细胞因子IFN-γ的功能。
     方法:
     1.再障外周血及骨髓中初始和记忆性T细胞亚群数量的检测:抽取再障患者和正常对照外周血及骨髓液进行单个核细胞的分离,流式细胞术检测外周血单个核细胞(PBMCs)及骨髓单个核细胞(BMMNCs)的CD4~+及CD8~+T细胞中初始T细胞(CD45RA~+CCR7~+)、T_(CM)细胞(CD45RA~-CCR7~+)和T_(EM)细胞(CD45RA~-CCR7~-,CD8~+T细胞还包括终末分化的CD45RA~+CCR7~-T_(EM)细胞)的比例。
     2.再障外周血及骨髓中初始和记忆性T细胞亚群功能的检测:培养再障患者和正常对照外周血及骨髓单个核细胞,加入佛波酯PMA、离子霉素刺激T细胞活化,莫能霉素阻断细胞因子向胞外释放。培养5h后,流式细胞术检测CD4~+及CD8~+T细胞中CCR7~+初始T细胞/T_(CM)细胞和CCR7~-T_(EM)细胞IFN-γ的表达情况。
     结果:
     1.再障患者与正常对照的初始和记忆性T细胞亚群的比较:在PBMCs及BMMNCs的CD4~+T细胞中,再障患者初始T细胞的比例明显低于正常对照(p<0.001),再障患者T_(EM)细胞的比例明显高于正常对照(p<0.001),T_(CM)细胞比例在再障患者及正常对照之间无明显差异。在PBMCs及BMMNCs的CD8~+T细胞中,再障患者初始T细胞的比例明显低于正常对照(p<0.001),而T_(EM)细胞及终末T_(EM)细胞的比例均明显高于正常对照(p<0.001),T_(CM)细胞比例在再障患者及正常对照之间无明显差异。
     2.外周血与骨髓中初始和记忆性T细胞亚群的比较:再障患者的CD4~+初始和记忆性T细胞亚群,在外周血与骨髓之间未见明显差异;正常对照的CD4~+T细胞亚群,在外周血与骨髓之间也未见明显差异。而再障患者骨髓中的CD8~+终末T_(EM)细胞的比例较外周血中明显增加(p=0.002),CD8~+初始T细胞的比例较外周血中减少(p<0.001);正常对照的CD8~+初始和记忆性T细胞亚群,在外周血与骨髓之间未见明显差异。
     3.重型再障(SAA)患者与非重型再障(NSAA)患者的初始和记忆性T细胞亚群的比较:PBMCs及BMMNCs中的CD4~+T细胞亚群,SAA组与NSAA组间未见明显差异;PBMCs及BMMNCs中的CD8~+T细胞亚群,两组间也未见明显差异。
     4.初始和记忆性T细胞亚群IFN-γ的表达水平:在再障患者和正常对照的PBMCs及BMMNCs的CD4~+T细胞中,IFN-γ~+CCR7~-T_(EM)细胞比例明显高于IFN-γ~+CCR7~+初始T细胞/T_(CM)细胞(p<0.001);同样的,CD8~+T细胞中,IFN-γ~+CCR7~-T_(EM)细胞比例明显高于IFN-γ~+CCR7~+初始T细胞/T_(CM)细胞(p<0.001)。
     5.再障患者与正常对照的初始和记忆性T细胞亚群IFN-γ表达水平的比较:再障患者PBMCs及BMMNCs的CD4~+和CD8~+T细胞中,IFN-γ~+CCR7~-T_(EM)细胞比例均明显高于正常对照(p<0.001);而在PBMCs及BMMNCs的CD4~+和CD8~+T细胞中,再障患者及正常对照的IFN-γ~+CCR7~+初始T细胞/T_(CM)细胞比例未见明显差异。在再障患者PBMCs及BMMNCs的CD4~+CCR7~-T_(EM)细胞中,表达IFN-γ的细胞比例较正常对照无明显增高;而在再障患者PBMCs及BMMNCs的CD8~+CCR7~-T_(EM)细胞中,表达IFN-γ的细胞比例较正常对照明显增高(p<0.001)。
     结论:再障外周血及骨髓CD4~+和CD8~+T细胞中T_(EM)细胞数量明显增高,骨髓中CD8~+终末T_(EM)细胞又较外周血中明显增高;再障的T_(EM)细胞,较自身初始T细胞、T_(CM)细胞及正常对照的T_(EM)细胞,可表达大量造血负调控因子IFN-γ,提示T_(EM)细胞是再障中主要的效应细胞,可能参与再障的发病过程。
     第二部分电压门控钾通道Kv1.3在再生障碍性贫血患者T细胞中的表达
     目的:研究再障患者骨髓活化T细胞中Kv1.3通道的表达情况。
     方法:
     1.骨髓T细胞的活化:抽取再障患者和正常对照的骨髓液,进行T细胞的分离,以抗CD3单抗刺激T细胞活化,培养72h。
     2.荧光实时定量RT-PCR检测再障活化T细胞中Kv1.3通道mRNA表达水平。
     3.Western blot检测再障活化T细胞中Kv1.3通道蛋白表达水平。
     4.荧光显微镜检测再障活化T细胞膜表面Kv1.3通道及CCR7的表达情况。
     5.流式细胞术检测再障活化CD4~+及CD8~+T细胞中初始T细胞、T_(CM)细胞和T_(EM)细胞的比例。
     结果:
     1.再障患者骨髓T细胞活化后Kv1.3通道mRNA的表达与正常对照相比明显增高(p=0.001)。
     2.再障患者骨髓T细胞活化后Kv1.3通道蛋白的表达与正常对照相比明显增高(p=0.001)。
     3.荧光显微镜下,再障患者骨髓活化T细胞主要为低表达CCR7的CCR7~-T_(EM)细胞,这些细胞Kv1.3通道呈现高表达;正常对照的T细胞主要为高表达CCR7的CCR7~+初始T细胞/T_(CM)细胞,而这些细胞表面低表达Kv1.3通道。
     4.流式细胞术结果显示,在骨髓活化的CD4~+T细胞中,再障患者T_(EM)细胞的比例明显高于正常对照(p<0.001),再障患者初始T细胞的比例明显低于正常对照(p<0.001),T_(CM)细胞比例在再障患者及正常对照之间无明显差异。在CD8~+T细胞中,再障患者T_(EM)细胞及终末T_(EM)细胞的比例均明显高于正常对照(分别为p<0.001,p=0.001),初始T细胞的比例明显低于正常对照(p<0.001),T_(CM)细胞比例在再障患者及正常对照之间无明显差异。T_(EM)细胞是再障患者骨髓活化T细胞中的主要细胞群体。
     结论:再障患者活化的骨髓T细胞中Kv1.3通道在mRNA及蛋白水平的表达较正常明显增高,这与再障T细胞中T_(EM)细胞的数量增加及T_(EM)细胞活化时高表达Kv1.3通道有关。
     第三部分阻断Kv1.3通道对再生障碍性贫血患者T细胞及T细胞亚群的影响
     目的:研究阻断Kv1.3通道对再障患者骨髓T细胞及T细胞亚群增殖及功能的影响。
     方法:
     1.骨髓T细胞的培养:抽取再障患者骨髓液,进行T细胞的分离,以抗CD3单抗刺激T细胞活化的同时,加入或不加入Kv1.3通道特异性阻断剂ShK,培养72h。
     2.阻断Kv1.3通道对再障骨髓T细胞增殖及功能的影响的检测:CCK-8法检测不同处理组再障患者T细胞增殖的情况,ELISA法检测不同处理组培养上清中IFN-γ及IL-4的浓度。
     3.CFSE荧光标记法检测阻断Kv1.3通道对再障骨髓T细胞亚群增殖的影响:再障患者骨髓T细胞刺激前标记CFSE荧光染料,培养72h后通过流式细胞术检测CFSE的变化,分析不同处理组CD4~+和CD8~+T细胞中CCR7~+初始T细胞/T_(CM)细胞、CCR7~-T_(EM)细胞增殖的变化。
     4.流式细胞术检测阻断Kv1.3通道对再障骨髓T细胞亚群功能的影响:分析不同处理组CD4~+和CD8~+T细胞中CCR7~+初始T细胞/T_(CM)细胞、CCR7~-T_(EM)细胞表达细胞因子IFN-γ及IL-4水平的变化。
     结果:
     1.Kv1.3通道阻断剂ShK可明显抑制再障患者骨髓T细胞的增殖(p<0.001)。
     2.阻断Kv1.3通道对再障骨髓T细胞分泌细胞因子水平的影响:ShK加入培养体系后,再障患者培养上清中IFN-γ水平显著降低(p<0.001),IL-4水平未见明显改变。
     3.阻断Kv1.3通道对再障骨髓T细胞亚群增殖的影响:CFSE~(low)细胞代表增殖的细胞,在ShK加入培养体系后,CD4~+CCR7~-T_(EM)细胞及CD8~+CCR7~-T_(EM)细胞中CFSE~(low)细胞比例均显著降低(p<0.001),而CD4~+CCR7~+初始T细胞/T_(CM)细胞及CD8~+CCR7~+初始T细胞/T_(CM)细胞中CFSE~(low)细胞比例未见明显降低。
     4.阻断Kv1.3通道对再障骨髓T细胞亚群表达细胞因子水平的影响:CD4~+及CD8~+T细胞中,分泌IFN-γ和IL-4的细胞主要为CCR7~-T_(EM)细胞。ShK加入培养体系后,CD4~+CCR7~-T_(EM)细胞及CD8~+CCR7~-T_(EM)细胞中表达IFN-γ的细胞比例显著降低(分别为p=0.002,p<0.001),而CD4~+CCR7~+初始T细胞/T_(CM)细胞及CD8~+CCR7~+初始T细胞/T_(CM)细胞中表达IFN-γ的细胞比例未见明显降低;CD4~+和CD8~+CCR7~+初始T细胞/T_(CM)细胞及CD4~+和CD8~+CCR7~-T_(EM)细胞中表达IL-4的细胞比例均未见明显降低。
     结论:特异性阻断Kv1.3通道,可抑制再障T细胞的增殖及功能,其中主要抑制T_(EM)细胞亚群的增殖及功能,对初始T细胞及T_(CM)细胞影响不大;Kv1.3通道在再障T_(EM)细胞活化过程中发挥重要作用;Kv1.3通道可能成为再障免疫治疗的新靶点。
Aplastic anemia(AA) is a bone marrow failure disorder characterized by peripheral blood pancytopenia and bone marrow hypoplasia.Immune-mediated suppression of hematopoiesis is considered as the pivotal mechanism responsible for bone marrow failure in this disease.Based on the ability to express chemokine receptor CCR7 and the phosphatase CD45RA,T cells can be divided into na(l|¨)ve T cells,central memory T cells(T_(CM) cells),and effector memory T cells(T_(EM) cells).Oligoclonal T cells are described to expand in AA and detected to show mature memory/effector phenotypes, implicating memory T cells may participate in pathophysiologic process of AA.
     Potassium channels play an important role in T cell activation.Two lymphocyte potassium channels,the voltage-gated potassium channel Kv1.3 and the calcium-dependent potassium channel KCa3.1 could regulate the T cell activation by modulating membrane potential and Ca~(2+) signaling in T cells.In parallel with the differentiation from na(l|¨)ve into T_(EM) cells,the expression pattern of the lymphocyte potassium channels changes drastically.Kv1.3 channels are up-regulated in activated T_(EM) cells and become the dominant functional potassium channels.In contrast,in na(l|¨)ve T cells and T_(CM) cells,the number of Kv1.3 channels increases only modestly after activation,while KCa3.1 channels are up-regulated as the dominant functional potassium channels.Blocking Kv1.3 channels could inhibit the proliferation and function Of T_(EM) cells.
     In this study,we detected the frequency and function of na(l|¨)ve T cells,T_(CM) cells and T_(EM) cells in AA,investigated the expression of Kv1.3 channels in activated T cells from AA,evaluated the role of Kv1.3 channels in the activation of T cells and T-cell subsets from AA,and discussed the possibility of Kv1.3 channel as a therapeutic target for AA.
     PartⅠFrequency and function of na(l|¨)ve and memory T-cell subsets in aplastie anemia
     Objective:To detect the frequency and function of na(l|¨)ve T cells,T_(CM) cells and T_(EM) cells in CD4~+ and CD8~+ T cells from bone marrow and peripheral blood of patients with AA.
     Methods:
     1.Peripheral blood mononuclear cells(PBMCs) and bone marrow mononuclear cells (BMMNCs) were separated by Ficoll-Hypaque density gradient centrifugation. The percentages of na(l|¨)ve T cells(CD45RA~+CCR7~+),T_(CM) cells(CD45RA~-CCR7~+) and T_(EM) cells(CD45RA~-CCR7~-,CD8~+ T cells also contain terminally differentiated CD45RA~+CCR7~- T_(EM) cells) in CD4~+ and CD8~+ T cells in PBMCs and BMMNCs of patients with AA and controls were analyzed by flow cytometry.
     2.Isolated PBMCs and BMMNCs of patients with AA and controls were simulated with PMA and ionomycin in the presence of monesin for 5h.The expression of intracellular cytokine IFN-γin CD4~+/CD8~+ CCR7~+ na(l|¨)ve/T_(CM) cells and CCR7~-T_(EM) cells were analyzed by flow cytometry.
     Results:
     1.Comparison of percentages of T-cell subsets in PBMCs and BMMNCs between patients with AA and controls:In the CD4~+ T-cell population,significantly decreased percentages of na(l|¨)ve T cells were observed in PBMCs and BMMNCs of patients with AA compared with controls(p<0.001).In contrast,the percentages of T_(EM) cells in PBMCs and BMMNCs were higher in patients with AA than in controls(p<0.001).As far as CD8~+ T-cell population was concerned, patients with AA still had decreased percentages of na(l|¨)ve T cells in PBMCs and BMMNCs compared with controls(p<0.001).Meanwhile,both T_(EM) cells and terminal T_(EM) cells were increased in PBMCs and BMMNCs of patients with AA compared with controls(p<0.001).There was no significant difference between patients with AA and controls in the percentages of CD4~+ and CD8~+ T_(CM) cells from PBMCs or BMMNCs.
     2.Comparison of percentages of T-cell subsets between PBMCs and BMMNCs: There were no significant differences of T-cell subsets in CD4~+ T cells between PBMCs and BMMNCs in both patients with AA and controls.Concerning CD8~+ T-cell population,significantly increased terminal T_(EM) cells and decreased na(l|)ve T cells were observed in BMMNCs compared with PBMCs in patients with AA (p=0.002,p<0.001,respectively),but no difference was detected in controls.
     3.Comparison of percentages of T-cell subsets in BMMNCs and PBMCs between SAA and NSAA patients:In CD4~+ and CD8~+ T cell population of PBMCs and BMMNCs,no significant difference in percentages of na(l|¨)ve and memory T-cell subsets was detected between SAA and NSAA.
     4.The percentages of IFN-γ~+ na(l|¨)ve and memory T-cell subsets in CD4~+ and CD8~+ T cells:In CD4~+ and CD8~+ T cells,the percentages of IFN-γ~+CCR7~- T_(EM) cells from both PBMCs and BMMNCs were significantly higher than IFN-γ~+CCR7~+ na(l|¨)ve/T_(CM) cells in patients with AA as well as in controls(p<0.001).
     5.Comparison of the expression of intracellular cytokine IFN-γin T-cell subsets between patients with AA and controls:Among total CD4~+ or CD8~+ T cells,the percentages of IFN-γ~+CCR7~- T_(EM) cells were significantly higher from PBMCs and BMMNCs in patients with AA than that in controls(p<0.001).The percentages of IFN-γproducers in CD4~+CCR7~- T_(EM) cells from PBMCs or BMMNCs did not differ between patients with AA and controls;whereas the production of IFN-γin CD8~+CCD7~- T_(EM) cells from both PBMCs and BMMNCs was significantly higher in patients with AA than controls(p<0.001).
     Conclusions:CD4~+ T_(EM) cells and CD8~+ T_(EM) cells are increased in peripheral blood and bone marrow of AA,and CD8~+ terminal T_(EM) cells are preferentially increased in bone marrow of AA.T_(EM) cells in AA have increased effector capacity compared with na(l|¨)ve/T_(CM) cells in AA and T_(EM) cells in controls.Increased T_(EM) cells,particularly in marrow of AA,may react as effector cells and participate in immune-mediated suppression of hematopoiesis in AA.
     PartⅡExpression of the voltage-gated potassium channel Kv1.3 in T cells of aplastic anemia
     Objective:To investigate the expression of Kv1.3 channels in activated T cells from bone marrow of patients with AA.
     Methods:
     1.T cells were isolated from bone marrow of patients with AA and controls,and then stimulated for 72h with anti-CD3 antibody for T cell activation.
     2.Kv1.3 mRNA was detected in activated T cells of AA using real-time RT-PCR.
     3.Kv1.3 protein was detected in activated T cells of AA using western blot.
     4.The expression of Kv1.3 and CCR7 on activated T cells was detected by immunofluorescence microscopy.
     5.The percentages of na(l|¨)ve T cells,T_(CM) cells and T_(EM) cells in activated CD4~+ and CD8~+ T cells were analyzed by flow cytometry.
     Results:
     1.The expression of Kv1.3 mRNA in activated T cells was higher in patients with AA than in controls(p=0.001).
     2.The expresstion of Kv1.3 protein in activated T cells was higher in patients with AA than in controls(p=0.001).
     3.Immunofluorescence microscopy analysis revealed that activated T cells of patients with AA were mainly CCR7~- T_(EM) cells,having Kv1.3~(high) phenotype.In contrast,activated T cells of controls were mainly CCR7~+ na(l|¨)ve/T_(CM) cells,and did not exhibit conspicuous membrane Kv1.3 staining.
     4.The percentages of T_(EM) cells in activated CD4~+ T cells were higher in patients with AA than in controls(p<0.001).The percentages of both T_(EM) cells and terminal T_(EM) cells in activated CD8~+ T cells were higher in patients with AA than in controls(p<0.001,p=0.001,respectively).Decreased percentages of na(l|¨)ve T cells were observed in activated CD4~+ and CD8~+ T cells of patients with AA compared with controls(p<0.001).There was no significant difference between patients with AA and controls in the percentages of CD4~+ and CD8~+ T_(CM) cells.
     Conclusions:Kv1.3 expression is elevated at mRNA and protein levels in activated T cells from bone marrow of patients with AA.Activated T_(EM) cells in AA have Kv1.3~(high) phenotype.Higher Kv1.3 expression in the increased T_(EM) cells of AA causes the elevated Kv1.3 expression in activated T cells.
     PartⅢEffects of blocking Kv1.3 channels on proliferation and function of T cells and T-cell subsets in aplastic anemia
     Objective:To evaluate the effects of blocking Kv1.3 channels on proliferation and function of T cells and T-cell subsets from bone marrow of patients with AA.
     Methods:
     1.T cells were isolated from bone marrow of patients with AA,and then stimulated by anti-CD3 antibody with ShK or without ShK for 72h.
     2.The effects of blocking Kv1.3 channels with ShK on T cell proliferation were measured by CCK-8 assay.Concentration of IFN-γand IL-4 in supernatant was measured by ELISA.
     3.CFSE staining was used to investigate the effects of blocking Kv1.3 channels with ShK on proliferation of different T-cell subsets.T cells were labelled with fluorochrome CFSE.After stimulated for 72h,the proliferation of CD4~+/CD8~+ CCR7~+ na(l|¨)ve/T_(CM) cells and CCR7~- T_(EM) cells was analyzed by analyzing the dilution of CFSE signal in the FL1 channel by flow cytometry.
     4.Intracellular cytokine production staining was used to detect the effects of blocking Kv1.3 channels with ShK on function of different T-cell subsets.The expression of intracellular cytokine IFN-γ,and IL-4 in CD4~+/CD8~+ CCR7~+ na(l|¨)ve/T_(CM) cells and CCR7~- T_(EM) cells was analyzed by flow cytometry.
     Results:
     1.As shown by CCK-8 analysis,the proliferation of T cells treated with ShK was significantly decreased in patients with AA compared with T cells stimulated by anti-CD3 without ShK(p<0.001).
     2.The IFN-γproduction of T cells from patients with AA reduced significantly in the presence of ShK(p<0.001).The suppression of IL-4 production induced by ShK was unremarkable in AA.
     3.CFSE~(low) cells represented the proliferating cells.In the presence of ShK,the percentages of CFSE~(low) cells reduced significantly in CD4~+CCR7~- T_(EM) cells and CD8~+CCR7~- T_(EM) cells of AA(p<0.0001).But ShK exerted unremarkable inhibitory effects on the percentages of CFSE~(low) cells in CD4~+CCR7~+ na(l|¨)ve/T_(CM) cells and CD8~+CCR7~+ na(l|¨)ve/T_(CM) cells.
     4.IFN-γand IL-4-producing CD4~+/CD8~+ T cells were mainly CCR7~- T_(EM) cells. When T cells were stimulated by anti-CD3 in the presence of ShK,the percentages of IFN-γ~+ cells in CD4~+CCR7~- T_(EM) cells and CD8~+CCR7~- T_(EM) was decreased significantly(p=0.002,p<0.001,respectively).But ShK exhibited unremarkable inhibitory effects upon intercellular IFN-γexpression in CD4~+CCR7~+ na(l|¨)ve/T_(CM) cells and CD8~+CCR7~+ na(l|¨)ve/T_(CM) cells.Little intracellular IL-4 expressed in T cells from AA and the inhibition of ShK was unremarkable.
     Conclusions:Blocking Kv1.3 channels could inhibit the proliferation and function of T cells in bone marrow of AA.And inhibitory effects are mainly on the proliferation and type-1 response of T_(EM) cells.Kv1.3 channels are the dominant functional potassium channels of the activated T_(EM) cells in AA.Therapy targeting to Kv1.3 channels in T_(EM) cells may improve current immunosuppressive therapies for AA without influencing the whole immune system.
引文
1.Young NS,Calado RT,Scheinberg P.Current concepts in the pathophysiology and treatment of aplastic anemia.Blood,2006;108(8):2509-2519.
    2.Nakao S,Feng X,Sugimori C.Immune pathophysiology of aplastic anemia.Int J Hematol,2005;82(3):196-200.
    3.Young NS.Immunosuppressive treatment of acquired aplastic anemia and immune-mediated bone marrow failure syndromes.Int J Hematol,2002;75(2):129-140.
    4. Marsh J, Schrezenmeier H, Marin P, Ilhan O, Ljungman P, McCann S, Socie G, Tichelli A, Passweg J, Hows J, Raghavachar A, Locasciulli A, Bacigalupo A. Prospective randomized multicenter study comparing cyclosporin alone versus the combination of antithymocyte globulin and cyclosporin for treatment of patients with nonsevere aplastic anemia: a report from the European Blood and Marrow Transplant (EBMT) Severe Aplastic Anaemia Working Party. Blood, 1999; 93(7): 2191-2195.
    
    5. Maciejewski JP, Hibbs JR, Anderson S, Katevas P, Young NS. Bone marrow and peripheral blood lymphocyte phenotype in patients with bone marrow failure. Exp Hematol, 1994; 22(11):1102-1110.
    
    6. Melenhorst JJ, van Krieken JH, Dreef E, Landegent JE, Willemze R, Fibbe WE. T cells selectively infiltrate bone marrow areas with residual haemopoiesis of patients with acquired aplastic anaemia. Br J Haematol, 1997; 99(3):517-519.
    
    7. Giannakoulas NC, Karakantza M, Theodorou GL, Pagoni M, Galanopoulos A, Kakagianni T, Kouraklis-Symeonidis A, Matsouka P, Maniatis A, Zoumbos NC. Clinical relevance of balance between type 1 and type 2 immune responses of lymphocyte subpopulations in aplastic anaemia patients. Br J Haematol, 2004; 124(1):97-105.
    
    8. Zoumbos NC, Ferris WO, Hsu SM, Goodman S, Griffith P, Sharrow SO, Humphries RK, Nienhuis AW, Young N. Analysis of lymphocyte subsets in patients with aplastic anaemia. Br J Haematol, 1984; 58(1):95-105.
    
    9. Zoumbos NC, Gascon P, Djeu JY, Trost SR, Young NS. Circulating activated suppressor T lymphocytes in aplastic anemia. N Engl J Med, 1985; 312(5):257-265.
    
    10. Xu JL, Nagasaka T, Nakashima N. Involvement of cytotoxic granules in the apoptosis of aplastic anaemia. Br J Haematol, 2003; 120(5):850-852.
    
    11. Dufour C, Corcione A, Svahn J, Haupt R, Battilana N, Pistoia V. Interferon gamma and rumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol, 2001; 115(4): 1023-1031.
    12.申蓉,徐从高,李丽珍,张锑,秦雪梅,李杰,赵川莉.再生障碍性贫血患者T 淋巴细胞早期激活及可溶性肿瘤坏死因子受体的研究.中华血液学杂志,2004;25(4):209-212.
    13.肖兰,傅红焱,宋德懋,范少光.T淋巴细胞上的离子通道.生理科学进展,2003;34(2):105-110.
    14.Shieh CC,Coghlan M,Sullivan JP,Gopalakrishnan M.Potassium channels:molecular defects,diseases,and therapeutic opportunities.Pharmacol Rev,2000;52(4):557-594.
    15.Lewis RS,Cahalan MD.Potassium and calcium channels in lymphocytes.Annu Rev Immunol,1995;13:623-653.
    16.DeCoursey TE,Chandy KG,Gupta S,Cahalan MD.Voltage-gated K+ channels in human T lymphocytes:a role in mitogenesis? Nature,1984;307(5950):465-468.
    17.Matteson DR,Deutsch C.K channels in T lymphocytes:a patch clamp study using monoclonal antibody adhesion.Nature,1984;307(5950):468-471.
    18.Decoursey TE,Chandy KG,Gupta S,Cahalan MD.Two types of potassium channels in murine T lymphocytes.J Gen Physiol,1987;89(3):379-404.
    19.Decoursey TE,Chandy KG,Gupta S,Cahalan MD.Mitogen induction of ion channels in murine T lymphocytes.J Gen Physiol,1987;89(3):405-420.
    20.Grissmer S,Dethlefs B,Wasmuth JJ,Goldin AL,Gutman GA,Cahalan MD,Chandy KG.Expression and chromosomal localization of a lymphocyte K~+channel gene.Proc Natl Acad Sci U S A,1990;87(23):9411-9415.
    21.Grissmer S,Nguyen AN,Cahalan MD.Calcium-activated potassium channels in resting and activated human T lymphocytes.Expression levels,calcium dependence,ion selectivity,and pharmacology.J Gen Physiol,1993;102(4):601-630.
    22.Verheugen JA,van Kleef RG,Oortgiesen M,Vijverberg HP.Characterization of Ca(2+)-activated K+ channels in excised patches of human T lymphocytes.Pflugers Arch,1994;426(6):465-471.
    23.Cahalan MD,Wulff H,Chandy KG.Molecular properties and physiological roles of ion channels in the immune system.J Clin Immunol,2001;21(4):235-252.
    24. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. K~+ channels as targets for specific immunomodulation. Trends Pharmacol Sci, 2004; 25(5):280-289.
    
    25. Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora D Jr, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia M, Williamson J, Kaczorowski G, Sigal NH, Springer MS, Feeney W. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol, 1997; 158(11):5120-5128.
    
    26. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999;401(6754):708-712.
    
    27. Haegele KF, Stueckle CA, Malin JP, Sindern E. Increase of CD8~+ T-effector memory cells in peripheral blood of patients with relapsing-remitting multiple sclerosis compared to healthy controls. J Neuroimmunol, 2007; 183(1-2):168-174.
    
    28. Rinaldi L, Gallo P, Calabrese M, Ranzato F, Luise D, Colavito D, Motta M, Guglielmo A, Del Giudice E, Romualdi C, Ragazzi E, D'Arrigo A, Dalle Carbonare M, Leontino B, Leon A. Longitudinal analysis of immune cell phenotypes in early stage multiple sclerosis: distinctive patterns characterize MRI-active patients. Brain, 2006; 129(Pt 8): 1993-2007.
    
    29. Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SI, Kerr DA, Knaus HG, Chandy KG, Calabresi PA. The voltage-gated potassium channel Kvl.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A,2005;102(31):11094-11099.
    
    30. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG. Kvl.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 2006; 103(46):17414-17419.
    
    31.Abdulahad WH, van der Geld YM, Stegeman CA, Kallenberg CG. Persistent expansion of CD4~+ effector memory T cells in Wegener's granulomatosis. Kidney Int, 2006; 70(5):938-947.
    
    32. Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol, 2005; 67(4):1369-1381.
    
    33. Damjanovich S, Gaspar R, Panyi G An alternative to conventional immunosuppression: small-molecule inhibitors of Kvl.3 channels. Mol Interv, 2004; 4(5):250-254.
    1. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999; 401(6754):708-712.
    
    2. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol, 2004; 22:745-763.
    
    3. Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem, 1998; 273(12):7118-7122.
    
    4. Campbell JJ, Murphy KE, Kunkel EJ, Brightling CE, Soler D, Shen Z, Boisvert J, Greenberg HB, Vierra MA, Goodman SB, Genovese MC, Wardlaw AJ, Butcher EC, Wu L. CCR7 expression and memory T cell diversity in humans. J Immunol, 2001; 166(2):877-884.
    
    5. Haegele KF, Stueckle CA, Malin JP, Sindern E. Increase of CD8~+ T-effector memory cells in peripheral blood of patients with relapsing-remitting multiple sclerosis compared to healthy controls. J Neuroimmunol, 2007; 183(1-2):168-174.
    
    6. Rinaldi L, Gallo P, Calabrese M, Ranzato F, Luise D, Colavito D, Motta M, Guglielmo A, Del Giudice E, Romualdi C, Ragazzi E, D'Arrigo A, Dalle Carbonare M, Leontino B, Leon A. Longitudinal analysis of immune cell phenotypes in early stage multiple sclerosis: distinctive patterns characterize MRI-active patients. Brain, 2006; 129(Pt 8): 1993-2007.
    
    7. Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SI, Kerr DA, Knaus HG, Chandy KG, Calabresi PA. The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A, 2005; 102(31):11094-11099.
    
    8. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL,Zimin P,Havel PJ,Griffey S,Knaus HG,Nepom GT,Gutman GA,Calabresi PA,Chandy KG.Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases.Proc Natl Acad Sci U S A,2006;103(46):17414-17419.
    9.Abdulahad WH,van der Geld YM,Stegeman CA,Kallenberg CG.Persistent expansion of CD4~+ effector memory T cells in Wegener's granulomatosis.Kidney Int,2006;70(5):938-947.
    10.Melenhorst JJ,Fibbe WE,Struyk L,van der Elsen PJ,Willemze R,Landegent JE.Analysis of T-cell clonality in bone marrow of patients with acquired aplastic anaemia.Br J Haematol,1997;96(1):85-91.
    11.Zeng W,Maciejewski JP,Chen G,Young NS.Limited heterogeneity of T cell receptor BV usage in aplastic anemia.J Clin Invest,2001;108(5):765-773.
    12.Risitano AM,Maciejewski JP,Green S,Plasilova M,Zeng W,Young NS.In-vivo dominant immune responses in aplastic anaemia:molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing.Lancet,2004;364(9431):355-364.
    13.张之南,沈悌,主编.血液学诊断及疗效标准.第2版.北京:科学出版社,1998,33-38.
    14.中华医学会编著.临床诊疗指南 血液学分册.第1版.北京:人民卫生出版社,2006.5-6.
    15.Young NS,Calado RT,Scheinberg P.Current concepts in the pathophysiology and treatment of aplastic anemia.Blood,2006;108(8):2509-2519.
    16.Nakao S,Feng X,Sugimori C.Immune pathophysiology of aplastic anemia.Int J Hematol,2005;82(3):196-200.
    17.Iezzi G,Scheidegger D,Lanzavecchia A.Migration and function of antigen-primed nonpolarized T lymphocytes in vivo.J Exp Med,2001;193(8):987-993.
    18.Zaph C,Uzonna J,Beverley SM,Scott P.Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites.Nat Med,2004;10(10):1104-1110.
    19. Hirano N, Butler MO, Von Bergwelt-Baildon MS, Maecker B, Schultze JL, O'Connor KC, Schur PH, Kojima S, Guinan EC, Nadler LM. Autoantibodies frequently detected in patients with aplastic anemia. Blood, 2003; 102(13):4567-4575.
    
    20. Feng X, Chuhjo T, Sugimori C, Kotani T, Lu X, Takami A, Takamatsu H, Yamazaki H, Nakao S. Diazepam-binding inhibitor-related protein 1: a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells. Blood, 2004; 104(8):2425-2431.
    
    21. Viglietta V, Kent SC, Orban T, Hafler DA. GAD65-reactive T cells are activated in patients with autoimmune type la diabetes. J Clin Invest, 2002; 109(7):895-903.
    
    22. Maciejewski JP, Hibbs JR, Anderson S, Katevas P, Young NS. Bone marrow and peripheral blood lymphocyte phenotype in patients with bone marrow failure. Exp Hematol, 1994; 22(11):1102-1110.
    
    23. Melenhorst JJ, van Krieken JH, Dreef E, Landegent JE, Willemze R, Fibbe WE. T cells selectively infiltrate bone marrow areas with residual haemopoiesis of patients with acquired aplastic anaemia. Br J Haematol, 1997; 99(3):517-519.
    
    24. Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity, 2001; 14(3):205-215.
    
    25. Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F. Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol, 2003; 4(1):78-86.
    
    26.吴长有.初始和记忆T细胞的研究进展.现代免疫学,2005;25(5):353-356.
    
    27. Nistico A, Young NS. gamma-Interferon gene expression in the bone marrow of patients with aplastic anemia. Ann Intern Med, 1994; 120(6):463-469.
    
    28. Nakao S, Yamaguchi M, Shiobara S, Yokoi T, Miyawaki T, Taniguchi T, Matsuda T. Interferon-gamma gene expression in unstimulated bone marrow mononuclear cells predicts a good response to cyclosporine therapy in aplastic anemia. Blood, 1992; 79(10):2532-2535.
    1. Cahalan MD, Wulff H, Chandy KG Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol, 2001; 21(4):235-252.
    
    2. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annu Rev Immunol, 1995; 13:623-653.
    
    3. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. K~+ channels as targets for specific immunomodulation. Trends Pharmacol Sci, 2004; 25(5):280-289.
    
    4. Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG Targeting effector memory T cells with a selective peptide inhibitor of Kvl.3 channels for therapy of autoimmune diseases. Mol Pharmacol, 2005; 67(4):1369-1381.
    
    5. Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SI, Kerr DA, Knaus HG, Chandy KG, Calabresi PA. The voltage-gated potassium channel Kvl.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A, 2005;102(31):11094-11099.
    
    6. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG Kvl.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 2006; 103(46): 17414-17419.
    
    7. Azam P, Sankaranarayanan A, Homerick D, Griffey S, Wulff H. Targeting effector memory T cells with the small molecule Kv1.3 blocker PAP-1 suppresses allergic contact dermatitis. J Invest Dermatol, 2007; 127(6): 1419-1429.
    
    8. Valverde P, Kawai T, Taubman MA. Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res, 2004; 19(1): 155-164.
    
    9. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood, 2006; 108(8):2509-2519.
    
    10. Nakao S, Feng X, Sugimori C. Immune pathophysiology of aplastic anemia. Int J Hematol, 2005; 82(3): 196-200.
    
    11. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature, 1984; 307(5950):465-468.
    
    12. Matteson DR, Deutsch C. K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature, 1984; 307(5950):468-471.
    
    13. Grissmer S, Dethlefs B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD, Chandy KG. Expression and chromosomal localization of a lymphocyte K~+ channel gene. Proc Natl Acad Sci U S A, 1990; 87(23):9411-9415.
    
    14. Douglass J, Osborne PB, Cai YC, Wilkinson M, Christie MJ, Adelman JP. Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel.J Immunol, 1990; 144(12):4841-4850.
    
    15. MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated pota ssium channel. Nature, 1991; 350(6315):232-235.
    
    16. Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML, Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med, 1993; 177(3):637-645.
    
    17. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol, 2004; 22:745-63.
    18. Norton RS, Pennington MW, Wulff H. Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr Med Chem, 2004; 11(23):3041-3052.
    
    19. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG The voltage-gated Kv1.3 K~+ channel in effector memory T cells as new target for MS. J Clin Invest, 2003; 111(11):1703-1713.
    
    20. Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel AM, Gola M, Sabatier JM, Bernard D, Crest M, Beraud E. Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol, 2001; 166(2):936-944.
    1. Cahalan MD, Wulff H, Chandy KG Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol, 2001; 21(4):235-252.
    
    2. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annu Rev Immunol, 1995; 13:623-653.
    
    3. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. K~+ channels as targets for specific immunomodulation. Trends Pharmacol Sci, 2004; 25(5):280-289.
    
    4. Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel AM, Gola M, Sabatier JM, Bernard D, Crest M, Beraud E. Selective blocking of voltage-gated K~+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J Immunol, 2001; 166(2):936-944.
    
    5. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 2006; 103(46): 17414-17419.
    
    6. Castaneda O, Sotolongo V, Amor AM, Stocklin R, Anderson AJ, Harvey AL, Engstrom A, Wernstedt C, Karlsson E. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon, 1995; 33(5):603-613.
    
    7. Norton RS, Pennington MW, Wulff H. Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr Med Chem, 2004; 11(23):3041-3052.
    
    8. Panyi G, Possani LD, Rodriguez de la Vega RC, Gaspar R, Varga Z. K~+ channel blockers: novel tools to inhibit T cell activation leading to specific immunosuppression. Curr Pharm Des, 2006; 12(18):2199-2220.
    9. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood, 2006; 108(8):2509-2519.
    
    10. Nakao S, Feng X, Sugimori C. Immune pathophysiology of aplastic anemia. Int J Hematol, 2005; 82(3): 196-200.
    
    11. Young NS. Immunosuppressive treatment of acquired aplastic anemia and immune-mediated bone marrow failure syndromes. Int J Hematol, 2002; 75(2): 129-140.
    
    12. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med, 1994; 179(3):973-984.
    
    13. Steinman L. Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron, 1999; 24(3):511-514.
    
    14. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG. The voltage-gated Kv1.3 K~+ channel in effector memory T cells as new target for MS. J Clin Invest,2003; 111(11):1703-1713.
    
    15. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Beraud E. Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A, 2001; 98(24):13942-13947.
    
    16. Valverde P, Kawai T, Taubman MA. Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res, 2004; 19(1):155-164.
    
    17. Giannakoulas NC, Karakantza M, Theodorou GL, Pagoni M, Galanopoulos A, Kakagianni T, Kouraklis-Symeonidis A, Matsouka P, Maniatis A, Zoumbos NC. Clinical relevance of balance between type 1 and type 2 immune responses of lymphocyte subpopulations in aplastic anaemia patients. Br J Haematol, 2004; 124(1):97-105.
    
    18. Zeng W, Kajigaya S, Chen G, Risitano AM, Nunez O, Young NS. Transcript profile of CD4+ and CD8+ T cells from the bone marrow of acquired aplastic anemia patients. Exp Hematol, 2004; 32(9):806-814.
    
    19. Marsh J, Schrezenmeier H, Marin P, Ilhan 0, Ljungman P, McCann S, Socie G, Tichelli A, Passweg J, Hows J, Raghavachar A, Locasciulli A, Bacigalupo A. Prospective randomized multicenter study comparing cyclosporin alone versus the combination of antithymocyte globulin and cyclosporin for treatment of patients with nonsevere aplastic anemia: a report from the European Blood and Marrow Transplant (EBMT) Severe Aplastic Anaemia Working Party. Blood, 1999; 93(7): 2191-2195.
    
    20. Shah K, Tom Blake J, Huang C, Fischer P, Koo GC. Immunosuppressive effects of a Kv1.3 inhibitor. Cell Immunol, 2003; 221(2):100-106.
    
    21. Panyi G, Bagdany M, Bodnar A, Vamosi G, Szentesi G, Jenei A, Matyus L, Varga S, Waldmann TA, Gaspar R, Damjanovich S. Colocalization and nonrandom distribution of Kvl.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci U S A, 2003; 100(5):2592-2597.
    
    22. Chung I, Schlichter LC. Native Kvl.3 channels are upregulated by protein kinase C. J Membr Biol, 1997; 156(1):73-85.
    
    23. Panyi G, Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S. Kvl.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci U S A, 2004; 101 (5): 1285-1290.
    
    24. Damjanovich S, Gaspar R, Panyi G An alternative to conventional immunosuppression: small-molecule inhibitors of Kvl.3 channels. Mol Interv, 2004; 4(5):250-254.
    1.Brodsky RA,Jones RJ.Aplastic anaemia.Lancet,2005;365(9471):1647-1656.
    2.申蓉,徐从高,李丽珍,张锑,秦雪梅,李杰,赵川莉.再生障碍性贫血患者T 淋巴细胞早期激活及可溶性肿瘤坏死因子受体的研究.中华血液学杂志,2004;25(4):209-212.
    3.Nissen C,Schubert J.Seeing the good and bad in aplastic anemia:is autoimmunity in AA dysregulated or antineoplastic? Hematol J,2002;3(4):169-175.
    4.Nakao S,Takami A,Takamatsu H,Zeng W,Sugimori N,Yamazaki H,Miura Y,Ueda M,Shiobara S,Yoshioka T,Kaneshige T,Yasukawa M,Matsuda T.Isolation of a T-cell clone showing HLA-DRB1~*0405-restricted cytotoxicity for hematopoietic cells in a patient with aplastic anemia.Blood,1997;89(10):3691-3699.
    5.Zeng W,Maciejewski JP,Chen G,et al.Limited heterogeneity of T cell receptor BV usage in aplastic anemia.J Clin Invest,2001;108(5):765-773.
    6.Maciejewski JP,Selleri C,Sato T,Anderson S,Young NS.Increased expression of Fas antigen on bone marrow CD34~+ cells of patients with aplastic anaemia.Br J Haematol,1995;91(1):245-252.
    7.Hirano N,Butler MO,Von Bergwelt-Baildon MS,Maecker B,Schultze JL,O'Connor KC,Schur PH,Kojima S,Guinan EC,Nadler LM.Autoantibodies frequently detected in patients with aplastic anemia.Blood,2003;102(13):4567-4575.
    8.Feng X,Chuhjo T,Sugimori C,Kotani T,Lu X,Takami A,Takamatsu H,Yamazaki H,Nakao S.Diazepam-binding inhibitor-related protein 1:a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells.Blood,2004;104(8):2425-2431.
    9.Iwase O,Aizawa S,Kuriyama Y,Yaguchi M,Nakano M,Toyama K.Analysis of bone marrow and peripheral blood immunoregulatory lymphocytes in patients with myelodysplastic syndrome.Ann Hematol,1995;71(6):293-299.
    10.Molnar L,Burger T,Schmelczer M,Fabian G.Immunologic studies in myelodysplastic syndrome.Orv Hetil,1991;132(42):2299-2302.
    11.Luraschi A,Saglietti G,Fedeli P,Gioria A,Della Vedova A,Ferrari V,Borgotti P.Immunological indices in myelodysplastic syndromes.Minerva Med,1994;85(4):145-153.
    12.王秀丽,邵宗鸿,姚程,何广胜,刘鸿,施均,白洁,曹燕然,涂梅峰,王化泉,邢莉民,孙娟,贾海蓉,杨崇礼.骨髓增生异常综合征患者骨髓T辅助细胞亚群的研究.中华血液学杂志,2005;26(12):743-746.
    13.Kook H,Zeng W,Guibin C,Kirby M,Young NS,Maciejewski JP.Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia.Exp Hematol,2001;29(11):1270-1277.
    14.Baumann I,Scheid C,Koref MS,Swindell R,Stern P,Testa NG.Autologous lymphocytes inhibit hemopoiesis in long-term culture in patients with myelodysplastic syndrome.Exp Hematol,2002;30(12):1405-1411.
    15.Shimamoto T,Iguchi T,Ando K,Katagiri T,Tauchi T,Ito Y,Yaguchi M,Miyazawa K,Kimura Y,Masuda M,Mizoguchi H,Ohyashiki K.Successful treatment with cyclosporin A for myelodysplastic syndrome with erythroid hypoplasia associated with T-cell receptor gene rearrangements.Br J Haematol, 2001;114(2):358-361.
    16.Stadler M,Germing U,Kliche KO,Josten KM,Kuse R,Hofmann WK,Schrezenmeier H,Novotny J,Anders O,Eimermacher H,Verbeek W,Kreipe HH,Heimpel H,Aul C,Ganser A.A prospective,randomised,phase Ⅱ study of horse antithymocyte globulin vs rabbit antithymocyte globulin as immune-modulating therapy in patients with low-risk myelodysplastic syndromes.Leukemia,2004;18(3):460-465.
    17.Keohane EM.Acquired aplastic anemia.Clin Lab Sci,2004;17(3):165-171.
    18.林凤茹,王艳,王荣琦,王颖.再生障碍性贫血、阵发性睡眠性血红蛋白尿症和难治性贫血的临床分析.中华血液学杂,2002;23(5):270-271.
    19.Ramos F,Fernandez-Ferrero S,Suarez D,Barbon M,Rodriguez JA,Gil S,Megido M,Ciudad J,Lopez N,del Canizo C,Orfao A.Myelodysplastic syndrome:a search for minimal diagnostic criteria.Leuk Res,1999;23(3):283-290.
    20.Matsui WH,Brodsky RA,Smith BD,Borowitz M J,Jones RJ.Quantitative analysis of bone marrow CD34 cells in aplastic anemia and hypoplastic myelodysplastic syndromes.Leukemia,2006;20(3):458-462.
    21.M Mikhailova N,Sessarego M,Fugazza G,Caimo A,De Filippi S,van Lint MT,Bregante S,Valeriani A,Mordini N,Lamparelli T,Gualandi F,Occhini D,Bacigalupo A.Cytogenetic abnormalities in patients with severe aplastic anemia.Haematologica,1996;81(5):418-422.
    22.Keung YK,Pettenati MJ,Cruz JM,Powell BL,Woodruff RD,Buss DH.Bone marrow cytogenetic abnormalities of aplastic anemia.Am J Hematol,2001;66(3):167-171.
    23.Tuzuner N,Cox C,Rowe JM,Watrous D,Bennett JM.Hypocellular myelodysplastic syndromes(MDS):new proposals.Br J Haematol,1995;91(3):612-617.
    24.White JR,Josten KM,Chopra R,Tooze J,Saso R,Gordon-Smith EC,Rutherford TR.Absence of N-RAS point mutations in peripheral blood cells of patients with aplastic anaemia and paroxysmal nocturnal haemoglobinurea.Br J Haematol,1995;91(4):921-923.
    25.Vulliamy T,Marrone A,Dokal I,Mason PJ.Association between aplastic anaemia and mutations in telomerase RNA.Lancet,2002;359(9324):2168-2170.
    26.Liang J,Yagasaki H,Kamachi Y,Hama A,Matsumoto K,Kato K,Kudo K,Kojima S.Mutations in telomerase catalytic protein in Japanese children with aplastic anemia.Haematologica,2006;91(5):656-658.
    27.Field J J,Mason PJ,An P,Kasai Y,McLellan M,Jaeger S,Barnes YJ,King AA,Bessler M,Wilson DB.Low frequency of telomerase RNA mutations among children with aplastic anemia or myelodysplastic syndrome.J Pediatr Hematol Oncol,2006;28(7):450-453.
    28.Sole F,Espinet B,Sanz GF,Cervera J,Calasanz M J,Luno E,Prieto F,Granada I,Hernandez JM,Cigudosa JC,Diez JL,Bureo E,Marques ML,Arranz E,Rios R,Martinez Climent JA,Vallespi T,Florensa L,Woessner S.Incidence,characterization and prognostic significance of chromosomal abnormalities in 640patients with primary myelodysplastic syndromes.Br J Haematol,2000;108(2):346-356.
    29.Cherry AM,Brockman SR,Paternoster SF,Hicks GA,Neuberg D,Higgins RR,Bennett JM,Greenberg PL,Miller K,Tallman MS,Rowe J,Dewald GW.Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome:an Eastern Cooperative Oncology Group(ECOG)study.Leuk Res,2003;27(12):1085-1090.
    30.申咏梅,薛永权,李建勇,过宇,潘金兰,吴亚芳.间期荧光原位杂交检测骨髓增生异常综合征-5/5q-染色体异常.中华血液学杂志,2001;22(10):517-519.
    31.Steensma DP,List AF.Genetic testing in the myelodysplastic syndromes:molecular insights into hematologic diversity.Mayo Clin Proc,2005;80(5):681-698.
    32.Socie G,Henry-Amar M,Bacigalupo A,Hows J,Tichelli A,Ljungman P,McCann SR,Frickhofen N,Van't Veer-Korthof E,Gluckman E.Malignant tumors occurring after treatment of aplastic anemia.European Bone Marrow Transplantation-Severe Aplastic Anaemia Working Party.N Engl J Med,1993;329(16):1152-1157.
    33.Kojima S,Ohara A,Tsuchida M,Kudoh T,Hanada R,Okimoto Y,Kaneko T,Takano T,Ikuta K,Tsukimoto I;Japan Childhood Aplastic Anemia Study Group.Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children.Blood,2002;100(3):786-790.
    34.Maciejewsld JP,Risitano A,Sloand EM,Nunez O,Young NS.Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia.Blood,2002;99(9):3129-3135.
    35.杨崇礼,卢学春,刘慧英.再生障碍性贫血、骨髓增生异常综合征、阵发性睡眠性血红蛋白尿症演变的问题.白血病.淋巴瘤,2000;9(6):367-370.
    36.Greenberg P,Cox C,LeBeau MM,Fenaux P,Morel P,Sanz G,Sanz M,Vallespi T,Hamblin T,Oscier D,Ohyashiki K,Toyama K,Aul C,Mufti G,Bennett J.International scoring system for evaluating prognosis in myelodysplastic syndromes.Blood,1997;89(6):2079-2088.
    1. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood, 2006; 108(8):2509-2519.
    
    2. Bacigalupo A, Broccia G, Corda G, Arcese W, Carotenuto M, Gallamini A, Locatelli F, Mori PG, Saracco P, Todeschini G, et al. Antilymphocyte globulin, cyclosporin, and granulocyte colony-stimulating factor in patients with acquired severe aplastic anemia (SAA): a pilot study of the EBMT SAA Working Party. Blood, 1995; 85(5):1348-1353.
    
    3. Zoumbos NC, Gascon P, Djeu JY, Trost SR, Young NS. Circulating activated suppressor T lymphocytes in aplastic anemia. N Engl J Med, 1985; 312(5):257-265.
    
    4. Zoumbos NC, Ferris WO, Hsu SM, Goodman S, Griffith P, Sharrow SO, Humphries RK, Nienhuis AW, Young N. Analysis of lymphocyte subsets in patients with aplastic anaemia. Br J Haematol, 1984; 58(1):95-105.
    
    5. Giannakoulas NC, Karakantza M, Theodorou GL, Pagoni M, Galanopoulos A, Kakagianni T, Kouraklis-Symeonidis A, Matsouka P, Maniatis A, Zoumbos NC. Clinical relevance of balance between type 1 and type 2 immune responses of lymphocyte subpopulations in aplastic anaemia patients. Br J Haematol, 2004; 124(1):97-105.
    
    6. Hinterberger W, Adolf G, Aichinger G, Dudczak R, Geissler K, Hocker P, Huber C, Kalhs P, Knapp W, Koller U, et al. Further evidence for lymphokine overproduction in severe aplastic anemia. Blood, 1988;72(1):266-272.
    
    7. Dufour C, Corcione A, Svahn J, Haupt R, Battilana N, Pistoia V. Interferon gamma and tumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol, 2001; 115(4):1023-1031.
    
    8. Luther-Wyrsch A, Nissen C, Wodnar-Filipowicz A. Intracellular Fas ligand is elevated in T lymphocytes in severe aplastic anaemia. Br J Haematol, 2001; 114(4):884-890.
    
    9. Melenhorst JJ, Fibbe WE, Struyk L, van der Elsen PJ, Willemze R, Landegent JE. Analysis of T-cell clonality in bone marrow of patients with acquired aplastic anaemia. Br J Haematol, 1997; 96(1):85-91.
    
    10. Zeng W, Maciejewski JP, Chen G, Young NS. Limited heterogeneity of T cell receptor BV usage in aplastic anemia. J Clin Invest, 2001; 108(5):765-773.
    
    11. Risitano AM, Maciejewski JP, Green S, Plasilova M, Zeng W, Young NS. In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing. Lancet, 2004; 364(9431):355-364.
    
    12. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999; 401(6754):708-712.
    
    13. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol, 2004; 22:745-763.
    14. Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem, 1998; 273(12):7118-7122.
    
    15. Campbell JJ, Murphy KE, Kunkel EJ, Brightling CE, Soler D, Shen Z, Boisvert J, Greenberg HB, Vierra MA, Goodman SB, Genovese MC, Wardlaw AJ, Butcher EC, Wu L. CCR7 expression and memory T cell diversity in humans. J Immunol, 2001; 166(2): 877-884.
    
    16. Abdulahad WH, van der Geld YM, Stegeman CA, Kallenberg CG Persistent expansion of CD4~+ effector memory T cells in Wegener's granulomatosis. Kidney Int, 2006; 70(5):938-947.
    
    17. Haegele KF, Stueckle CA, Malin JP, Sindern E. Increase of CD8~+ T-effector memory cells in peripheral blood of patients with relapsing-remitting multiple sclerosis compared to healthy controls. J Neuroimmunol, 2007; 183(1-2):168-174.
    
    18. Rinaldi L, Gallo P, Calabrese M, Ranzato F, Luise D, Colavito D, Motta M, Guglielmo A, Del Giudice E, Romualdi C, Ragazzi E, D'Arrigo A, Dalle Carbonare M, Leontino B, Leon A. Longitudinal analysis of immune cell phenotypes in early stage multiple sclerosis: distinctive patterns characterize MRI-active patients. Brain, 2006; 129(Pt 8): 1993-2007.
    
    19. Gattorno M, Prigione I, Morandi F, Gregorio A, Chiesa S, Ferlito F, Favre A, Uccelli A, Gambini C, Martini A, Pistoia V. Phenotypic and functional characterisation of CCR7+ and CCR7- CD4+ memory T cells homing to the joints in juvenile idiopathic arthritis. Arthritis Res Ther, 2005;7(2):256-267.
    
    20. Kaufman DW, Kelly JP, Jurgelon JM, Anderson T, Issaragrisil S, Wiholm BE, Young NS, Leaverton P, Levy M, Shapiro S. Drugs in the aetiology of agranulocytosis and aplastic anaemia. Eur J Haematol Suppl, 1996; 60:23-30.
    
    21. Camitta BM, Rappeport JM, Parkman R, Nathan DG Selection of patients for bone marrow transplantation in severe aplastic anemia. Blood, 1975; 45(3):355-363.
    22. Marsh J, Schrezenmeier H, Marin P, Ilhan O, Ljungman P, McCann S, Socie G, Tichelli A, Passweg J, Hows J, Raghavachar A, Locasciulli A, Bacigalupo A. Prospective randomized multicenter study comparing cyclosporin alone versus the combination of antithymocyte globulin and cyclosporin for treatment of patients with nonsevere aplastic anemia: a report from the European Blood and Marrow Transplant (EBMT) Severe Aplastic Anaemia Working Party. Blood, 1999;93(7):2191-2195.
    
    23. Iezzi G, Scheidegger D, Lanzavecchia A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J Exp Med, 2001; 193(8):987-993.
    
    24. Hirano N, Butler MO, Von Bergwelt-Baildon MS, Maecker B, Schultze JL, O'Connor KC, et al. Autoantibodies frequently detected in patients with aplastic anemia. Blood, 2003; 102(13):4567-4575.
    
    25. Feng X, Chuhjo T, Sugimori C, Kotani T, Lu X, Takami A, Takamatsu H, Yamazaki H, Nakao S. Diazepam-binding inhibitor-related protein 1: a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells. Blood, 2004; 104(8): 2425-2431.
    
    26. Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SI, Kerr DA, Knaus HG, Chandy KG, Calabresi PA. The voltage-gated potassium channel Kv1.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A,2005;102(31):11094-11099.
    
    27. Viglietta V, Kent SC, Orban T, Hafler DA. GAD65-reactive T cells are activated in patients with autoimmune type la diabetes. J Clin Invest, 2002; 109(7):895-903.
    
    28. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 2006; 103(46): 17414-17419.
    
    29. Maciejewski JP, Hibbs JR, Anderson S, Katevas P, Young NS. Bone marrow and peripheral blood lymphocyte phenotype in patients with bone marrow failure. Exp Hematol, 1994; 22(11): 1102-1110.
    
    30. Melenhorst JJ, van Krieken JH, Dreef E, Landegent JE, Willemze R, Fibbe WE. T cells selectively infiltrate bone marrow areas with residual haemopoiesis of patients with acquired aplastic anaemia. Br J Haematol, 1997; 99(3):517-519.
    
    31. Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity, 2001; 14(3):205-215.
    
    32. Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F. Memory and flexibility of cytokine gene expression as separable properties of human T(H)1 and T(H)2 lymphocytes. Nat Immunol, 2003; 4(1):78-86.
    1. Zoumbos NC, Gascon P, Djeu JY, Young NS. Interferon is a mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sci U S A, 1985; 82(1):188-192.
    
    2. Hinterberger W, Adolf G, Aichinger G, Dudczak R, Geissler K, Hocker P, Huber C, Kalhs P, Knapp W, Koller U. Further evidence for lymphokine overproduction in severe aplastic anemia. Blood, 1988; 72(1):266-272.
    
    3. Dufour C, Corcione A, Svahn J, Haupt R, Battilana N, Pistoia V. Interferon gamma and tumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol, 2001; 115(4):1023-1031.
    
    4. Zoumbos NC, Gascon P, Djeu JY, Trost SR, Young NS. Circulating activated suppressor T lymphocytes in aplastic anemia. N Engl J Med, 1985; 312(5):257-265.
    
    5. Maciejewski JP, Hibbs JR, Anderson S, Katevas P, Young NS. Bone marrow and peripheral blood lymphocyte phenotype in patients with bone marrow failure. Exp Hematol, 1994; 22(11): 1102-1110.
    
    6. Herrmann F, Griffin JD, Meuer SG, Meyer zum Biischenfelde KH. Establishment of an interleukin 2-dependent T cell line derived from a patient with severe aplastic anemia, which inhibits in vitro hematopoiesis. J Immunol, 1986; 136(5):1629-1634.
    
    7. Keohane EM. Acquired aplastic anemia. Clin Lab Sci, 2004; 17(3): 165-171.
    
    8. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood, 2006; 108(8):2509-2519.
    9. Shen R, Xu CG, Li LZ, Zhang T, Qin XM, Li J, Zhao CL. Study on the T lymphocytes early activation and soluble tumor necrosis factor receptor in patients with aplastic anemia. Zhonghua Xue Ye Xue Za Zhi, 2004; 25(4):209-212.
    
    10. Zeng W, Maciejewski JP, Chen G, Young NS. Limited heterogeneity of T cell receptor BV usage in aplastic anemia. J Clin Invest, 2001; 108(5):765-773.
    
    11.Hirano N, Butler MO, Von Bergwelt-Baildon MS, Maecker B, Schultze JL, O'Connor KC, Schur PH, Kojima S, Guinan EC, Nadler LM. Autoantibodies frequently detected in patients with aplastic anemia. Blood, 2003; 102(13):4567-4575.
    
    12. Feng X, Chuhjo T, Sugimori C, Kotani T, Lu X, Takami A, Takamatsu H, Yamazaki H, Nakao S. Diazepam-binding inhibitor-related protein 1: a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells. Blood, 2004; 104(8):2425-2431.
    
    13. Young NS. Acquired aplastic anemia. Ann Intern Med, 2002; 136(7):534-546.
    
    14. Bacigalupo A, Broccia G, Corda G, Arcese W, Carotenuto M, Gallamini A, Locatelli F, Mori PG, Saracco P, Todeschini G, et al. Antilymphocyte globulin, cyclosporin, and granulocyte colony-stimulating factor in patients with acquired severe aplastic anemia (SAA): a pilot study of the EBMT SAA Working Party. Blood, 1995; 85(5):1348-1353.
    
    15. Brodsky RA, Chen AR, Brodsky I, Jones RJ. High-dose cyclophosphamide as salvage therapy for severe aplastic anemia. Exp Hematol, 2004; 32(5):435-440.
    
    16. George Chandy K, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci, 2004; 25(5):280-289.
    
    17. Damjanovich S, Gaspar R, Panyi G. An alternative to conventional immunosuppression: small-molecule inhibitors of Kvl.3 channels. Mol Interv, 2004; 4(5):250-254.
    
    18. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Beraud E. Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A, 2001; 98(24): 13942-13947.
    
    19. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG The voltage-gated Kv1.3 K~+ channel in effector memory T cells as new target for MS. J Clin Invest, 2003; 111(11): 1703-1713.
    
    20. Rus H, Pardo CA, Hu L, Darrah E, Cudrici C, Niculescu T, Niculescu F, Mullen KM, Allie R, Guo L, Wulff H, Beeton C, Judge SI, Kerr DA, Knaus HG, Chandy KG, Calabresi PA. The voltage-gated potassium channel Kvl.3 is highly expressed on inflammatory infiltrates in multiple sclerosis brain. Proc Natl Acad Sci U S A, 2005; 102(31):11094-11099.
    
    21. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG Kvl.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A, 2006; 103(46):17414-17419.
    
    22. Valverde P, Kawai T, Taubman MA. Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J Bone Miner Res, 2004; 19(1): 155-164.
    
    23. Zweifach A, Lewis RS. Mitogen-regulated Ca~(2+) current of T lymphocytes is activated by depletion of intracellular Ca~(2+) stores. Proc Natl Acad Sci U S A, 1993; 90(13):6295-6299.
    
    24. Cahalan MD, Wulff H, Chandy KG. Molecular properties and physiological roles of ion channels in the immune system. J Clin Immunol, 2001; 21(4):235-252.
    
    25. Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA, Springer MS, Sigal NH, Slaughter RS, Garcia ML, Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med, 1993; 177(3):637-645.
    26. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annu Rev Immunol, 1995; 13:623-653.
    
    27. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 1999;401(6754):708-712.
    
    28. Norton RS, Pennington MW, Wulff H. Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr Med Chem, 2004; 11(23):3041-3052.
    
    29. Lovett-Racke AE, Trotter JL, Lauber J, Perrin PJ, June CH, Racke MK. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J Clin Invest, 1998; 101 (4): 725-730.
    
    30. Viglietta V, Kent SC, Orban T, Hafler DA. GAD65-reactive T cells are activated in patients with autoimmune type la diabetes. J Clin Invest, 2002; 109(7):895-903.
    
    31. Shah K, Tom Blake J, Huang C, Fischer P, Koo GC. Immunosuppressive effects of aKv1.3 inhibitor. Cell Immunol, 2003; 221(2): 100-106.
    
    32. Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol Pharmacol, 2005; 67(4):1369-1381.