穿透素3在呼吸机所致肺损伤中作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分机械牵张A549细胞对细胞活性和穿透素3表达的影响
     研究背景与目的大量资料证实了呼吸机所致肺损伤(VILI)与机械牵张应力有关,推测其可能机制是机械牵张对肺细胞的直接刺激触发、激活或启动细胞的牵张敏感基因高表达,其效应蛋白-细胞因子、炎症介质等大量产生,从而引发一系列的生物学反应,造成不同程度的生物学损伤。穿透素-3(PTX3)是一种急性期反应蛋白,也是一种炎症标志物,在炎症级联反应中均起着重要作用,并参与了机械牵张刺激引起的炎症反应过程,且它们基因启动子序列中均含有牵张反应元件,因而我们推测PTX3可能属于牵张敏感基因。本研究拟选择人肺泡Ⅱ型上皮细胞株A549为研究对象,从细胞力学的角度,研究A549在体外周期性机械牵张作用下细胞凋亡和细胞因子分泌的情况,以期为VILI发生机制提供新的理论依据,并为从细胞水平研究VILI提供一个合适模型。同时以该细胞模型为基础在细胞水平观察体外机械牵张对A549细胞PTX3表达的影响。
     方法本研究采用美国Flexercell公司生产的细胞柔性基底加载装置FX4000T,该系统是通过一个真空泵抽吸特制的柔性细胞培养膜,形成负压而使培养膜拉伸应变,从而使黏附生长在膜上的细胞受到张力的作用,模拟机械通气对肺泡Ⅱ型上皮细胞的力学刺激,细胞所受力的大小正比于培养膜的牵拉幅度即应变率(%),加载程序由FX 4000计算机软件自动控制。对体外培养的A549细胞进行周期性牵张,观察不同机械力和不同牵张时间对细胞的影响。根据不同的处理方式分为静止对照组(C组)和机械牵张组(A组:6%应变率;B组:20%应变率),A组和B组其他加载方案均为:频率0.3Hz,周期性波形为方波,加载时间为1h、2h、4h和6h)。静止对照组:应用“Flexstop”,即一个橡胶塞塞在BioFlex培养板的下面,阻止真空抽吸柔性细胞培养膜。采用Annexin V/PI检测细胞凋亡活性,应用流式细胞仪和激光共聚焦显微镜进行检测,透射电子显微镜检测和Hoechst33258单染法荧光显微镜观察凋亡细胞核的形态变化。同时应用ELISA法检测A549细胞细胞因子TNF-α的分泌。用real-time RT-PCR检测肺泡上皮细胞PTX3 mRNA表达,Western blot检测PTX3蛋白水平。
     结果与C组相比,牵张1h以上B组A549凋亡和死亡细胞百分比显著增加(p<0.01),而A组无显著差异(p>0.05),其差异主要是由于早期凋亡和晚期凋亡引起,而死亡细胞百分比没有显著差异(p>0.05)。B组呈时间依赖性地引起A549细胞凋亡,同时也促进细胞因子TNF-α分泌。与C组相比,B组细胞PTX3 mRNA表达和蛋白产生呈时间依赖性增加,B组被牵张2h引起PTX3 mRNA和蛋白表达显著增加,分别增加6.25倍和2.58倍(p<0.01),而A组细胞PTX3基因的表达没有影响。
     结论体外过度机械牵张肺泡Ⅱ型上皮细胞A549引起细胞凋亡和细胞因子TNF-α的分泌,并促进了PTX3表达,这可能在细胞力学水平为VILI提供了实验依据,同时也为后面从细胞水平研究VILI的发病机制提供了一个可行的模型。
     第二部分有效干扰A549细胞穿透素3表达的siRNA的筛选
     研究背景与目的RNA干扰(RNA interference,RNAi)技术作为特异抑制基因表达的重要手段,已被广泛用于基因表达调控和基因功能的研究及基因治疗。其基本原理是通过是21-23个核苷酸的小片段,即siRNA特异性识别其互补mRNA,促使其降解,使相关基因处于转录后基因沉默,从而使细胞表现出特定基因缺失的表型。目前制备siRNA的方法有体外化学合成、体外转录、体内表达载体合成等,其中体外化学合成具有方便简单的特点。基于上述考虑,本研究旨在筛选有效抑制PTX3表达的体外化学合成的siRNA,从而为进一步探索其功能,并作为某些疾病的治疗手段提供理论依据。
     方法采用体外化学合成的方法,合成针对PTX3的siRNA各3对、阳性对照、阴性对照和荧光对照FAM-siRNA各1对,用脂质体2000转染A549细胞,用real-time PCR及Western-blot检测PTX3 mRNA和蛋白表达的水平。并转染荧光标记对照FAM-siRNA后,应用流式细胞仪和激光共聚焦显微镜检测转染效率。
     结果脂质体2000将siRNA转染A549细胞的效率为89.18%±3.26%。与空白对照组相比,3对PTX3 siRNA均有效序列显著抑制了PTX3 mRNA和蛋白的表达(P<0.01),其中针对PTX3最有效siRNA能将PTX3 mRNA抑制到3.41%,PTX3蛋白抑制到4.94%。而阴性对照组PTX3 mRNA和蛋白的表达均无显著差别(P>0.05)。
     结论化学合成的siRNA体外应用脂质体2000能高效转染A549,并筛选最有效干扰目的PTX3基因的siRNA,为进一步探索目的基因的功能提供理论依据。
     第三部分干扰穿透素3表达对机械牵张引起A549细胞活性改变的影响
     目的研究有效干扰PTX3基因表达对机械牵张引起A549细胞活性改变以及细胞因子释放的影响,探讨其在VILI中的可能作用。
     方法体外培养于包被胶原基底膜collagenⅠ的BioFlex六孔培养板的人肺泡上皮细胞A549,随机分为空白对照组、静止对照组、牵张组、RNAi组、RNAi+牵张组。空白对照为未给任何干预正常培养细胞;静止对照组应用“Flexstop”阻止牵张;牵张组采用FX4000T细胞应变加载系统周期性牵张细胞,其方案为:应变率为20%,频率为0.3Hz,周期性波形为方波,加载时间为4h; RNAi组应用lipofectamineTM2000分别转染特异靶向PTX3的siRNA;RNAi+牵张组于牵张前12h转染特异靶向PTX3的siRNA。利用real time RT-PCR法检测A549细胞PTX3 mRNA表达的变化;Western blot检测分泌PTX3蛋白;Annexin V流式细胞术检测A549细胞凋亡;ELISA法检测培养基上清中细胞因子TNF-α水平。
     结果与静止对照组相比,牵张组A549细胞PTX3基因和蛋白的表达显著上调,牵张组PTX3mRNA增加7.397±0.276倍(P<0.01),牵张组和静止对照组PTX3蛋白分别为0.647±0.019和1.590±0.060(P<0.01)。而与牵张组相比, RNAi+牵张组细胞PTX3 mRNA和蛋白表达显著抑制。与静止对照组相比,牵张组早期凋亡和晚期凋亡细胞百分比显著增加;而与牵张组相比,RNAi+牵张组成活细胞百分比明显增加(85.377%±1.395%和93.727%±0.492%,P<0.01),凋亡细胞百分比明显降低。
     结论周期性机械牵张可通过上调人肺泡上皮细胞PTX3基因和蛋白表达,导致肺泡上皮细胞凋亡增加和过度炎症反应,这一现象可能与VILI的发病机制有关。PTX3作为肺泡上皮细胞上表达的机械牵张敏感基因,从而积极参与了VILI的发病机制。
     第四部大潮气量机械通气大鼠肺部穿透素3的表达变化
     研究背景与目的呼吸机所致肺损伤(VILI)是机械通气的严重并发症之一。据统计,有22%~39%进行机械通气病人会发生VILI,死亡率高达15%~30%,严重影响患者预后。大潮气量机械通气时机械牵张应力作为一种炎症前期刺激,能通过特定的信号通路激起炎症级联反应,引起VILI。PTX3是新型的促炎症因子,在炎症级联反应中均起着重要作用,细胞水平研究结果显示,过度机械牵张能显著上调其表达,且基因启动子序列中均含有牵张反应元件,因而我们推测PTX3作为牵张敏感基因,可能在VILI的发病机制中起着重要作用。本实验拟研究大潮气量机械通气对大鼠肺部PTX3表达的影响。
     方法48只健康成年雄性SD大鼠随机分成正常对照组(C组,n=16,保持正常自主呼吸)、保护性机械通气组(PV组,n=16,潮气量Vt:6ml/kg,PEEP=3~5cm H2O,呼吸频率为70次/分)、大潮气量机械通气组(HV组,n=16,Vt:20ml/kg,PEEP=0),呼吸频率为20次/分。其余通气参数均一致,即吸呼之比为1∶2 ,吸氧浓度FiO2为35%。颈动脉和颈内静脉切开置管,行监测、标本采集和液体及麻醉药的输注。持续检测HR、ECG、有创动脉血压(ABP)、直肠温度量监测。间断进行血气分析,计算氧合指数。机械通气4h后处死大鼠。(1)HE染色光学显微镜下观察各组肺组织病理学变化;(2)检测肺组织湿/干重比值(W/D);(3)检测肺泡灌洗液和血清中蛋白计算肺通透指数(LPI),ELISA法检测肺组织匀浆和肺泡灌洗液中TNF-α;(4)测定肺组织髓过氧化物酶(MPO)活性;(5)TUNEL法检测肺细胞的凋亡;(6)real-time PCR检测大鼠的肺组织中PTX3基因mRNA的表达水平;(7)免疫组化法检测肺组织PTX3蛋白的表达;(8)Western Blot检测肺组织PTX3蛋白的含量。
     结果(一)PV组与C组相比,肺损伤各项指标无显著改变。HV组通气4h PaO2显著降低(P < 0.05),肺组织LPI、W/D和MPO活性均显著增加(P < 0.05),组织病理学检测表现急性炎性损伤性改变。HV组大鼠肺组织匀浆和肺泡灌洗液中TNF-α含量显著大于C组和PV组(P < 0.01),而C组与PV组无显著差异(P > 0.05)。TUNEL法检测可见肺细胞凋亡改变。(二)与C组相比,HV组通气4h后PTX3基因mRNA和蛋白表达均显著升高,PTX3基因mRNA和蛋白分别增加3.493倍和3.799倍;而PV组PTX3基因mRNA和蛋白表达均无显著改变(P>0.05)。
     结论大潮气量机械通气能导致肺损伤,而且显著上调了PTX3基因mRNA和蛋白表达水平,这可能与VILI的发生密切相关。
VIABILITY OF A549 CELLS AND EXPRESSION OF PTX3 IN A549 CELLS INDUCED CYCLIC STRETCH
     Background and Objective Amount of data has confirmed ventilator- induced lung injury (VILI) is relevant with mechanical stretch. One of the underlying mechanisms of ventilator- induced lung injury (VILI) is that mechanical stretch leads to trigger the expression of stretch-sensitive genes and the release of pro-inflammatory mediators in lung cells in response to mechanical stretch. The stretch-sensitive genes initiate a train of biological reactions to cause a series of. biological injury. Long pentraxin PTX3 is a newly discovered acute phase protein produced at the sites of infection and inflammation as a marker of inflammation. It plays an important part in inflammation cascade reaction and also participates in the inflammation reaction leaded cyclic stretch and has stretch-response-element in its promoter. As a result, we guess PTX3 is possibly one of the stretch-sensitive genes. This experiment is to study the effect of mechanical stretch on viability of the cells in human alveolar epithelial cells(A549) and expression of PTX3 in A549.
     Methods Cells were subjected to cyclic stretch and relaxation by using the Flexercell Strain Unit FX-4000 Tension plus (Flexcell International) which is a computer-driven, vacuum-operated, stress-providing instrument. The vacuum-operated pump suck the special flexible cell culture, forming the cell elongating, thus the cell growing on the film accept tension, to analogue with stimulus of mechanical ventilation to pulmonary alveolar II type epithelium. The cell stress size is in proportion to the stretch extent of the culture .Computer controlled the duration, amplitude, and frequency of the applied stretch.
     The cells grown on collagenⅠBioFlex plates were divided into 3 groups. Grpup A and group B were exposed to square cyclic stretch at 0.3Hz using the Flexercell system with 6% and 20% elongation of cells. Loading time is 1 h , 2 hs , 4 hs and 6 hs For group C, We used a“Flexstop,”which is a rubber stopper inserted into the underside of the BioFlex culture plate wells of the control nonstretched cells to prevent the vacuum-induced flexing of the BioFlex growth surface.
     The apoptosis and viability of the A549 cells were detected by flow cytometry and laser confocal microscopy following staining by Annexin V/PI, transmission electron microscope and fluorescence microscope after staining by Hoechst33258.The secretion of TNF-αby A549 cells was detected by ELISA. Following treatments, conditioned media and cells were collected to measure the levels of PTX3 protein by Western blotting. of Real-time RT-PCR was performed to measure PTX3 mRNA extracted from stretched cells.
     Results Compared with group C, the percent of apoptosis cells in group B significant increased after stretching for more than 1 hour(p<0.01), but in group A it didn’t(p>0.05), which was caused by apoptosis in later period and early phase. But not notable difference of the percent of cell death was not found between group A and group B (p> 0.05).
     The percent of apoptosis A549 cells of group B time-dependently increased and at the same time so did the secretion of TNF-αCompared with group C, expression of PTX3 mRNA and protein of group B cells time-dependently increased. PTX3 mRNA and protein of group B significantly increased by 6.25 and 2.58 times after stretching for 2 hs(p< 0.01).The expression of group A cells didn’t change.
     Conclusion These results suggest that 20%mechanical stretch not only induces apoptosis of alveolar epithelial cells and secretion of TNF-α, but also induces expression of PTX3,which may play an important role during ventilator-induced lung injury.
     PartⅡINHIBITION OF EXPRESSION OF PTX3 IN A549 CELLS BY RNA INTERFERENCE
     Background and Objective RNA interference (RNAi) has been used to mediate sequence-specific gene silencing and has become a powerful and widely used tool for the analysis of gene function and gene therapy .That basal principle is to through minor 21-23 nucleotide fragments to identify complementary mRNA , urge complementary mRNA to degradate and make the relevance gene keep silence after transcription and the cell show phaenotype of definite gene deletion thereby.
     At present, methods of preparation of siRNA consist of the extracorporeal chemosynthesis , extracorporeal transcribing , expression vector combining in vitro and so on . Among them, extracorporeal chemosynthesis has the convenient simple characteristic. Our study is to screen for chemosynthesized siRNAs that inhibit the expression of PTX3 in A549 cells.
     Methods Three PTX3 siRNAs, one GAPDH siRNA as positive control ,one random siRNA as negative control were synthesized and labeled with FAM siRNA were for measurement of transfection effect by confocal microscopy and flow cytometry. SiRNAs were transfected into A549 cells by LipofectamineTM 2000. The expression of PTX3 was analyzed by Real-time PCR and Western blot.
     Results The transfection effect of LipofectamineTM 2000 for A549 was 89.18%±3.26%.Compared with blank control, siRNAs targeted PTX3 were identified to be able to respectively down-regulate the PTX3 expression (P<0.01). SiRNA which was most effective specifical for PTX3 restrained PTX3 mRNA to 3.41% , PTX3 protein to 4.94%.In negative control group, PTX3 mRNA and protein expressing had not notable difference with blank control(P>0.05).
     Conclusion LipofectamineTM 2000 can transfect siRNA into A549 cells with highly efficiency. RNAi technique can significantly inhibit expression of PTX3 in A549 cells.
     PartⅢEFFECT OF INHIBITION OF PTX3 EXPRESSION IN A549 CELLS ON STRETCH-RESPONSE
     Objective To study the effect of inhibition of PTX3 expression in A549 cells. Methods The A549 cells cultured in vitro were divided into 5 groups,i.e., normal control group, stretched group, RNAi group, RNAi and stretched group, static control group. Cells grown on collagenⅠBioFlex plates were exposed to square cyclic stretch at 0.3Hz using the Flexercell system with 20% elongation of cells for 4 hours in stretched group. The cells of RNAi group were transfected with chemosynthetic PTX3 specific siRNA by RNAi technique. In RNAi and stretched group, cells were were transfected with chemosynthetic PTX3 specific siRNA by RNAi technique. before stretch. Cells were unstretched using“Flexstop”as static control group. Real-time PCR of PTX3 mRNA extracted from cells was performed .The conditioned media were collected and the levels of PTX3 protein were measured by Western blotting. Apoptosis of the cells following treatments were routinely monitored.
     Results Compared with static control group,cyclic stretch led to increased PTX3 gene expression and protein in lung epithelial cells. PTX3 mRNA of strech group increased by 7.397±0.276 times(P<0.01), PTX3 protein of stretch group and static control group were 0.647±0.019 vs1.590±0.060(P<0.01);Compared with stretch group, PTX3 mRNA and protein expression notably suppressed in RNAi and stretched group. Compared with static control group,the percentage of apoptotic cells significantly increased in stretch group; Compared with stretch group, the percentage of viable cells in RNAi and stretched group significantly increased( 85.377%±1.395% vs 93.727%±0.492%,p<0.01).
     Conclusion Stretch can induce apoptosis of A549 cells and excessive inflammatory reaction through up-regulation of PTX3 which may be important mediator and play an important role during ventilator-induced lung injury.
     PartⅣEXPRESSION OF PTX3 IN LUNG OF RAT WITH VENTILATOR-INDUCED LUNG INJURY
     Objective As a life support for critically ill-patients, mechanical ventilation is often indispensable. However, mechanical ventilation can induce and/or worsen acute lung injury. Ventilator-induced lung injury has been considered as one of the most important contributing factors to the high mortality in ARDS. This study aims to investigate the expression of PTX3 in lung tissue of rat with ventilator-induced lung injury.
     Methods Forty-eight Sprague-Dawley rats weighing 300~350g were randomly divided into the following experimental groups (16 rats in each group): group C spontaneously breathed; group PV were ventilated with protective tidal volume (VT= 6 ml/kg, PEEP 3~5cmH2O, RR=70); group HV were ventilated with high tidal volume (VT= 20 ml/kg, PEEP 0 cmH2O, RR=20). The expression of PTX3mRNA in lung tissue was measured by real-time polymerase chain reaction (real-time PCR); PTX3 protein in lung tissues was measured by Western Blot and immune histochemistry; Lung pathological changes were examined with optical microscopy; Total protein, wet/dry ratios (W/D)、MPO activity of the lung tissue or lavage fluid were measured with corresponding methods.
     Results Compared with group C, in group HV PaO2 was significantly decreased(P < 0.05)and LPI、W/D and MPO significantly increased (P < 0.05). Compared with group C and group PV, TNF-αlevel significantly increased in group HV. But there is not obvious difference between group C and PV(P > 0.05). Lung cell apoptosis can be seen in group HV detected by TUNEL. The expression of PTX3 in group HV were significantly higher than group C, Compared to group C , PTX3 mRNA and protein expressing of group B significantly increase by 3.493 times and 3.799 times(P < 0.01).But there was no significantly difference between group C and group PV(P>0.05) Conclusion High volume ventilation induces significant VILI and remarkably increases the expression of PTX3 in lung tissue, which probably plays an important role in VILI.
引文
1. Copland IB, Martinez F, Kavanagh BP, et al. High tidal volume ventilation causes different inflammatory responses in newborn versus adult lung. Am J Respir Crit Care Med 2004;169: 739-748.
    2. Han B, Lodyga M, Liu M.Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation.Proc Am Thorac Soc 2005;2(3):181-7.
    3. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000;342: 1334-1349.
    4. Uhlig S. Ventilation-induced lung injury and mechanotransduction: Stretching it too far? Am J Physiol Lung Cell Mol Physiol 2002; 282: L892-L896.
    5. Dos Santos CC, Slutsky AS. Cellular responses to mechanical stress invited review: mechanisms of ventilator induced lung injury: a perspective. J Appl Physiol 2000;89:1645 - 1655.
    6. Dreyfuss D, Ricard JD, and Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilator-induced lung injury. Am J Respir Crit Care Med 2003;167: 1467-1471.
    7. Uhlig S, Uhlig U. Pharmacological interventions in ventilator-induced lung injury. Trends in Pharmacological Sciences 2004; 25 : 592-600.
    8. Slutsky AS. Lung injury caused by mechanical ventialtion. Chest 1999;116:9-15.
    9. Tremblay LN, Miatto D, Hamid Q, et al. Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med 2002;30:1693–1700.
    10. Putensen C, Wrigge H. Ventilator-associated systemic inflammation in acute lung injury. Intensive Care Med 2000;26:1411-1413
    11. Choi WI,Quinn DA,Park KM et al. Systemic microvascular leak in an in vivo rat model of ventilator-induced lung injury. Am J Respir Crit Care Med 2003;167:1627–1632.
    12. Frank JA, Matthay MA.Science review: mechanisms of ventilator-induced injury. Crit Care 2003; 7(3):233-241.
    13. Waters CM, Ridge KM, Sunio G. Venetsanou K, and Sznajder JI. Mechanical stretching of alveolar epithelial cells increases Na+-K+-ATPase activity. J Appl Physiol 1999;87(2): 715-721.
    14. Resnick N, Collins T, Atkinson W, et al. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci USA 1993;90(10):4591-4595.
    15. Nonas SA, Finigan JH, Gao L, et al.Functional genomic insights into acute lung injury: role of ventilators and mechanical stress. Proc Am Thorac Soc. 2005;2(3):188-94.
    16. dos Santos CC, Han B, Andrade CF,et al. DNA microarray analysis of gene expression in alveolarepithelial cells in response to TNFalpha,LPS, and cyclic stretch. Physiol Genomics 2004;19(3): 331-342.
    17. Bottazzi B, Garlanda C, Salvatori G, et al. Pentraxins as a key component of innate immunity. Curr Opin Immunol, 2006,18: 10 -15.
    18. Mantovani A, Garlanda C, and Bottazzi B. Pentraxin 3, a non-redundant solublepattern recognition receptor involved in innate immunity. Vaccine 2003;21 Suppl 2: S43-47,.
    19. Azzurri A, Sow OY, Amedei A,et al. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection. Microbes Infect 2005 ,7: 1-8.
    20. Latini R, Maggioni AP, Peri G, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 2004, 110: 2349-2354.
    21. Luchetti MM, Piccinini G, Mantovani A, et al. Expression and production of the long pentraxin PTX3 in rheumatoid arthritis (RA). Clin Exp Immunol 2000;119:196-202.
    22. Muller B, Peri G, Doni A, et al. Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients. Crit Care Med, 2001, 29: 1404-1407.
    23. Dias AA, Goodman AR, Dos Santos JL, et al. TSG-14 transgenic mice have improved survival to endotoxemia and to CLP-induced sepsis. J Leukoc Biol 2001; 69: 928-936.
    24. Garlanda C, Bottazzi B, Bastone A, et al. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 2005; 23: 337-366.
    25. Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 2002 ; 420: 182-186.
    26. Souza DG, Soares AC, Pinho V, et al. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol 2002; 160: 1755-1765.
    27. Okutani D, Han B, Mura M, et al. High volume ventilation induces Pentraxin 3 expression in multiple acute lung injury models in rats. Am J Physiol Lung Cell Mol Physiol 2007;292: L144-L153.
    1. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998;157: 294-323.
    2. Tremblay LF, Valenza S P, Ribeiro JL,et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997;99: 944-952.
    3. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000;342:1301-1308.
    4. Han B, Lodyga M, Liu M. Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation. Proc Am Thorac Soc,2005 2: 181-187.
    5. dos Santos C, Zhang H, Liu M, et al. Bench-to-bedside review: Biotrauma and modulation of the innate immune response. Crit Care,2005, 9: 280-286.
    6. Wirtz HR, Dobbs LG. Calcium mobilization and exocytosis after one mechanical stretch of lungepithelial cells. Science 1990;250:1266-1269.
    7. Sanchez-Esteban JLA, CicchielloY, Wang SW, et al. Rubin.. Mechanical stretch promotes alveolar epithelial type II cell differentiation. J Appl Physiol 2001; 91: 589-595.
    8. Edwards YS, Sutherland LM, Power JH, et al. Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells. FEBS Lett1999;448:127-130.
    9. Vlahakis NE, Hubmayr RD. Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol 2000; 89:2490-2496.
    10. Tschumperlin D J, Oswari J, Margulies AS. Deformationinduced injury of alveolar epithelial cells: effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 2000;162:357-362.
    11. Lieber M,Smith B,Szakal A,et a1.A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells.Int J Cancer 1976;17(1):62-70.
    12. Jemigan TW,Croce MA,Fabian TC.Apoptosis and necrosis in the development of acute lung injury after hemorrhagic shock.Am Surg,2004,70(12):1094-1098.
    13. Li X,Shu R,Filippatos G,et a1.Apoptosis in lung injury and remodeling.J Appl Physiol 2004;97(4):1535-1542.
    14. Song Y,Mao B,Qian G.The role of apoptosis and Fas/FasL in lung tissue in patients with acute respiratory distress syndrome.Zhonghua Jie He He Hu Xi Za Zhi1999;22(10):610-612.
    15. Takata M,Abe J,Tanaka H,et a1.Introalveolar expression of tumor necrosis factor-αgene during conventional and high frequency ventilation.Am J Respir Crit Care Med1997;156: 272-279.
    16. Tremblay L,Valenza F,Ribeiro SP,et a1.Injurious ventilatory strategies increase cytokines and e-fos mRNA expression in an isolated rat lung mode1.J Clin Invest 1997;99:944-952.
    17. Wirtz HR, Dobbs LG. The effects of mechanical forces on lung functions. Respir.Physiol, 2000; 119(1):1-17.
    18. Vlahakis NE, Hubmayr R D. Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol 2000; 89:2490–2496.
    19. Wirtz HR, Dobbs LG. The effects of mechanical forces on lung functions. Respir Physiol 2000;119:1–17.
    20. Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cel Mol Physiol 2002; 282:L892–L896.
    21. Tschumperlin DJ,Margulies SS.Alveolar epithelial surface area volume relationship in isolated rat lungs.J Appl Physiol1999;86(6):2026-2033.
    22. Chandel NS,Sznajder JI.Stretching the lung and programmed cell death.Am J Physiol Lung Cell Mol Physiol 2000;279(6):L1003-L1004.
    23. Tschumperlin DJ,Margulies SS.Equibiaxial deformation-induced injury of alveolar epithelial ceils in vitro.Am J Physiol1998;275:L1173-L1183.
    24. Hammerschmidt S,Kuhn H,Grasenack T,et a1.Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells.Am J Respir Cell Mol Biol 2004;30(3):396-02
    25. Coimbra R, Melbostad H, Loomis W, et al. LPS-induced acute lung injury is attenuated by phosphodiesterase inhibition: effects on proinflammatory mediators, metalloproteinases, NF-kappaB, and ICAM-1 expression. J Trauma, 2006, 60:115-125.
    1. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001,411 (6836):494 - 498.
    2. Sharp PA. RNA interference-2001. Genes Dev, 2001, 15(5):485-490.
    3. Marijori A. Matzke JA, Birchler. RNAi-mediated pathways in the nucleus. Nature Reviews Genitics. 2005,6(01):24-35.
    4. Elbashir SM, Lendechel W, Tucshl T. RNA interference is mediated by 21 and 22 nucleotide RNAs. Genes Dev, 2001, 15 (2 ) : 188-200.
    5. Lee Y. The nuclear RnaseⅢ, Drosha initiates microRNA processing. Nature 2003, 425:415-419.
    6. Katayama K, Wada K, Miyoshi H, et al. RNA interfering approach for clarifying the PPARgamma pathway using lentiviral vector expressing short hairpin RNA. FEBS Lett. 2004, 560(1):178-182.
    7. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004, 430(6996): 161-164.
    8. Hough SR, Wiederholt KA, Burrier AC, et al. Why RNAi makes sense. Nat Biotechnol, 2003, 21(7): 731-732.
    9. Yu JY, DeRuiter SL, Tumer DL. RNA interference by expression of short-interfering RNAs and Hairpin RNAs in mammalian cells. Proc Nati Acad Aci USA,2002, 99(9):6047-6052.
    10. McManus MT,Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet, 2002,3(10):737-747
    11. Plasterk RH. RNA silencing: the genome's immune system. Science, 2002,296(5571):1263-1265.
    12. Caplen NJ, Parrish S,Imam F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrates and vertebrate systems. Proc Natl Acad Sci USA, 2001,98(17 ) : 9742-9747.
    13. Bosher JM. Labouesse M. RNA interference: genetic wand and genetic watchdog. Nat cell Biol, 2000, 2(2):E31- E36.
    14. Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3'overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotech, 2002,19:497-500.
    15. Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcription human cells. Nat Biotech,2002,19:500-505.
    16. Pau1 CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nat Biotech, 2002, 19:505-508.
    17. Chan HM, Nicholas B, La T'hangue. P300/CBP proteins:HATs for transcriptional bridges and scaffolds. J Cell Sci. 2001, 114:2363-2373.
    18. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411:494-498.
    19. Gitlin L, Karelsky S, Andino R. Short Interfering RNA Confers Intracellular Antiviral Immunity inHuman Cells. Nature, 2002, 418: 430-434.
    20. Yu JY, DeRuiter SL, Turner DL. RNA Interference by Expression of Short-interfering RNAs and Hairpin RNAs in Mammalian Cells. Proc Nat Acad Sci USA, 2002, 99: 6047-6052.
    1. Dos Santos CC ,Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 2000; 89: 1645-1655.
    2. Tremblay LN, Miatto D, Hamid Q, et al. Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med 2002;30:1693–1700.
    3. Putensen C, Wrigge H. Ventilator-associated systemic inflammation in acute lung injury. Intensive Care Med 2000;26:1411-1413.
    4. dos Santos C, Zhang H, Liu M, et al. Bench-to-bedside review: Biotrauma and modulation of the innate immune response. Crit Care,2005, 9: 280-286.
    5. Vlahakis NE, Schroeder MA, Limper AH, et al. Stretch induces cytokine release by alveolar epithelial cells in vitro[J].Am J Physiol, 1999,277 (1):L167-173.
    6. Han B, Lodyga M, Liu M. Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation. Proc Am Thorac Soc , 2005 2: 181 -187.
    7. Simon BA, Easley RB, Grigoryev DN, et al.Microarray analysis of regional cellular responses to local mechanical stress in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2006;291(5):L851-L861.
    8. Wurfel MM. Microarray-based analysis of ventilator-induced lung injury. Proc Am Thorac Soc. 2007;4(1):77-84.
    9. Garlanda C, Bottazzi B, Salvatori G, et al. Pentraxins in innate immunity and inflammation.Novartis Found Symp, 2006,279:80-86.
    10.He X, Han B, and Liu M. Long pentraxin 3 in pulmonary infection and acute lung injury.Am J Physiol Lung Cell Mol Physiol, 2007, 292(5): L1039 - L1049.
    11.Dos Santos CC, Han B, Andrade CF, et al. DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNF-α, LPS, and cyclic stretch. Physiol. Genomics, 2004, 19: 331–342.
    12.Okutani D, Han B, Mura M, et al. High volume ventilation induces Pentraxin 3 expression in multiple acute lung injury models in rats. Am J Physiol Lung Cell Mol Physiol, 2007, 292:144-153.
    13.Basile A, Sica A, D’Aniello E, et al. Characterization of the promoter for the human long pentraxin PTX3. J Biol Chem,1997,272:8172–8178.
    14.Napoleone E A, Di Santo G, Peri, A, et al. The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation. J Leukocyte Biol. 2004, 76: 203–209.
    15.Han B, Bai XH, Lodyga M, et al.Conversion of mechanical force into biochemical signaling. J Biol Chem 2004;279: 54793-54801.
    16.Han B, Mura M, Andrade C, et al. TNF-alpha-induced long pentraxin PTX3 expression in human lung epithelial cells via c-Jun N-terminal kinase. J Immunol 2005; 175: 8303-8311.
    17.Copland IB, Post M.Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells.J Cell Physiol 2007;210(1):133-43.
    18.Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature, 2002, 420: 182-186.
    19.Jeannin P, Bottazzi B, Sironi M, et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity, 2005,22: 551- 560.
    20.Bottazzi B, Vouret-Craviari V, Bastone A,et al. Multimer formation and ligand recognition by the long pentraxinPTX3. Similarities and differences with the short pentraxins C- reactive protein and serum amyloid P component. J Biol Chem1997; 272: 32817-32823.
    21.Nauta AJ, Bottazzi B, Mantovani A,et al. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. EurJ Immunol 2003;33: 465-473.
    22.Rovere P, Peri G, Fazzini F, Bottazzi B,et al. The long pentraxin PTX3 binds to apoptotic cells and regulates their clearance by antigen-presenting dendritic cells. Blood 2000;96: 4300-4306.
    23.van Rossum AP, Fazzini F, Limburg PC, et al.The prototypic tissue pentraxin PTX3, in contrast to the short pentraxin serum amyloid P, inhibits phagocytosis of late apoptotic neutrophils by macrophages. Arthritis Rheum 2004;50: 2667-2674.
    24.Peri G, Introna M, Corradi D, et al.PTX3, A prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation 2000;102: 636-641.
    25.Latini R, Maggioni AP, Peri G, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 2004, 110: 2349-2354.
    26.Muller B, Peri G, Doni A, et al. Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients. Crit Care Med, 2001, 29: 1404-1407.
    27.Inoue K, Sugiyama A, Reid PC, et al. Establishment of a high Sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris. Arterioscler Thromb Vasc Biol ,2007, 27:161-167.
    28.Bevelacqua V, Libra M, Mazzarino MC,et al. Long pentraxin 3: a marker of inflammation in untreated psoriatic patients. Int J Mol Med, 2006, 18: 415-423.
    29.Napoleone E, Di Santo A, Bastone A,et al. Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation.Arterioscler Thromb Vasc Biol 2002;22: 782-787.
    30.Napoleone E, di Santo A, Peri G,et al. The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation. J Leukoc Biol 2004; 76: 203-209.
    31.Gando S, Kameue T, Matsuda N, et al. Imbalances between the levels of tissue factor and tissue factor pathway inhibitorin ARDS patients. Thromb Res 2003; 109: 119-124.
    32.Choi G, Wolthuis EK, Bresser P, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006; 105(4):689-95.
    33.Ware LB, Camerer E, Welty-Wolf K, et al. Bench to bedside: targeting coagulation and fibrinolysis in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2006; 291(3):L307-3011.
    34.Schultz MJ, Haitsma JJ, Zhang H,et al. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia--a review. Crit Care Med. 2006; 34(3):871-7.
    35.Mura M, dos Santos CC, Stewart D, and Liu M. Vascular endothelial growth factorand related molecules in acute lung injury. J Appl Physiol 2004; 97: 1605-1617.
    36.Liu M. Searching for acute respiratory distress syndrome genes: aren't we there yet? Am J Respir Crit Care Med 2005;171: 298-299.
    1. Dos Santos CC,Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol,2000, 89: 1645-1655.
    2. Slutsky AS. Lung injury caused by mechanical ventilation. Chest, 1999,116(1 Suppl):9S-15S.
    3. Tremblay LN, Miatto D, Hamid Q, et al. Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med, 2002, 30(8):1693-1700.
    4. Copland IB, Martinez F, Kavanagh BP, et al. High Tidal Volume Ventilation Causes Different Inflammatory Responses in Newborn versus Adult Lung. Am J Respir Crit Care Med , 2004,169: 739–748.
    5. Putensen C, Wrigge H. Ventilator-associated systemic inflammation in acute lung injury.Intensive Care Med, 2000; 26(10):1411-1413.
    6. Simon BA, Easley RB, Grigoryev DN, et al.Microarray analysis of regional cellular responses to local mechanical stress in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2006;291(5):L851-L861.
    7. Wurfel MM. Microarray-based analysis of ventilator-induced lung injury. Proc Am Thorac Soc. 2007;4(1):77-84.
    8. Breviariov F, Aniello EM, Golay J, et al. Interleukin-1 inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component. Bio Chem, 1992,267:22190-22197.
    9. Lee TH, Lee GW, Ziff EB, et al. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Mol Cell Biol, 1990, 10: 1982-1988.
    10. Garlanda C, Bottazzi B, Bastone A, et al. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol, 2005, 23: 337-366.
    11.舒化青,姚尚龙. PTX3在炎症和急性肺损伤中的作用.国际麻醉与复苏杂志,2008年待发表.
    12. Mikawa K, Kodama SI, Nishina K, Obara H. ONO-1714, a Nitric Oxide Synthase Inhibitor, Attenuates Endotoxin-Induced Acute Lung Injury in Rabbits. Anesth Analg 2003,97:1751-1755.
    13. Gray KD,Simovic MO,Chapman WC,et al. Endotoxin potentiates lung injury in cerulein-induced pancreatitis. Am J Surg 2003,186 (5): 526-30.
    14. Perl M, Chung CS, Perl U,et al.Fas-induced pulmonary apoptosis and inflammation during indirect acute lung injury. Am J Respir Crit Care Med 2007, 176(6):591-601.
    15. An S, Hishikawa Y, Koji T,et al. Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-alpha and activation of Bid pathway. Apoptosis 2007,12(11):1989-2001.
    16. Liu JM, Evander E, Zhao J, et al. Alveolar albumin leakage during large tidal volume ventilation and surfactant dysfunction. Clin Physiol, 2001,21(4):421-27.
    17. Choi WI,Quinn DA,Park KM et al.Systemic Microvascular leak in an in vivo rat model of ventilator induced lung injury.Am J Respir Crit Care Med,2003,167: (12):1627-32.
    18. Frank JA, Gutierrez JA, Jones KD, et al. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med, 2002, 165(2):242-249.
    19. Liao PH, Whitehead T, Evans T, et al. Ventilator-associated injury. Lancet, 2003, 361(25) :332-340.
    20. Pugjin J. Molecular mechanisms of lung cell activation induced by stretch. Crit Care Med, 2003, 31(4 Supply):S200-S206.
    21. Lentsch AB, Czermak BJ, Bless NM, et al. Essential role of alveolar macrophages in intrapulmonary activation of NF-xappaB. Am J Respir Cell Miol, 2000, 20(4) :692-698.
    22. Oeckler RA, Hubmayr RD.Ventilator-associated lung injury: a search for better therapeutic targets. Eur Respir J. 2007, 30: 1216-1226.
    23. Tremblay LN, Miatto D, Hamid Q, et al. Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger.Crit Care Med, 2002, 30(8):1693-1700.
    24. Vreugdenhil HA, Haitsma JJ, Jansen KJ, et al. Ventilator-induced heat shock protein 70 and cytokine mRNA expression in a model of lipopolysaccharide- induced lung inflammation. Intensive Care Med. 2003, 29(6): 915-922.
    25. Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA, 1999, 282(1): 54-61.
    26. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med, 2000,342 (18):1301-1308.
    27. Imai Y,Kawano T,Iwamoto S,et al.Intratracheal anti tumar necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits.J Appl Physiol, 1999,87:510-515.
    28. Uhlig S, Uhlig U. Pharmacological interventions in ventilator-induced lung injury. Trends in Pharmacological Sciences, 2004, 25: 592-600.
    29. Vlahakis NE, Hubmayr RD. Cellular Responses to Mechanical Stress.Invited review: plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol. 2000, 89(6): 2490-2496.
    30. Pugin J. Molecular mechanisms of lung cell activation induced by cyclic stretch. Crit Care Med. 2003,31(4 Suppl):S200-S206.
    31. Li YS, Haga JH, Chien S Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech, 2005, 38: 1949-1971.
    32. Resnick N, Collins T, Atkinson W, et al. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci USA. 1993, 90(10):4591-4595.
    1. Garlanda C, Bottazzi B, Bastone A, et al. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol,2005, 23: 337-366.
    2. Breviariov F, Aniello EM, Golay J, et al. Interleukin-1 inducible genes in endothelial cells. Cloning of a new gene related to C-reactive protein and serum amyloid P component. Bio Chem, 1992,267:22190-22197.
    3. Lee TH, Lee GW, Ziff EB, et al. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Mol Cell Biol, 1990, 10: 1982-1988.
    4. Bottazzi B, Garlanda C, Salvatori G, et al. Pentraxins as a key component of innate immunity. Curr Opin Immunol, 2006,18: 10 -15.
    5. Alles VV, Bottazzi B, Peri G, et al. Inducible expression of PTX3, a new member of the pentraxinfamily, in human mononuclear phagocytes. Blood, 1994, 84:3483-3493.
    6. Goodman AR, Levy DE, Reis LF, et al. Differential regulation of TSG-14 expression in murine fibroblasts and peritoneal macrophages. J Leukoc Biol, 2000, 67:387-395.
    7. Perrier P, Martinez FO, Locati M, et al. Distinct transcriptional programs activated by interleukin-10 with orwithout lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine ligand 13.J Immunol, 2004, 172:7031-7042.
    8. Introna M, Alles VV, Castellano M, et al. Cloning of mouse ptx3, a new member of the pentraxin gene family expressed at extrahepatic sites. Blood, 1996, 87: 1862-1872.
    9. Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature, 2002, 420: 182-186.
    10. Jeannin P, Bottazzi B, Sironi M, et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity, 2005,22: 551- 560.
    11. Bozza S, Bistoni F, Gaziano R, et al. Pentraxin 3 protects from MCMV infection and reactivation through TLR sensing pathways leading to IRF3 activation. Blood, 2006, 108: 3387-3396.
    12. Doni A, Michela M, Bottazzi B, et al. Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-gamma. J Leukoc Biol, 2006,79: 797-802.
    13. Doni A, Peri G, Chieppa M, et al. Production of the soluble pattern recognition receptor PTX3 by myeloid,but not plasmacytoid, dendritic cells. Eur J Immunol, 2003, 33: 2886-2893.
    14. Azzurri A, Sow OY, Amedei A,et al. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection. Microbes Infect, 2005 ,7: 1-8.
    15. Latini R, Maggioni AP, Peri G, et al. Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 2004, 110: 2349-2354.
    16. Muller B, Peri G, Doni A, et al. Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients. Crit Care Med, 2001, 29: 1404-1407.
    17. Inoue K, Sugiyama A, Reid PC, et al. Establishment of a high Sensitivity plasma assay for humanpentraxin3 as a marker for unstable angina pectoris. Arterioscler Thromb Vasc Biol ,2007, 27:161-167.
    18. Bevelacqua V, Libra M, Mazzarino MC,et al. Long pentraxin 3: a marker of inflammation in untreated psoriatic patients. Int J Mol Med, 2006, 18: 415-423.
    19. Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J, 2004, 23: 327-333.
    20. Han B, Liu M. Cytokine and ventilator-induced lung injury. Acta Pharmacol Sin, 2002, 23:39-43.
    21. Han B, Lodyga M, Liu M. Ventilator-induced lung injury: role of protein-protein interaction in mechanosensation. Proc Am Thorac Soc, 2005, 2: 181 -187.
    22. Frieri M. Airway epithelial cell release of cytokines: Modulation by various therapeutic agents. Allergy Asthma Proc, 2004, 25:387-393.
    23. dos Santos CC, Han B, Andrade CF , et al. DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFalpha, LPS, and cyclic stretch. Physiol Genomics, 2004, 19:331-342.
    24. Dias AA, Goodman AR, Dos Santos JL, et al. TSG-14 transgenic mice have improved survival to endotoxemia and to CLP-induced sepsis. J Leukoc Biol, 2001, 69: 928-936.
    25. Garlanda C, Hirsch E, Bozza S, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature, 2002, 420: 182-186.
    26. Souza DG, Soares AC, Pinho V, et al. Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol , 2002, 160: 1755-1765.
    27. Okutani D, Han B, Mura M, et al. High volume ventilation induces Pentraxin 3 expression in multiple acute lung injury models in rats. Am J Physiol Lung Cell Mol Physiol,2007, 292: L144-L153.
    [1] Samal B, Sun Y, Stearns G, et al. Cloning and characterization of the cDNA encoding a novel human Pre-B-cell colony-enhancing factor. Mol Cell Biol, 1994; 14 ( 2) :1431~1437.
    [2] Fukuhara A, MatsudaM, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 2005, 307 (5708): 426-430.
    [3] Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase Regulates Sir2 Activity in mammalian cells. J Biol Chem, 2004, 279 ( 49): 50754-50763.
    [4] Sethi J K, Vidal-Puig A. Visfatin: the missing link between intra-abdominal obesity and diabetes? Trends Mol Med, 2005, 11(8) : 344-347.
    [5] Ye SQ, Simon B A, Maloney J P, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med, 2005, 171 (4) : 361-370.
    [6] Jia S H, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest, 2004, 113 (9): 1318-1327.
    [7] Kralisch S, Klein J, Lossner U, et al. Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes. J Endocrinol, 2005, 185 (3) : R1-8.
    [8] Kralisch S, Klein J, Lossner U, et al. Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab, 2005, 289 (4): E586-E590.
    [9] Patrone L, Damorea M A, Lee M B, et al. Genes expressed during the IFNγ-induced maturation of pre-B cells. Mol Immunol, 2001, 38 (8) : 597-606.
    [10] Rongvaux A, Shea R J, Mulks M H, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol, 2002, 32 (11): 3225-3234.
    [11] Wang T, Zhang X, Bheda P, et al. Structure of Namp t/PBEF /visfatin, a mammalian NAD + biosynthetic enzyme. Nat Struct Mol Biol, 2006, 13 (7): 661-662.
    [12] HasmannM, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res, 2003, 63 (21): 7436-7442.
    [13] Kitani T, Okuno S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of p re-B-cell colony-enhancing factor. FEBS Lett, 2003, 544 (123): 74-78.
    [14] van der Veer E, Nong Z, O’Neil C, et al. Pre-B-cell colony-enhancing factor regulates NAD + dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res, 2005, 97 (1) : 25-34.
    [15] Ye SQ, Zhang LQ, Adyshev D,et al. Pre-B-cell-colony-enhancing factor is critically involved in thrombin-induced lung endothelial cell barrier dysregulation. Microvasc Res, 2005,70(3):142-151.
    [16] Moschen AR, Kaser A, Enrich A, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol, 2007 178 (3): 1748–1758
    [17] Koczan D, Guthke R, Thiesen HJ, et al. Gene expression profiling of peripheral blood mononuclear leukocytes from psoriasis patients identifies new immune regulatory molecules. Eur J Dermatol, 2005, 15(4): 251-7.
    [18] Otero M, Lago R, Gomez R, et al. Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis, 2006 65 (9): 1198–1201