中高层生态复合墙混合结构计算理论与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家―十二五‖规划的实施与推进,社会城镇化进程的步伐进一步加快,城镇规模不断扩大,用地紧张、基础设施滞后、环境污染等城镇化问题集中涌现。为解决上述问题,城镇土地的利用必须朝着综合化、集约化的方向发展,这就对原有生态复合墙结构体系提出新的要求。基于上述研究现状及前期研究成果,将传统生态复合墙结构与混凝土竖向约束构件有机结合提出中高层生态复合墙混合结构体系。本文立足于课题组主攻研究方向—中高层生态复合墙混合结构体系,采取试验研究、理论分析和数值模拟相结合的方法,重点对中高层生态复合墙体抗震性能与理论分析、结构协同工作与构件配比优化、结构的简化计算模型等方面的研究;在此基础上,总结该混合结构抗震设计理论及构造措施,为中高层生态复合墙混合结构的设计和施工提供依据,奠定该结构的应用和发展基础。本文主要研究内容与成果如下:
     (1)结合课题组前期3榀中高层生态复合墙体的试验研究,对比不同类型中高层生态复合墙体的承载力、滞回特性、延性、强度退化、刚度退化等抗震性能。结果表明:肋梁、肋柱、竖向约束构件所形成的框格有效约束砌块受力及裂缝发展,按照―砌块—肋格—竖向约束构件‖模式各分灾元件依次发生破坏,形成多道抗震防线,充分利用不同构件的耗能能力;墙体从屈服到破坏,骨架曲线变化平缓,无突变现象,均未出现倒塌现象,抗倒塌能力较强。采用ABAQUS建立的中高层生态复合墙体数值模型,并对其进行静力弹塑性分析,计算结果与试验结果在荷载-位移曲线、出铰机制等方面吻合较好;在此基础上,开展关键参数变化的中高层生态复合墙体数值扩展分析,获得竖向约束构件肢厚比、截面形式、配筋率、肋格形式、轴压比、高宽比等关键因素对墙体弹性刚度、承载力和位移延性的影响规律,为建立合理的中高层生态复合墙体的计算理论和设计方法奠定基础。
     (2)基于数值及墙体试验研究成果,结合墙体独特构造和复合材料力学,建立适用于复合墙体的弹性阶段模型—双向纤维单层复合材料模型,推导出墙体弹性模量及剪切模量实用计算公式,并利用弹性力学对各向异性等效弹性板的抗侧刚度进行推导,同时考虑各种影响因素,对正交各向异性等效弹性板的抗侧刚度进行修正,结果表明:复合材料力学简化模型用于复合墙体抗侧刚度的计算,具有一定的理论依据和实用价值,能够满足实际工程计算需要;结合墙体受力特性及破坏过程,给出中高层生态复合墙体极限状态时的抗剪抵抗机构,基于抗剪抵抗机构、力的平衡条件,推导出中高层生态复合墙体的斜截面抗剪极限承载力计算公式,结果表明:该分析模型能够较好的反映中高层生态复合墙体的极限承载力特性,可应用于不同受力状态下复合墙体的极限承载力验算;基于平截面假定,推导出中高层生态复合墙体的正截面抗弯极限承载力计算公式,同时给出界限受压区高度,用于指导竖向约束构件的配筋。
     (3)结合中高层生态复合墙体试验及数值模拟,根据其受力特性及构造特点,提出中高层生态复合墙混合结构在水平荷载作用下的夹层复合结构力学模型,并根据变形协调原理,建立结构平衡微分方程,量化复合墙板和竖向约束构件承担荷载的比例关系,解析解与数值解对比表明:该模型为计算实际结构内力及位移提供了一种较为简化、实用的解析方法;基于中高层生态复合墙混合结构空间协同工作的原理,推导出满足层间侧移角限值的竖向约束构件的计算公式,量化不同控制因素作用下(抗震等级、场地类别、设计分组)纵向、横向竖向约束构件与复合墙板配比,指导中高层生态复合墙混合结构的结构方案设计。
     (4)针对生态复合墙板非均匀周期性分布特点,选取合适的单胞,建立单胞模型能量表达式,利用能量极值原理、周期性条件、均匀性条件及数学变换,得到复合材料的宏观性能的力学表达式,并结合细观力学有限元模型,建立不同尺度的代表性体积单元、边界条件,模拟代表性体积单元在荷载工况下的强度试验,得出代表性体积单元的等效材料特性及本构关系,与试验结果对比验证其合理性,研究表明:匀质化数值模型计算结果与试验结果吻合较好,该方法确定的材料属性能够反映墙板的宏观性能;利用等效材料属性及本构关系,提出中高层生态复合墙混合结构的全过程简化数值模型—竖向约束构件-复合板弹塑性力学模型,与振动台试验结果进行了对比分析,结果表明:竖向约束构件-复合板弹塑性力学模型能较好地模拟中高层生态复合墙混合结构弹塑性阶段的真实破坏过程及动力特性,模型具有一定的实用性,可适用于该混合结构非线性动、静力计算分析。
     (5)根据前期中高层生态复合墙体试验、数值模拟,并结合工程设计实例,重点对中高层生态复合墙混合结构房屋的平面布置、结构选型、抗震等级等概念设计原则、竖向约束构件设计与构造、生态复合墙板竖向连接进行研究与探讨,以期为中高层生态复合墙混合结构后续工程应用提供参考。
     本文的主要创新之处在于:
     (1)开展关键参数变化的中高层生态复合墙抗震性能对比研究,探讨关键因素对墙体力学行为的影响规律
     结合3榀中高层生态复合墙体的试验研究,对比不同类型中高层生态复合墙体抗震性能;利用已验证数值模型,采用有限元软件ABAQUS开展基于关键参数(竖向约束构件肢厚比、截面形式、配筋率、肋格形式、轴压比、高宽比)变化的数值扩展分析,探讨关键因素对墙体力学行为的影响规律,为建立合理的中高层生态复合墙体的计算理论和设计方法奠定基础。
     (2)推导出中高层生态复合墙体的抗侧刚度与极限承载力计算公式,完善和补充墙体的理论分析
     基于双向纤维单层复合材料模型,推导各向异性等效弹性板的抗侧刚度计算公式,该公式可用于复合墙体抗侧刚度的计算,具有一定的理论依据和实用价值;基于抗剪抵抗机构,推导出中高层生态复合墙体的斜截面抗剪极限承载力计算公式,可应用于不同受力状态下复合墙体的极限承载力验算;基于平截面假定,推导出中高层生态复合墙体的正截面抗弯极限承载力计算公式,用于指导竖向约束构件的配筋。
     (3)建立中高层生态复合墙混合结构协同工作模型,提出不同控制因素作用下竖向约束构件与复合墙板配比计算方法
     结合中高层生态复合墙体试验及数值模拟,提出中高层生态复合墙混合结构在水平荷载作用下的夹层复合结构力学模型,量化复合墙板和竖向约束构件承担荷载的比例关系;基于协同工作原理,提出不同控制因素作用下竖向约束构件与复合墙板配比计算方法,用于指导中高层生态复合墙混合结构的结构方案设计。
     (4)建立基于代表性体积单元的中高层生态复合墙混合结构的全过程简化数值模型—竖向约束构件-复合板弹塑性力学模型
     运用周期介质均质化理论及细观有限元方法,建立不同尺度的代表性体积单元、边界条件,模拟代表性体积单元在荷载工况下的强度试验,得出代表性体积单元的等效材料特性及本构关系;利用等效材料属性及本构关系,建立中高层生态复合墙混合结构的全过程简化数值模型—竖向约束构件-复合板弹塑性力学模型,可用于该混合结构非线性动、静力全过程分析。
With the implementation and promotion of the twelfth five-year plan,the step of societyurbanization is speeding up further. Because of expanding scale of urbanization,suchproblems as shortage of land,construction of infrastructure falling behind and environmentalpollution have concentrated emergence. In order to solve the above problems,the city landutilization must be developed towards the direction of the integration and intensive,whichputs forward new demands in the ecological composite wall structure. Based on the abovepresent research situation and the previous research results,the middle-high ecologicalcomposite wall hybrid structure which is made up the ecological composite wall structureand vertical restrained components is put forward.This paper stands on the highlights of theteam for the middle-high ecological composite wall hybrid structure and the primary study isfocused on the seismic performance and theoretical analysis,collaborating work of structureand proportion optimization of component,simple calculation model by combination ofexperiment research,the theory analysis and numerical simulation. Based on this,the seismicdesign theory and construction measures of the hybrid structure are summarized. So it makesfull preparations for structure applications and gives neeessaly foundation for itsdevelopmeni and applications.The main research contents and the results are as follows:
     (1)Accordingtothetest researchonthemid-highrise ecological compositewall,thecoMParative analysis on the seismic performance of the bearing capacity,hystereticcharacteristics,tensility,strength degradation,stiffness degeneration on different types ofmiddle-high ecological composite wall. The results show that the sash of rib beam,columnand the vertical component constraints block stress and fracture development effectively. Thefailure of each element of block-sash-vertical constraint component model takes place inturn,and the multichannel seismic line is formed,which can make full use of differentcomponent of the energy dissipation ability. The skeleton curve of the wall is smooth and there is no mutation and no collapse occurred phenomenon from yield to destruction. Thewall has the strong ability to resist collapse. ABAQUS is used to build the middle-highecological composite wall numerical model,and the static elastoplastic analysis is carried on.The calculation results and test results of the load-displacement curve and the hingemechanism are all in good agreement. On this basis,the key parameters of the numericalextension analysis on the middle-high ecological composite wall is carried out and the keyfactors of vertical constraint limb thickness ratio,section forms,reinforcement ratio,sashform,axial compression ratio, the ratio of the influence rules of elastic stiffness,bearingcapacity,displacement ductility on the wall are obtained to establish reasonable foundation inthe mid-high rise ecological composite wall calculation theory and design method.
     (2)Based on the experimental study and numerical research,in view of the wallunique construction,elastic stage model-two-way fiber single composite material model isestablished suitable for mid-high ecological composite wall combined with compoundmaterial mechanics theory to deduce the wall elastic modulus and shear modulus practicalcalculation formula. Using elastic mechanics and considering all kinds of factors,anisotropicequivalent elastic plate resist lateral stiffness is derived. The orthogonal anisotropicequivalent elastic plate resist lateral stiffness is amended to revise. Results show that it has acertain theoretical basis and practical value to make the simplified model compound materialmechanics be used for the calculation of the ecological composite wall lateral stiffness, andthe results can satisfy the actual engineering calculation needs. In view of the wallmechanical characteristics and failure process,it gives the mid-high rise ecologicalcomposite wall limit state of shear resistance mechanism.The mid-high ecological compositewall inclined section of shear limit bearing capacity calculation formula is deduced. Based onthe shear resistance mechanism and the force equilibrium condition,the analysis results showthat the model can better reflect the ultimate bearing capacity of the middle-high ecologicalcomposite wall features and it can be applied to the ultimate bearing capacity of thecomposite wall calculation under different stress state. Based on the flat section assumption,the mid-high rise ecological composite wall of normal section of the bending ultimatebearing capacity calculation formula is deduced. At the same time limit compressive zoneheight is given to calculate the vertical constraint component reinforcement.
     (3)Combined with the mid-high rise ecological composite wall test and numericalsimulation results, according to its mechanical characteristics and structure characteristics,the paper puts forward the mid-high rise ecological composite wall composite structure underhorizontal loads of sandwich composite structure mechanics model. According to thedeformation coordination principle,the structure equilibrium differential equation and quantitative composite wall proportional relation of panel and vertical constraint memberbear load is establish. Analytical solution and numerical solution are coMPared to showthat the model provides a relatively simplified, practical analysis method for calculating theactual structural internal force and displacement. Based on the space collaborating workprinciple of the middle-high ecological composite wall hybrid structure,the calculationformula to meet the interlayer of the upper limit value of lateral angle of vertical constraintcomponents is deduced to quantify the vertical, horizontal vertical constraint component ratioand composite wallboard under the action of the different control factors (seismic grade, sitetype, the design group) to guide the middle-high ecological composite wall hybrid structuredesign.
     (4)In view of characteristics of the ecological composite wall panel inhomogeneousperiodic distribution, the appropriate unit cell is selected and the expression of unit cell modelis built.Using extreme energy value principle, the cyclical conditions, uniformity ofconditions and mathematical transform, and the macroscopic properties of the compositematerial mechanics expressions is got. Combining the microscopic mechanics finite elementmodel, the different scales of representative volume unit, boundary conditions, simulation ofrepresentative volume unit of strength test under load condition is established, therelationship of a representative volume unit equivalent material properties and theconstitutive is obtained, which verify the rationality by coMParing with the test results. Theresearch shows that the numerical model calculation and qualitative results are in goodagreement with the test results, using the method to determine the material properties canreflect wallboard macro performance. Using equivalent material properties and theconstitutive relation, the simplified numerical model for the whole process of themiddle-high ecological composite wall hybrid structure—the vertical restraint component-clad plate elastic-plastic mechanics model, and coMParing with the shaking table test resultsanalysis. The results show that the vertical constraint component clad plate elastic-plasticmechanics model can well simulate the elastic-plastic stage, the real dynamic characteristicsand failure process of the middle-high ecological composite wall hybrid structure. The modelis practical and can be applied to the nonlinear dynamic and static calculation analysis ofmiddle-high ecological composite wall hybrid structure.
     (5)Based on the early experiment and numerical simulation of the middle-highecological composite wall, and combining with engineering examples, the research anddiscussion is focused on layout of the middle-high ecological composite wall hybrid structure,structure type, concepts design principles(seismic level), design and construction of verticalconstraint component, the panel vertical connections and heat integration technology of ecological composite wall, in order to provide the reference for engineering applicationsfollow-up of middle-high ecological composite wall hybrid structure.
     The main innovations of this paper are as follows:
     (1)The seismic performance research of the middle-high ecological composite wallbased on the key parameters is carried out, the influence law of mechanical behavior of wallby the key factors is discussed.
     According to the test research on the mid-high rise ecological composite wall,thecoMParative analysis on the seismic performance of different types of middle-highecological composite wall.Using the validated the middle-high numerical model of theecological composite wall structure, finite ABAQUS based on key parameters (verticalconstraint limb-thickness ratio, section forms, reinforcement ratio, the sash form, axialcompression ratio, depth-width ratio) changing numerical extension analysis is put forward,the key factors on the wall stiffness, the influence law of bearing capacity and displacementductility is summed up, which lay the foundation of the reasonable establishment ofcalculation theory and design method of the middle-high ecological composite wall.
     (2)The lateral stiffness calculation formula and ultimate bearing capacity calculationformula of the middle-high ecological composite wall are established, which improves andsupplement theory analysis of the ecological composite wall.
     Based on the elastic stage model-two-way fiber single composite material model,anisotropic equivalent elastic plate resist lateral stiffness is derived. This fomula is used forthe calculation of the ecological composite wall lateral stiffness, and the results can satisfythe actual engineering calculation needs. Based on the shear resistance mechanism and theforce equilibrium condition,the mid-high ecological composite wall inclined section of shearlimit bearing capacity calculation formula is deduced.The analysis results show that it can beapplied to the ultimate bearing capacity of the composite wall calculation under differentstress state.Based on the flat section assumption,the mid-high rise ecological composite wallof normal section of the bending ultimate bearing capacity calculation formula isdeduced,which can be used to calculate the vertical constraint component reinforcement.
     (3)The work model of the middle-high ecological composite wall hybrid structure isestablished, and the ratio of vertical restraint components and composite wallboard isquantified under the action of different control factors.
     The laminated composite structure mechanics model of the middle-high ecologicalcomposite wall hybrid structure under horizontal load is put forward and the proportionalrelationship of bearing the load between composite wallboard and vertical restraint membersis quantified. The ratio of vertical constraint component and composite wallboard on the basis of the principle of working together under the action of different control factors isquantified (seismic grade, site type, the design group), which gives guidance to structuredesign of the middle-high ecological composite wall hybrid structure.
     (4)The vertical constraint component-clad plate elastic-plastic simplified numericalmodel for the whole process of the middle-high ecological composite wall hybrid structure,is established.
     By using the cycle medium homogenization theory and micromechanical finite elementmethod, different scale of representative volume unit, boundary conditions are set up,simulation of representative volume unit of strength test under load condition is proceed, thenthe equivalent material properties and the constitutive relation of a representative volume unitare obtained.Using equivalent material properties and the constitutive relation, the simplifiednumerical model of the whole process of the middle-high ecological composite wall hybridstructure——vertical constraint component-clad plate elastic-plastic mechanics model isestablished, which can be used in the nonlinear dynamic and static analysis of the hybridstructure.
引文
[1-1]小康型住宅建筑结构体系成套技术指南[M].建筑工业出版社.2002.7
    [1-2]韩军,李英民,刘立平,等.5·12汶川地震绵阳市区房屋震害统计与分析[J].重庆建筑大学学报.2008,30(5):21~27
    [1-3]谭冠平,陶忠,潘文.宁洱6.4级地震砖混结构房屋震害特征及分析[J].四川建筑科学研究.2007,33(S):26~30
    [1-4]伍圣喜,吴从晓,韩家军.云南宁洱6.4级地震砖混结构房屋震害调查与分析[J].震灾防御技术.2007,2(3):285~289
    [1-5]李钢,刘晓宇,李宏男.汶川地震村镇建筑结构震害调查与分析[J].大连理工大学学报.2009,49(5):724~730
    [1-6]王亚勇.汶川地震建筑震害启示—抗震概念设计[J].建筑结构学报.2008,29(4):20~25
    [1-7]张敏政.汶川地震中都江堰市的房屋震害[J].地震工程与工程振动.2008,28(3):1~6
    [1-8]霍林生,李宏男,肖诗云,等.汶川地震钢筋混凝土框架结构震害调查与启示[J].大连理工大学学报.2009,49(5):718~723
    [1-9]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报.2008,29(4):10~19
    [1-10]党开春,唐秀艳,刘转梅.谈绿色建材与墙体材料的可持续发展[J].粉煤灰综合利用.2006,(2):52~53
    [1-11]李湘洲.我国新型墙体材料现状与趋势[J].砖瓦世界.2005,(1):6~8
    [1-12] Tulay Esin. A study regarding the environmental iMPact analysis of the building materialsproduction process[J]. Building and Environment.2007,(42):3860~3871
    [1-13] Asokan Pappu,Mohini Saxena,Shyam R.Asolekar.Solid wastes generation in India and theirrecycling potential in building materials[J]. Building and Environment.2007,(42):2311~2320
    [1-14] Halil Murat Algin, Paki Turgut. Cotton and limestone powder wastes as brick material[J].Construction and Building Materials.2008,22(6):1074~1080
    [1-15] Collet F, Serres L, Miriel J, etl. Study of thermal behaviour of clay wall facing south[J].Building and Environment.2006,(41):307~315
    [1-16]王锡琴.国外建筑节能政策及新技术的研究[J].制冷与空调.2012,26(4):388~390
    [1-17]张俊娜,赵月贺.国外建筑节能政策及新技术的研究[J].河南科技.2011,02:64
    [1-18]刘霞,叶燕华,王滋军,等.国内外节能结构体系发展现状[J].四川建筑科学研究.2011,37(6):81~84
    [1-19]汤磊,郭正兴,董年才,等.全预制装配整体式剪力墙结构外墙保温技术研究[J].施工技术.2012,40(342):13~15
    [1-20]王东辉,柳旭东,陈勇.装配整体式混凝土结构的发展[J].混凝土.2012,01:113~115
    [1-21]于庆荣,张洪波.CL建筑体系的设计与经济分析[J].施工技术.2000,07:16~17
    [1-22]冯玉珍,冯玉坤,林永华.CL复合墙板体系施工探讨[J].青岛建筑工程学院学报.2003,24:68~70
    [1-23]臧人卓,时旭东,赵论语.钢筋混凝土复合墙板轴向受力性能试验研究[J].工业建筑.2005,35(2):73~76
    [1-24]周建康,时旭东,赵论语,等.钢筋型混凝土复合墙板的轴向受力性能[J].清华大学学报(自然科学版).2004,44(12):1676~1679
    [1-25]唐敢,赵惠麟,赵才其.板片空间结构缺陷稳定分析及试验研究[J].土木工程学报.2008,41(8):15~21
    [1-26]宗钟凌,郭小明,唐敢,等.板片空间结构稳定分析中的数值计算模型[J].东南大学学报(自然科学版).2007,37(6):1008~1012
    [1-27]初明进,冯鹏,侯建群,等.钢网构架混凝土复合结构多层住宅墙体抗震性能试验研究[J].土木工程学报.2009,42(7):36~45
    [1-28]冯鹏,初明进,侯建群,等.钢网构架混凝土复合结构多层住宅足尺模型抗震性能试验研究[J].建筑结构学报.2009,30(3):1~10
    [1-29]李升才.带框复合墙板承载力计算的简化模型与方法[J].工程力学.2007,24(12):140~145
    [1-30]柴红太.浅谈免拆模板复合剪力墙体系在施工中的应用[J].山西建筑.2006,5:156~157
    [1-31]董亮,张明聚,曲俊义.免拆模板复合剪力墙体系及施工技术研究[J].石家庄铁道学院学报.2204,6:37~40
    [1-32]肖岩,陈国,单波,等.竹结构轻型框架房屋的研究与应用[J].建筑结构学报.2010,31(6):195~203
    [1-33]肖岩,单波,佘立永,等.新型竹结构体系及在汶川地震后的应用[J].建设科技.2008:79~81
    [1-34] Pei Liu, Qian-Feng Yao. Dynamic reliability of structures: the example of multi-grid compositewalls[J].Structural Engineering and Mechanics.2010
    [1-35]黄炜,姚谦峰,吴永根,等.内填砌块的密肋复合墙体极限承载力计算[J].土木工程学报.2006,03:68~75
    [1-36]姚谦峰,黄炜,田洁,等.密肋复合墙体受力机理及抗震性能试验研究[J].建筑结构学报.2004,06::67~74
    [1-37]黄炜,陈国新,姚谦峰.密肋复合墙体在拟动力试验下的抗震性能研究[J].振动与冲击.2007,03:36~45
    [1-38] Wei Huang,Chenghua Zhang. Calculation analysis on cracking load of new type composite wall.Advanced Materials Research Vols[J].2010,163-167:1012~1018
    [1-39]孔祥峰.小高层钢—混凝土混合结构住宅体系抗震性能的研究及配套技术[D].北京:北京建筑工程学院.2007
    [1-40]郭晓梅.小高层住宅结构体系优化分析[D].天津:天津大学.2007
    [1-41]李兵.小高层住宅结构体系的研究与工程应用[D].合肥:合肥工业大学.2009
    [1-42]王爱民.中高层密肋壁板结构密肋复合墙体受力性能及设计方法研究[D].西安:西安建筑科技大学.2006
    [1-43]张旭峰.中高层密肋复合墙—剪力墙混合结构协同工作性能与抗震设计方法研究[D].西安:西安建筑科技大学.2008
    [1-44]何明胜.型钢混凝土边框柱密肋复合墙体试验分析及抗震设计方法研究[D].西安:西安建筑科技大学.2008
    [1-45]冯葆纯.保温砌模现浇钢筋混凝土网格剪力墙承重体系技术与应用[J].建设科技.2007:8~16
    [1-46]钱稼茹.网格剪力墙结构分析与应用研究[J].建设科技.2008:48~52
    [1-47]徐鹏.异形柱框架一约束砌体组合结构抗震性能研究[D].南京:南京理工大学.2009
    [1-48]马乐为,吴敏哲.异形柱混凝土空心砌块组合结构12层房屋动力特性试验研究[J].西安建筑科技大学学报.2002,34(31):72~75
    [1-49]秦力,宋玉普,张秀文.中高层异形柱框-剪结构的剪力墙抗侧刚度优化[J].哈尔滨工业大学学报.2004,36(8):8~16
    [1-50]秦力,程志辉,宋玉普.中高层异形柱框-剪结构的剪力墙抗侧移刚度优化分析[J].四川建筑科学研究.2005,31(6):47~54
    [1-51]卢孝哲.薄壁钢—混凝土组合结构研究现状[J].建筑与结构设计.2007,10:27~30
    [1-52]张耀春,余红军,曹宝珠.新型薄壁钢-混凝土组合结构节点试验研究[J].建筑结构.2006,36(1):42~45
    [1-53]王秀芬.混凝土异形柱框架高性能墙板结构体系抗震性能研究[D].天津:天津大学.2007
    [1-54]刘文珽,黄承逵.钢筋混凝土异形柱板连接冲切特性试验研究[J].建筑结构学报.2004,25(4):26~33
    [1-55]刘文珽,黄承逵,姚谦峰.混凝土T形边柱的板柱连接抗震性能试验研究[J].建筑结构学报.2009,30(2):47~54
    [1-56]傅秀岱,马峰,杨永哲.新型钢筋混凝土复合剪力墙抗震性能试验研究[J].天津大学学报.2000,33(5):1~11
    [1-57]熊海贝,倪春,吕西林,等.三层轻木—混凝土混合结构足尺模型模拟地震振动台试验研究[J].地震工程与工程振动.2008,28(1):91~98
    [1-58]季静,韩小雷,郑宜等.基于能力设计原理的双肢剪力墙极限承载力研究[J].地震工程与工程振动.2006,26(4):114~120
    [1-59]郑宜.罕遇地震作用下基于能力设计原理的转换层结构设计研究[D].广州:华南理工大学.2003.
    [1-60]王建区.基于能力原理的双肢剪力墙极限承载力分析及弹塑性性能研究[D].广州:华南理工大学.2005
    [1-61]陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力[J].建筑结构学报.2004,25(1):71~78.
    [1-62]张大长,陈怀亮,卢中强.基于抗剪抵抗机构的无开洞RC剪力墙的极限承载力分析模型的探讨[J].工程力学.2007,(7):142~147
    [1-63] Masao Takehara,Norikazu Onozato,Makoto Mochizuki. Simplified maximum strength formulaofframed walls with an opening and its analytical accuracy[J].Concrete Research and Technology,2002,13(1):119~126(in Japanese)
    [1-64]刘先明,李爱群,叶继红.带边框砌体剪力墙承载力和变形的计算分析[J].东南大学学报.2001,31(1):62~68
    [1-65]李立峰,李升才,罗烨钶.节能砌块隐形密框墙体受剪承载力计算方法[J].华侨大学学报.2008,29(3):26~29
    [1-66]熊立红,张敏政.设置芯柱-构造柱混凝土砌块墙体抗震剪切承载力计算[J].地震工程与工程振动.2004,24(2):82~87
    [1-67]董心德,骆万康,周连明,等.带构造柱组合砖墙出平面偏心受压性能及设计方法[J].建筑结构学报.2010,31(9):50~57
    [1-68]田瑞华,颜桂云.配筋混凝土小砌块抗震墙受剪承载力试验研究[J].建筑结构学报.2003,33(4):11~14
    [1-69]刘贵秋,施楚贤,吕伟容.砌体剪力墙的受剪性能及承载力计算[J].建筑结构学报.2005,26(5):81~89
    [1-70]王凤来,许祥训.配筋砌块短肢砌体剪力墙抗剪性能及承载力试验研究[J].建筑结构.2009.39(6):98~101
    [1-71]王凤来,费洪涛.配筋砌块短肢砌体剪力墙抗震性能试验研究[J].建筑结构学报.2009,30(3):71~78
    [1-72]潘东辉.灌孔配筋砌体剪力墙受剪承载力软化剪压强度模型[J].建筑结构学报.2011,32(6):135~140
    [1-73]沈观林.复合材料力学[M].北京:清华大学出版社,1996
    [1-74]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1991
    [1-75]杜善义,王彪.复合材料细观力学[M].北京:北京科学出版社,1998
    [1-76]李顺林.复合材料力学引论[M].上海:上海交通大学出版社,1990
    [1-77] A. ANTHOINE. Derivation of the in-plane elastic characteristics of masonry throughhomogenization theory [J]. Inr.J.Solids Structures.1995,32(2):137~163
    [1-78] A. Zucchini, P.B. Lourenco.A micro-mechanical model for the homogenisation of masonry [J].International Journal of Solids and Structures.2002,39:3233~3255
    [1-79] RAIMONDO LUCIANO and ELIO SACCO.Homogenization technique and damage model forold masonry material [J]. Int. J. Solids Structures.1997,32(24):3191~3208
    [1-80] A. Zucchini,P.B. Lourenco.A coupled homogenisation–damage model for masonry cracking [J].Computers and Structures.2004,82:917~929
    [1-81] G. Milani,P.B. Lourenco,A. Tralli.Homogenised limit analysis of masonry walls,Part II: Structuralexamples [J]. Computers and Structures.2006,84:181~195
    [1-82] G. Milani,P.B. Lourenco,A. Tralli.Homogenised limit analysis of masonry walls, Part I: Failuresurfaces [J]. Computers and Structures.2006,84:166~180
    [1-83] Homogenization of periodic masonry:plane stress,generalized planestrain or3D modelling[J].Communications in numerical methods in engineering.1997,13:319~326
    [1-84] Dzenis Y A,Reneker D H,KimJ S,et al. Novel laminated composites with nanor einforcedinterfaces[J].European conference of composite materials.1998,3-6:518~524
    [1-85] Hill.R,A Self-consistent Mechanics of Composite Materials[J].J.Mech.Phys.Solids.1965,13:213~222
    [1-86] Budiansky.B.On the Elastic Moduli of Some Heterogeneous Materials[J].J.Mech.Phys.Solids.1965,13:223~227
    [1-87] Hershey.A.V, The Elasticity of an Isotropic Aggregate of Anisotropic CubicCrystals[J].J.Appl.Mech.1954,21:236~240
    [1-88] EKKEHART Kroner.E.Berechnung der elastischen konstanten des vielkristalls aus denkonstanten des einkristalls[J].Zeitschrift fur physik.1958,151:504~518
    [1-89]陈浩然,苏晓风.广义自洽有限元迭代平均化方法[J].大连理工大学学报.1995:790~795
    [1-90] Y. Benveniste.A new approach to the application of Mori-Tanaka's theory in compositematerials[J].Mechanics of Materials.1987,6(2):147~157
    [1-91] Christensen.R.M.and Lo.K.H.Solution for effective shear properties in (three) phase sphere andcylinder models[J].J.Mech.Phys.Solids.1979,27:315~330
    [1-92] Mori.T and Tanaka.K.Average Stress in Matrix and Averge Energy of Materials with MisfittingInclusions[J].Act.Metall.1973,21:571~574
    [1-93]戴兰宏,黄筑平,王仁.广义自洽Mori-Tanaka模型及涂层夹杂体复合材料的有效模量[J].固体力学学报.1999,03:187~194
    [1-94] Roscoe.R.A.The Viscosity of Suspensiens of Rigid Spheres[J].Brit.J.Appl.phys..1952,3:267~269
    [1-95] Boucher.S.S.Moduleseffectifsdemateriauxguasihomogenesetd’inclusionselastiques,II Cas desconcentrations finies en enclusions,Revue M1976,22
    [1-96] Mclaughlin.R.A Study of the differential scheme for composite masterials[J].Int.J.EngngSci.1977,15:237~244
    [1-97] Voigt.W.Wied.Ann..1889,38:573~578
    [1-98] Rauss.A.Z.Angew.Math.Mach..1929,9:49~58
    [1-99]潘燕环,嵇醒.复合材料中的渐近均匀化方法[J].上海力学.1997:290~297
    [1-100]中华人民共和国建设部:混凝土异形柱结构技术规程(JGJ149-2006)[S].北京:中国建筑工业出版社,2006
    [1-101]聂祺,唐爱华,张敏.框支短肢剪力墙-异形柱结构罕遇地震作用下非线性地震反应分析[J].桂林工学院学报.2008,28(1):29~33
    [1-102]汪梦甫,周锡元.钢筋混凝土剪力墙多垂直杆非线性单元模型的改进及其应用[J].建筑结构学报.2002,23(1):38~42
    [1-103]史密斯B S,库尔A.著,陈瑜,龚炳年等译.高层建筑结构分析与设计[M].北京:地震出版社,1993
    [1-104] Kabeyasawa, Shioara T.H. and Otani S. U.S. Japan Cooperative Researchon RC Full-scaleBuilding Test-Part5: Discussion on Dynamic Response System. Procs.8th WCEE,1984,Vol.6:627~634
    [1-105] Volcano A., BerteroV. and Colotti V. Analytical Modeling of RC Structural Walls[J]. Procs.9thWCEE,1988, VI:41~46
    [1-106] Linda P. and Bachmann H. Dynamic modeling and design of earthquake resistant walls[J].EESD.1994,23:1331~1350
    [1-107] Milev J.I. Two Dimensional Analytical Model of Reinforced Concrete Shear Walls[J]. Proc.11thWCEE.1996, Elsevier Science Ltd.,Paper No.320
    [1-108]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊.2005.3:72~80
    [1-109]叶列平,陆新征,等.混凝土结构抗震非线性分析模型、方法及算例[J].工程力学.2006,23(S2):131~140
    [2-1]陈国新.内填不同材料生态复合墙体基于统一强度理论的非线性损伤分析[D].西安:西安建筑科技大学.2010
    [2-2]何明胜.型钢混凝土边框柱密肋复合墙体试验分析及抗震设计方法研究[D].西安:西安建筑科技大学.2008
    [2-3]郭猛.框架-密肋复合墙结构抗震性能与设计计算方法研究[D].北京:北京交通大学.2011
    [2-4]田瑞华,颜桂云.配筋混凝土小砌块抗震墙受剪承载力试验研究[J].建筑结构学报.2003,33(4):11~14
    [2-5]王凤来,许祥训.配筋砌块短肢砌体剪力墙抗剪性能及承载力试验研究[J].建筑结构.2009,39(6):98~101
    [2-6]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社.2003
    [2-7] Leonardo M.,Massone. John,W. Wallace. Load-Deformation Responses of Slender ReinforcedConcrete Wall [J]. ACI Structural Journal/January-February2004
    [2-8]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社.2001
    [2-9]肖建庄,朱晓晖.再生混凝土框架节点抗震性能研究[J].同济大学学报(自然科学版).2005,33(4):436~440
    [2-10]梁兴文,马恺泽,李菲菲,等.型钢高强混凝土剪力墙抗震性能试验研究[J].建筑结构学报.2011,32(6):68~75
    [2-11] N Bouzoubaa and M.Lachemib. Self-coMPacting concrete incorporating high volumes of class Ffly ash preliminary results[J].Cement and Concrete Research.2001,31:413~420
    [2-12] Rohim Salem, Edw in G Burdette, N Mike Jackson. Interrelationship of physical properties ofconcrete made with recycled aggregates, Subm is-sion Date: July25,2001
    [2-13]阎西康,马康,延华,等.两层两跨带施工缝混凝土框架抗震性能研究[J].郑州大学学报(工学版).2013,34(1):14~18
    [2-14]宗周红,夏坚,林锦滔,等.两层预制板砖砌体结构房屋模型双向拟动力试验研究[J].建筑结构学报.2012,33(11):62~71
    [2-15]傅秀岱,马峰,杨永哲.新型钢筋混凝土复合剪力墙抗震性能试验研究[J].天津大学学报.2000,33(3):336~340
    [2-16]罗素蓉,王雪芳,郑建岚.自密实高强混凝土框架结构的抗震性能试验研究[J].工程力学.2004,21(6):144~148.
    [2-17]唐兴荣,周振轶,刘利花,等.多层砌体填充墙框架结构抗震性能试验研究[J].建筑结构学报.2012,33(11):72~81
    [2-18]郑山锁,王斌,于飞,等.低周反复荷载作用下型钢高强高性能混凝土框架梁损伤试验研究[J].工程力学.2011,28(7):37~44
    [2-19]侯和涛,邱灿星,李国强,等.带节能复合墙板钢框架低周反复荷载试验研究[J].工程力学.2012,29(9):177~184
    [2-20]王晓菡,柳炳康,胡波,等.再生混凝土框架边节点抗震性能试验研究[J].合肥工业大学学报(自然科学版).2012,35(10):1370~1374
    [2-21]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [2-22]江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007
    [2-23]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009
    [2-24]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2008
    [2-25]王玉镯,傅传国.ABAQUS结构工程分析及实例详解[M].北京:中国建筑工业出版社,2010
    [2-26]费康,张建伟.ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社,2010
    [2-27]王金昌,陈页开.ABAQUS在土木工程中的应用[M].浙江:浙江大学出版社,2006
    [2-28]中华人民共和国国家标准:混凝土结构设计规范(GB50010—2010)[S].北京:中国建筑工业出版社,2010
    [2-29]中华人民共和国国家标准:砌体结构设计规范(GB50003—2011)[S].北京:中国建筑工业出版社,2011
    [3-1]孙静,姚谦峰.密肋复合墙体复合材料等效弹性板模型研究[J].大连理工大学学报.2009,49(3):427~431
    [3-2]黄炜,姚谦峰,吴永根,等.内填砌块的密肋复合墙体极限承载力计算[J].土木工程学报.200603:68~75
    [3-3]姚谦峰,黄炜,田洁,等.密肋复合墙体受力机理及抗震性能试验研究[J].建筑结构学报.200406::67~74
    [3-4]黄炜,陈国新,姚谦峰.密肋复合墙体在拟动力试验下的抗震性能研究[J].振动与冲击.200703:36~45
    [3-5]沈观林.复合材料力学[M].北京:清华大学出版社,1996
    [3-6]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1991
    [3-7]杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998
    [3-8]李顺林.复合材料力学引论[M].上海:上海交通大学出版社,1990
    [3-9] A. ANTHOINE. Derivation of the in-plane elastic characteristics of masonry throughhomogenization theory [J]. Inr.J.Solids Structures.1995,32(2):137~163
    [3-10] A. Zucchini, P.B. Lourenco.A micro-mechanical model for the homogenisation of masonry[J]. International Journal of Solids and Structures.2002,39:3233~3255
    [3-11] RAIMONDO LUCIANO and ELIO SACCO.Homogenization technique and damage model forold masonry material [J].Int. J. Solids Structures.1997,32(24):3191~3208
    [3-12] A. Zucchini,P.B. Lourenco.A coupled homogenisation–damage model for masonry cracking[J]. Computers and Structures.2004,82:917~929
    [3-13] G. Milani,P.B. Lourenco,A. Tralli.Homogenised limit analysis of masonry walls,Part II:Structural examples [J].Computers and Structures.2006,84:181~195
    [3-14] G. Milani,P.B. Lourenco,A. Tralli.Homogenised limit analysis of masonry walls, Part I: Failuresurfaces [J].Computers and Structures.2006,84:166~180
    [3-15] Homogenization of periodic masonry:plane stress,generalized planestrain or3D modelling[J].Communications in numerical methods in engineering.1997,13:319~326
    [3-16] ROBERT M.JONES.Mechanics of composite materials[M].Washington D.C: Scripta bookcoMPany.1975
    [3-17] Shan Huizu,Chou Tsuwei.Transverse elastic moduli of unidirectional fiber composites withfiber/matrix interfacial debonding [J].Composites Science and Technology.1995,53(4):383-391
    [3-18]王震鸣,游绍建.单向复合材料弹性常数微观力学分析的探讨[J].复合材料学报.1987,4(4):72~80
    [3-19] Spencer A. The transverse module of fiber composite material [J].Composites Science andTechnology.1986,27(2):93~109
    [3-20]罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994
    [3-21] E.J.HEARN.Mechanics of materials[M].Oxford:Pergamon press.1977
    [3-22] S.P.Timoshenko,J.N.Goodier.Theory of Elasticity (3rd edition)[M].McGraw Hill HigherEducation.2009
    [3-23]徐芝纶.弹性力学[M].北京:高等教育出版社,1991
    [3-24]季静,韩小雷,郑宜等.基于能力设计原理的双肢剪力墙极限承载力研究[J].地震工程与工程振动.2006,26(4):114~120
    [3-25]陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力[J].建筑结构学报.2004,25(1):71~78
    [3-26]黄双华,黄雄军.劲性混凝土带边框低剪力墙极限承载力的计算[J].西南交通大学学报.2001,36(4):360~364
    [3-27]郑宜.罕遇地震作用下基于能力设计原理的转换层结构设计研究[D].广州:华南理工大学.2003
    [3-28]王建区.基于能力原理的双肢剪力墙极限承载力分析及弹塑性性能研究[D].广州:华南理工大学.2005
    [3-29] Masao Takehara,Norikazu Onozato,Makoto Mochizuki. Simplified maximum strength formulaofframed walls with an opening and its analytical accuracy [J].Concrete Research andTechnology.2002,13(1):119~126(in Japanese)
    [3-30] Makoto Mochizuki,Norikazu Onozato,Masao Takehara,Yukichi Hanehira.Analytical accuracyof maximum strengths of reinforced concrete framed shear walls by macroscopicmodels[J].Concrete Research and Technology.2003,14(2):11-21.
    [3-31]张大长,陈怀亮,卢中强.基于抗剪抵抗机构的无开洞RC剪力墙的极限承载力分析模型的探讨[J].工程力学.2007,(7):142~147
    [3-32]张大长,陈怀亮,卢中强.基于抗剪抵抗机构的R C开洞剪力墙极限承载力分析[J].土木工程学报.2008,41(11):44~49
    [3-33]王传志,滕志明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社.1985
    [3-34]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003
    [3-35]梁兴文,王社良,李晓文.混凝土结构设计原理[M].北京:科学出版社,2006
    [3-36]黄炜,薛建阳等.混凝土及砌体结构[M].北京:中国电力出版社,2010
    [4-1]黄炜,姚谦峰,吴永根,等.内填砌块的密肋复合墙体极限承载力计算[J].土木工程学报.200603:68~75
    [4-2]姚谦峰,黄炜,田洁,等.密肋复合墙体受力机理及抗震性能试验研究[J].建筑结构学报.200406:67~74
    [4-3]黄炜,陈国新,姚谦峰.密肋复合墙体在拟动力试验下的抗震性能研究[J].振动与冲击.200703:49~54
    [4-4]冯葆纯.保温砌模现浇钢筋混凝土网格剪力墙承重体系技术与应用[J].建设科技.200808:89~95
    [4-5]徐鹏.异形柱框架一约束砌体组合结构抗震性能研究[D].南京:南京理工大学.2009
    [4-6]秦力,宋玉普,张秀文.中高层异形柱框-剪结构的剪力墙抗侧刚度优化[J].哈尔滨工业大学学报.2004,36(8):1103~1106
    [4-7]秦力,程志辉,宋玉普.中高层异形柱框-剪结构的剪力墙抗侧移刚度优化分析[J].四川建筑科学研究.2005,31(6):128~133
    [4-8]卢孝哲.薄壁钢—混凝土组合结构研究现状[J].建筑与结构设计.2007.10:27~30
    [4-9]王秀芬.混凝土异形柱框架高性能墙板结构体系抗震性能研究[D].天津:天津大学.2007
    [4-10]刘文珽,黄承逵.钢筋混凝土异形柱板连接冲切特性试验研究[J].建筑结构学报.2004,25(4):26~33
    [4-11]刘文珽,黄承逵,姚谦峰.混凝土T形边柱的板柱连接抗震性能试验研究[J].建筑结构学报.2009,30(2):47~54
    [4-12]傅秀岱,马峰,杨永哲.新型钢筋混凝土复合剪力墙抗震性能试验研究[J].天津大学学报.2000,33(3):336~340
    [4-13]楚留声,赵更歧,白国良,等.高烈度区型钢混凝土框架-核心混凝土筒体混合结构协同受力性能研究[J].工业建筑.2010,40(5):7~12
    [4-14]龙立志.不同加强措施下高层钢—混凝土混合结构协同工作性能研究[D].成都:西南交通大学.2009
    [4-15]高妹娟.SRC框架-RC核心筒混合结构协同工作性能分析研究[D].西安:西安建筑科技大学.2007
    [4-16]沈蒲生,孟焕陵.混合结构变形曲线及动力特性研究[J].重庆建筑大学学报.2006,28(6):47~50
    [4-17]石勇,朱锡.横向载荷作用下夹层梁力学性能分析[J].船舶力学.2008,12(4):624~628
    [4-18]刘溶泉,石勇.夹层复合材料的弯曲理论分析与计算方法研究[J].玻璃钢/复合材料.2006(6):6~9
    [4-19]中华人民共和国行业标准:高层建筑混凝土结构技术规程(JGJ3-2010)[S].中国建筑工业出版社,2010
    [4-20]赵西安.高层结构设计[M].北京:中国建筑科学研究院结构研究所,1995
    [4-21]包世华,张铜生.高层建筑结构设计和计算[M].北京:清华大学出版社,2004
    [4-22]侯莉娜.生态复合墙结构破坏模式及优化设计方法研究[D].西安:西安建筑科技大学.2012
    [4-23]荆罡.密肋复合墙结构两阶段简化计算模型及结构随机地震响应分析[D].西安:西安建筑科技大学.2009
    [4-24]张程华.新型复合墙结构简化计算模型研究[D].西安:西安建筑科技大学.2010
    [4-25]孟焕陵,沈蒲生.均布荷载及集中荷载作用下框-剪结构中剪力墙的合理数量[J].华中科技大学学报(城市科学版).2004,21(1):64~68
    [4-26]孙义刚.砌体墙-钢筋混凝土墙组合结构的抗震性能及优化[D].长沙:湖南大学.2006
    [4-27]孙义刚,潘志宏.砖混组合结构特征刚度系数对混凝土墙数量的影响[J].重庆大学学报.2009,32(9):1098~1103
    [4-28]中华人民共和国国家标准:建筑抗震设计规范(GB5011-2010)[S].中国建筑工业出版社,2010
    [4-29]秦力.中高层住宅结构体系优化设计研究[D].大连:大连理工大学.2003
    [5-1]李伟,宋卫东,宁建国.非周期性多尺度问题的平均化方法[J].北京理工大学学报.2009,29(9):756~759
    [5-2]宋力,林韵梅.非匀质材料弹塑性破裂过程的数值模拟研究[J].力学与实践.2002,24:30~32
    [5-3]吴雅颖.基于契合理论的砌体严格匀质化理论研究[D].长沙:长沙理工大学.2012
    [5-4]黄富华.周期性复合材料有效性能的均匀化计算[D].哈尔滨:哈尔滨工业大学.2010
    [5-5]秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论[M].北京:高等教育出版社,2006
    [5-6]王飞,庄守兵,虞吉林.用均匀化理论分析蜂窝结构的等效弹性参数[J].力学学报.2002,34(6):914~923
    [5-7]任强,徐卫亚.基于均匀化方法的节理岩体等效弹性性能预测[J].工程力学.2008,25(4):75~79
    [5-8] Anthoine A. Derivation of the In-plane Elastic Characteristics of Masonry through HomogenizationTheory [J].International Journal of Solids and Structures.1995,32:137~163
    [5-9]彭燕伟.RVE在砌体结构力学性能研究中的应用[D].开封:河南大学.2010
    [5-10]王达诠.应用RVE均质化方法的砌体非线性分析[D].重庆:重庆大学.2002
    [5-11]夏晓舟.混凝土细观数值仿真及宏细观力学研究[D].南京:河海大学.2002
    [5-12]刘恩龙,沈珠江.岩土材料破损过程的细观数值模拟[J].岩石力学与工程学报.2006,25(9):1790~1794
    [5-13]汤书军.混凝土材料细观力学模型与破坏分析[D].南京:河海大学.2006
    [5-14]沈观林.复合材料力学[M].北京:清华大学出版社,1996
    [5-15]王震鸣.复合材料力学和复合材料结构力学[M].北京:机械工业出版社,1991
    [5-16]杜善义,王彪.复合材料细观力学[M].北京:科学出版社,1998
    [5-17]李顺林.复合材料力学引论[M].上海:上海交通大学出版社,1990
    [5-18] A. ANTHOINE. Derivation of the in-plane elastic characteristics of masonry throughhomogenization theory[J].Inr.J.Solids Structures.1995,32(2):137~163
    [5-19] A. Zucchini, P.B. Lourenco.A micro-mechanical model for the homogenisation ofmasonry[J].International Journal of Solids and Structures.2002,39:3233~3255
    [5-20] RAIMONDO LUCIANO and ELIO SACCO.Homogenization technique and damage model forold masonry material[J].Int. J. Solids Structures.1997,32(24):3191~3208
    [5-21] A. Zucchini, P.B. Lourenco.A coupled homogenisation–damage model for masonrycracking[J].Computers and Structures.2004,82:917~929
    [5-22] G. Milani,P.B. Lourenco,A. Tralli.Homogenised limit analysis of masonry walls,Part II: Structuralexamples[J]. Computers and Structures.2006,84:181~195
    [5-23] G. Milani,P.B. Lourenco,A. Tralli.Homogenised limit analysis of masonry walls, Part I: Failuresurfaces [J].Computers and Structures.2006,84:166~180
    [5-24] Homogenization of periodic masonry:plane stress,generalized planestrain or3D modelling[J].Communications in numerical methods in engineering,1997,13:319~326
    [5-25] Spencer A. The transverse module of fiber composite material [J].Composites Science andTechnology.1986,27(2):93~109
    [5-26]罗祖道,李思简.各向异性材料力学[M].上海:上海交通大学出版社,1994
    [5-27] E.J.HEARN.Mechanics of materials[M].Oxford:Pergamon press.1977
    [5-28] S.P.Timoshenko,J.N.Goodier.Theory of Elasticity (3rd edition)[M].McGraw Hill HigherEducation,2009
    [5-29]刘婕妤.基于合理破坏模式的生态复合墙体肋格单元计算模型研究[D].西安:西安建筑科技大学.2012.
    [5-30]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2003
    [5-31] Leonardo M. Massone. John W. Wallace. Load-Deformation Responses of Slender ReinforcedConcrete Wall [J].ACI Structural Journal/January-February.2004
    [5-32]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001
    [5-33]张程华.新型复合墙结构简化计算模型研究[D].西安:西安建筑科技大学.2010
    [5-34]荆罡.密肋复合墙结构两阶段简化计算模型及结构随机地震响应分析[D].西安:西安建筑科技大学.2009
    [6-1]中华人民共和国行业标准:装配式混凝土结构技术规程(报批稿)[S].中国建筑工业出版社,2012
    [6-2]王慧英.预制混凝土工业化住宅结构体系研究[D].广州:广州大学.2007
    [6-3]龚志宏.预制构件在住宅产业化中的应用及设计方法[D].广州:华南理工大学.2010
    [6-4]贾英杰.中高层密肋壁板结构计算理论及设计方法研究[D].西安:西安建筑科技大学.2004
    [6-5]中华人民共和国行业标准:高层建筑混凝土结构技术规程(JGJ3-2010)[S].中国建筑工业出版社,2010
    [6-6]祁皑,商昊江.高层基础隔震结构高宽比限值分析[J].振动与冲击.2011,30(11),272~280
    [6-7]张英.框架-剪力墙结构最大适用高宽比的研究[J].工程建设与设计.2011,74~77
    [6-8]中华人民共和国国家标准:建筑抗震设计规范(GB5011-2010)[S].中国建筑工业出版社,2010
    [6-9]陕西省工程建设标准:密肋壁板结构技术规程[S].(DBJ/T61-43-2006)
    [6-10]中华人民共和国行业标准:混凝土异形柱结构技术规程(JGJ149-2006)[S].中国建筑工业出版社,2006