淡水环境中新型酯酶和甲烷氧化菌的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作涉及环境微生物学的两个不同领域,第一部分是长江淡水微生物宏基因组文库的构建以及新型脂肪酶的筛选;第二部分是稻田淡水中新型甲烷氧化菌株的分离。
     1、长江淡水文库中新型脂肪酶的筛选
     尽管微生物非肉眼可见,但其是地球生物群落的一个重要的组成部分。在自然环境下,微生物进行独特的却不可缺少的生物转化,产生对地球生命活动非常重要的生物物质,并展现出了地球生命的多样性。其是地球上已知种类最多、数量最大、分布最广的生物类群,据估计仅原核生物数量达4×10~(30)-6×10~(30)。
     微生物可以产生两种不同的水解脂肪的酶,分别为酯酶(esterase)(EC 3.1.1.1)和“真正的”脂肪酶(lipase)(EC 3.1.1.3)。两者都可以将甘油三酯分解成脂肪酸和甘油以及进行其逆反应。微生物脂肪酶资源丰富,具有在有机溶剂中稳定性好、广泛的底物特异性、高度的位置选择性和异构体选择性、催化活性高而副反应少等特点,因此被广泛应用于食品加工、新型生物材料、生物传感器等领域。
     但是由于目前环境中有99%的微生物都是不可(难)培养的,只有不到1%的微生物能够被人类认识并利用,所以近年来发展起来的宏基因组学就是利用分子生物学技术绕过培养分离方法来对微生物的多样性及其功能进行研究。目前已经通过此技术筛选到大量新的功能基因,例如编码脂肪酶、蛋白酶、腈水解酶、氧化还原酶和淀粉酶等活性物质的基因。长江作为我国主要的淡水资源,蕴含着极其丰富的微生物资源,必然包含着极其多样的活性物质。
     本工作是结合了原位裂解微生物获取大片段DNA的方法对安庆长江水段(30°30'11.30 N,117°04'07.70 E)中的微生物资源进行挖掘,构建了宏基因组文库并对该环境中的脂肪酶基因资源进行筛选,得到了一种新型的脂肪酶。EstY含有423个氨基酸,其分子量为44kDa,等电点为7.28。EstY能水解对硝基苯乙酸(C2),对硝基苯丁酸(C4),对硝基苯辛酸(C8),对硝基苯癸酸(C10),对硝基苯月桂酸(C12),对硝基苯豆蔻酸(C14)和对硝基苯棕榈酸(C16)多种对硝基苯脂。其酶活的最适pH为9.0,最适温度为50℃。Mn~(2+)、Co~(2+)、Hg~(2+)、Zn~(2+)、Fe~(3+)强烈的抑制EstY的活性,但EstY却对Mg~(2+)表现出一定的依赖性。此外,EstY在10%浓度的乙醇,丙酮,异丙醇和二甲基亚砜的溶剂里不丧失活性。根据序列保守性和进化树分析,可以初步推断EstY和其相关的七个脂肪酶不属于任何一个已经的细菌脂肪酶家族。
     2、稻田淡水中新型甲烷氧化菌株的分离
     近年来,温室效应导致的环境问题近年来愈演愈烈,全球气候变暖的趋势日益明显,一些突出的环境问题如病虫害增加、海平面上升、气候冷暖反常、海洋风暴增多、土地干旱、沙漠化等无不与之密切相关。温室气体增多是造成温室效应的主要原因。通常所知,二氧化碳是主要的温室气体,对温室效应的贡献占到了60%以上。不容忽视的是,甲烷同样也是一种重要的温室气体,但以单位分子数而言,甲烷的温室效应要比二氧化碳大上25倍。从这一点上说,降低大气中甲烷的含量比降低二氧化碳对温室效应的防治更为有效。
     甲烷氧化细菌是甲基氧化细菌的一个分支,其独特之处在于其能利用甲烷作为唯一的碳源和能源。几乎所有的甲烷氧化菌都是专性好氧甲烷氧化菌,甲烷氧化菌氧化甲烷最终生成二氧化碳,并在此过程中获得生长所需的能量。甲烷氧化菌的典型特征是含有甲烷单加氧酶,可催化甲烷氧化为甲醇,甲醇进一步氧化为甲醛,甲醛再同化为细胞生物量或通过甲酸氧化为二氧化碳重新回到大气的碳库中,即甲烷→甲醇→甲醛→甲酸盐→二氧化碳。甲烷氧化菌于1906年被首次分离,1970年Whittenbury等分离和鉴定了100多种能利用甲烷的细菌,奠定了现代甲烷氧化菌分类的基础。
     本课题从合肥郊区(31°52'N,117°17'W)水稻田中分离了一株革兰氏阳性,短杆状,不运动,没有孢子形成的甲烷氧化菌。此菌为专性好氧菌,生长最适温度为30℃,最适pH为pH7.0-8.0,只能在以甲烷为碳源的培养基中生长。根据16SrRNA和pmoA序列比对,发现此菌属于typeⅡ(α-proteobacteria)甲烷氧化菌的其和一些甲基孢囊菌属(Methylocystis)的未鉴定的菌株有非常高的相似度,但不属于已发现的五个甲基孢囊菌属的任何一个种。因此,我们初步推断此菌为甲基孢囊菌属的一个新种(=CGMCC 1.5062=ATCC BAA-1775)。
My work mainly covers two different areas. One area is construction of metagenomic library from Yangtz River and screening for some novel function genes from the library; a sond area is the isolation of a new type of methane oxidizing bacterium from rice paddy.
     1. Construction of metageomic library and screening for a novel esterase gene from the library
     This work focus on construction of a bacterial artificial chromosome (BAC) library derived from Yangtze River in China(30°30'11.30 N, 117°04'07.70 E), screening for lipolytic activity, identifying an esterase-coding gene, expressed it in Escherichia coli and characterized the esterase.
     Although invisible to the naked eye, prokaryotes are an essential component of the earth's biota. They catalyze unique and indispensable transformations in the biogeochemical cycles of the biosphere, produce important components of the earth's atmosphere, and represent a large portion of life's genetic diversity. The number of prokaryotes on earth is estimated to be 4-6×10~(30) cells.
     Bacteria produce different classes of lipolytic enzyme, including carboxylesterases (EC 3.1.1.1), which hydrolyse small ester-containing molecules at least partly soluble in water; true lipases (EC 3.1.1.3), which display maximal activity towards water-insoluble long-chain triglycerides. Carboxylesterases are of importance in various biotechnological applications on account of their useful features, such as remarkable stability in organic solvents, broad substrate specificity, stereoselectivity, regioselectivity, and no requirement for cofactors.
     Screening novel biocatalysts from isolated microorganisms using traditional cultivation techniques has limits in exploring the vast genetic diversity of environmental microorganisms because more than 99% of microbes present in various environments cannot be cultured. To access the genome resource of uncultured microorganisms, a recent approach is to screen directly novel biocatalysts from a "metagenomic library". Accordingly, the metagenome-based strategy has led to isolation of many novel biocatalysts, such as esterase, lipase, protease, oxidoreductase, nitrilase and amylase. Yangtz River has been shown to possess unique microbial diversity including members of various unculturable groups as the main fresh water resource in our country.
     In this study, we characterize EstY from the metagenome library of Yangtz River. EstY had 423 amino acids with an estimated molecular mass of 44 kDa and pI of 7.28. It can hydrolyze various p-nitrophenyl esters (acetate, butyrate, caprate, caprylate, laurate, myristate and palmitate) and its best substrate was the p-nitrophenyl caprate (C8). The optimum pH for EstY activity was 9.0 and the optimum temperature was 50℃. Mn~(2+), Co~(2+), Hg~(2+), Zn~(2+), Fe~(3+) strongly inhibited the activity of EstY while Mg~(2+) was necessary for it. The activity remained in the presence of 10% alcohol, acetone, isopropanol and dimethyl sulfoxide (DMSO) separately. BLAST search on NCBI revealed that EstY had 7 closely related lipolytic enzymes. Sequence analysis showed that EstY, together with its 7 relatives, did not belong to any known lipolytic enzymefamily.
     2. Isolation of a new type methane oxidizing bacterium from rice paddy
     The earth's climate has changed dramatically over the last century and there is new and stronger evidence that most of the global warming observed the in the last 50 years is attributable to human activities, and the release of the greenhouse gas is one major reason. As we all know, carbon dioxide contributes most to global warming, but at the same time, methane is a kind of organic gas which can not be neglected. Methane is estimated to contribute about 26 times than that of carbon dioxide to climate change. Reduction of methane emissions would be more effective in reducing the global warming than reduction in CO_2 emissions.
     Methane oxidizing bacteria (MOB) is a subset of a physiological group of bacteria known as methylotrophs. Methanotrophic bacteria are unique in their ability to utilize methane as a sole carbon and energy source. Almost all of them are obligate methane-oxidizing bacteria. MOB can oxidize methane and turn it to carbon dioxide at last, at the same time they obtain the energy essential for their growth. One typical characteristic of MOB is possessing mathane monooxygenase, which can catalyze the oxidation of methane to methanol.
     In this study, a Gram-negative, non-motile, rod-shaped, methane-oxidizing bacterium, strain M261 was isolated from effluents of rice paddy in the suburb of Hefei in China (31°52' N, 117°17' W). Physiological characterization of the strain showed that the strain grew optimally at pH 7.0-8.0 and at moderate temperature (30℃). The strain only grew well with methane as carbon source. Both 16S rRNA and pmoA gene sequence analysis identified it as a novel methanotroph belonging to the typeⅡ(α- proteobacteria) and it was highly related to a number of non-characterized Methylocystis strains. On the basis of the phenotypic, phylogenetic and genotypic analyses, strain M261 primarily represents a novel species (=CGMCC 1.5062=ATCC BAA-1775) as the type strain.
引文
Aim,E.W.,Zheng,D.,and Raskin,L.(2000)The presence of humic substances and DNA in RNA extracts affects hybridization results[J].Appl Environ Microbiol 66:4547-4554.
    Arpigny,J.L.,and Jaeger,K.E.(1999)Bacterial lipolytic enzymes:classification and properties[J].Biochem J 343 Pt 1:177-183.
    Airman,A.J.,Stolyar,S.,Costello,A.M.,and Lidstrom,M.E.(2000)Molecular characterization of methanotrophic isolates from freshwater lake sediment[J].Appl Environ Microbiol 66:5259-5266.
    Baani,M.,and Liesack,W.(2008)Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp.strain SC2[J].Proc Natl AcadSci U S A 105:10203-10208.
    Balasubramanian,R.,and Rosenzweig,A.C.(2007)Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase[J].Accounts of Chemical Research 40:573-580.
    Bedard,C,and Knowles,R.(1989)Physiology,biochemistry,and specific inhibitors of CH4,NH4+,and CO oxidation by methanotrophs and nitrifiers[J].Microbiol Rev 53:68-84.
    Beja,O.,Suzuki,M.T.,Koonin,E.V.,Aravind,L.,Hadd,A.,Nguyen,L.P.et al.(2000)Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage[J].Environ Microbiol 2:516-529.
    Bender,M.,and Conrad,R.(1995)Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity[J].Soil Biology & Biochemistry 27:1517-1527.
    Bergmann,D.J.,Zahn,J.A.,Hooper,A.B.,and DiSpirito,A.A.(1998)Cytochrome P460 genes from the methanotroph Methylococcus capsulatus bath[J].J Bacterid 180:6440-6445.
    Boschker,H.T.S.,Nold,S.C.,Wellsbury,P.,Bos,D,de Graaf,W.,Pel,R.et al.(1998)Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers[J].Nature 392:801-805.
    Bowman,J.P.,McCammon,S.A.,and Skerratt,J.H.(1997)Methylosphaera hanson Ⅱ gen.nov.,sp.nov.,a psychrophilic,group I methanotroph from Antarctic marine-salinity,meromictic lakes[J].Microbiology 143(Pt 4):1451-1459.
    Brusseau,G.A.,Bulygina,E.S.,and Hanson,R.S.(1994)Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria[J].Appl Environ Microbiol 60:626-636.
    Bull,I.D.,Parekh,N.R.,Hall,G.H.,Ineson,P.,and Evershed,R.P.(2000)Detection and classification of atmospheric methane oxidizing bac teria in soil[J].Nature 405:175-178.
    Cai,Z.C.,and Yan,X.Y.(1999)Kinetic model for methane oxidation by paddy soil as affected by temperature,moisture and N addition[J],Soil Biology & Biochemistry 31:715-725.
    Cheng,Y.S.,Halsey,J.L.,Fode,K.A.,Remsen,C.C.,and Collins,M.L.(1999)Detection of methanotrophs in groundwater by PCR[J].Appl Environ Microbiol 65:648-651.
    Cicerone RJ,Oremland RS(1988)Biogeochemical aspects of atmospheric methane[J].Global Biogeochem Cycles 2:299-327
    Courtois,S.,Cappellano,C.M.,Ball,M.,Francou,F.X.,Normand,P.,Helynck,G.et al.(2003)Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products[J].Appl Environ Microbiol 69:49-55.
    Cruz,H.,Perez,C,Wellington,E.,Castro,C,and Servin-Gonzalez,L.(1994)Sequence of the Streptomyces albus G lipase-encoding gene reveals the presence of a prokaryotic lipase fami!y[J].Gene 144:141-142.
    Daniel,R.(2005)The metagenomics of soil[J].Nat Rev Microbiol 3:470-478.
    Danielsen,S.,Eklund,M.,Deussen,H.J.,Graslund,T.,Nygren,P.A.,and Borchert,T.V.(2001)In vitro selection of enzymatically active lipase variants from phage libraries using a mechanism-based inhibitor[J].Gene 272:267-274.
    Dedysh,S.N.(2002)Methanotrophic bacteria of acid sphagnum bogs[J].MikrobiologⅡ a 71:741-754.
    Dedysh,S.N.,Derakshani,M.,and Liesack,W.(2001)Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization,including the use of newly developed oligonucleotide probes for Methylocella palustris[J].Appl Environ Microbiol 67:4850-4857.
    Dedysh,S.N.,Panikov,N.S.,Liesack,W.,Grosskopf,R.,Zhou,J.,and Tiedje,J.M.(1998)Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands[J].Science 282:281-284.
    Dedysh,S.N.,Khmelenina,V.N.,Suzina,N.E.,Trotsenko,Y.A.,Semrau,J.D.,Liesack,W.,and Tiedje,J.M.(2002)Methylocapsa acidiphila gen.nov.,sp.nov.,a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog[J].Int J Syst Evol Microbiol 52:251-261.
    Diaz-Torres,M.L.,McNab,R.,Spratt,D.A.,Villedieu,A.,Hunt,N.,Wilson,M.,and Mullany,P.(2003)Novel tetracycline resistance determinant from the oral metagenome[J].Antimicrob Agents Chemother 47:1430-1432.
    Distel,D.L.,and Cavanaugh,CM.(1994)Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves[J].J Bacteriol 176: 1932-1938.
    Dunfield,P.F.,Liesack,W.,Henckel,T.,Knowles,R.,and Conrad,R.(1999)High-affinity methane oxidation by a soil enrichment culture containing a type Ⅱ methanotroph[J].Appl Environ Microbiol 65:1009-1014.
    Elend,C,Schmeisser,C,Hoebenreich,H.,Steele,H.L.,and Streit,W.R.(2007)Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for(R)-ibuprofen esters[J].J Biotechnol 130:370-377.
    Elend,C,Schmeisser,C,Leggewie,C,Babiak,P.,Carballeira,J.D.,Steele,H.L.et al.(2006)Isolation and biochemical characterization of two novel metagenome-derived esterases[J].Appl Environ Microbiol 72:3637-3645.
    Entcheva,P.,Liebl,W.,Johann,A.,Hartsch,T.,and Streit,W.R.(2001)Direct cloning from enrichment cultures,a reliable strategy for isolation of complete operons and genes from microbial consortia[J].Appl Environ Microbiol 67:89-99.
    Feller,G.,Thiry,M.,Arpigny,J.L.,and Gerday,C.(1991)Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144[J].Gene 102:111-115.
    Ferrer,M.,Golyshina,O.V.,Chernikova,T.N.,Khachane,A.N.,Reyes-Duarte,D.,Santos,V.A.et al.(2005)Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora[J].Environ Microbiol 7:1996-2010.
    Frenzel,P.(2000)Plant-associated methane oxidation in rice fields and wetlands[J],Advances in Microbial Ecology,Vol 16 16:85-114.
    Fuse,H.,Ohta,M.,Takimura,O.,Murakami,K.,Inoue,H.,Yamaoka,Y.et al.(1998)Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase[J].Biosci Biotechnol Biochem 62:1925-1931.
    Gerday,C,Aittaleb,M.,Arpigny,J.L.,Baise,E.,Chessa,J.P.,Garsoux,G.et al.(1997)Psychrophilic enzymes:a thermodynamic challenge[J].Biochim Biophys Acta 1342:119-131.
    Gilbert,B.,Assmus,B.,Hartmann,A.,and Frenzel,P.(1998)In situ localization of two methanotrophic strains in the rhizosphere of rice plants[J].FEMS Microbiology Ecology 25:117-128.
    Gilbert,B.,McDonald,I.R.,Finch,R.,Stafford,G.P.,Nielsen,A.K.,and Murrell,J.C.(2000)Molecular analysis of the pmo(particulate methane monooxygenase)operons from two type Ⅱ methanotrophs[J].Appl Environ Microbiol 66:966-975.
    Gillespie,D.E.,Brady,S.F.,Bettermann,A.D.,Cianciotto,N.P.,Liles,M.R.,Rondon,M.R.et al.(2002)Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA[J].Appl Environ Microbiol 68:4301-4306.
    Gotz,E,Verheij,H.M.,and Rosenstein,R.(1998)Staphylococcal lipases:molecular characterisation,sretion,and processing[J].Chem Phys Lipids 93:15-25.
    Gotz,R,Popp,R,Korn,E.,and Schleifer,K.H.(1985)Complete nucleotide sequence of the lipase gene from Staphylococcus hyicus cloned in Staphylococcus carnosus[J].Nucleic Acids Res 13:5895-5906.
    Gupta,R.,Beg,Q.K.,and Lorenz,P.(2002)Bacterial alkaline proteases:molecular approaches and industrial applications[J].Appl Microbiol Biotechnol 59:15-32.
    Handelsman,J.(2004)Metagenomics:application of genomics to uncultured microorganisms[J].Microbiol Mol Biol Rev 68:669-685.
    Handelsman,J.,Rondon,M.R.,Brady,S.R,Clardy,J.,and Goodman,R.M.(1998)Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J].Chem Biol 5:R245-249.
    Hanson,R.S.,and Hanson,T.E.(1996)Methanotrophic bacteria[J].Microbiol Rev 60:439-471.
    Hardeman,R,and Sjoling,S.(2007)Metagenomic approach for the isolation of a novellow-temperature-active lipase from uncultured bacteria of marine sediment[J].FEMS Microbiol Ecol 59:524-534.
    Hemila,H.,Koivula,T.T.,and Palva,I.(1994)Hormone-sensitive lipase is closely related to several bacterial proteins,and distantly related to acetylcholinesterase and lipoprotein lipase:identification of a superfamily of esterases and lipases[J].Biochim Biophys Acta 1210:249-253.
    Henckel,T.,Friedrich,M.,and Conrad,R.(1999)Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA,particulate methane monooxygenase,and methanol dehydrogenase[J].Appl Environ Microbiol 65:1980-1990.
    Henckel,T.,Roslev,P.,and Conrad,R.(2000a)Effects of 02 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil[J].Environ Microbiol 2:666-679.
    Henckel,T.,Jackel,U.,Schnell,S.,and Conrad,R.(2000b)Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane[J].Appl Environ Microbiol 66:1801-1808.
    Henderson,I.R.,Navarro-Garcia,R,and Nataro,J.P.(1998)The great escape:structure and function of the autotransporter proteins[J].Trends Microbiol 6:370-378.
    Henne,A.,Daniel,R.,Schmitz,R.A.,and Gottschalk,G.(1999)Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate[J].Appl Environ Microbiol 65:3901-3907.
    Henne,A.,Schmitz,R.A.,Bomeke,M.,Gottschalk,G,and Daniel,R.(2000)Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli[J].Appl Environ Microbiol 66:3113-3116.
    Hildebrand,M.,Waggoner,L.E.,Liu,H.,Sudek,S.,Allen,S.,Anderson,C.et al.(2004)bryA:an unusual modular polyketide synthase gene from the uncultivated bacterial symbiont of the marine bryozoan Bugulaneritina[J].Chem Biol 11:1543-1552.
    Ho,Y.S.,Swenson,L.,Derewenda,U.,Serre,L.,Wei,Y.,Dauter,Z.et al.(1997)Brain acetylhydrolase that inactivates platelet-activating factor is a G-protein-like trimer[J].Nature 385:89-93.
    Hoehler,T.M.,Alperin,M.J.,Albert,D.B.,and Martens,C.S.(1994)Field and Laboratory Studies of Methane Oxidation in an Anoxic Marine Sediment-Evidence for a Methanogen-Sulfate Reducer Consortium[J].Global Biogeochemical Cycles 8:451-463.
    Holmes,A.J.,Owens,N.J.R,and Murrell,J.C.(1995a)Detection of Novel Marine Methanotrophs Using Phylogenetic and Functional Gene Probes after Methane Enrichment[J].Microbiology-Uk 141:1947-1955.
    Holmes,A.J.,Costello,A.,Lidstrom,M.E.,and Murrell,J.C.(1995b)Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related[J].FEMS Microbiol Lett 132:203-208.
    Holmes,A.J.,Roslev,R,McDonald,I.R.,Iversen,N.,Henriksen,K.,and Murrell,J.C.(1999)Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake[J].Appl Environ Microbiol 65:3312-3318.
    Iwamoto,T.,Tani,K.,Nakamura,K.,Suzuki,Y.,Kitagawa,M.,Eguchi,M.,and Nasu,M.(2000)Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE[J].FEMS Microbiology Ecology 32:129-141.
    Jaeger,K.E.,Dijkstra,B.W.,and Reetz,M.T.(1999)Bacterial biocatalysts:molecular biology,three-dimensional structures,and biotechnological applications of lipases[J].Annu Rev Microbiol 53:315-351.
    Jaeger,K.E.,Ransac,S.,Dijkstra,B.W.,Colson,C,van Heuvel,M.,and Misset,O.(1994)Bacterial lipases[J].FEMS Microbiol Rev 15:29-63.
    Kalyuzhnaya,M.G.,Stolyar,S.M.,Auman,A.J.,Lara,J.C,Lidstrom,M.E.,and Chistoserdova,L.(2005)Methylosaicina lacus sp.nov.,a methanotroph from Lake Washington,Seattle,USA,and emended description of the genus Methylosarcina[J].Int J Syst Evol Microbiol 55:2345-2350.
    Kim,H.K.,Park,S.Y.,Lee,J.K.,and Oh,T.K.(1998)Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus LI[J].Biosci Biotechnol Biochem 62:66-71.
    Kim,K.K.,Song,H.K.,Shin,D.H.,Hwang,K.Y.,and Suh,S.W.(1997a)The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of abound inhibitor[J].Structure 5:173-185.
    Kim,K.K.,Song,H.K.,Shin,D.H.,Hwang,K.Y.,Choe,S.,Yoo,O.J.,and Suh,S.W.(1997b)Crystal structure of carboxylesterase from Pseudomonas fluorescens,an alpha/beta hydrolase with broad substrate specificity[J].Structure 5:1571-1584.
    Kim,Y.J.,Choi,G.S.,Kim,S.B.,Yoon,G.S.,Kim,Y.S.,and Ryu,Y.W.(2006)Screening and characterization of a novel esterase from a metagenomic library[J].Protein Expr Purif 45:315-323.
    Kim,Y.S.,Lee,H.B.,Choi,K.D.,Park,S.,and Yoo,O.J.(1994)Cloning of Pseudomonas fluorescens carboxylesterase gene and characterization of its product expressed in Escherichia coli[J].Biosci Biotechnol Biochem 58:111-116.
    King,G.M.,and Schnell,S.(1994)Ammonium and Nitrite Inhibition of Methane Oxidation by Methylobacter-Albus Bg8 and Methylosinus-Trichosporium Ob3b at Low Methane Concentrations[J].Applied and Environmental Microbiology 60:3508-3513.
    Knietsch,A.,Bowien,S.,Whited,G.,Gottschalk,G,and Daniel,R.(2003)Identification and characterization of coenzyme B12-dependent glycerol dehydratase-and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures[J].Appl Environ Microbiol 69:3048-3060.
    Lang,D.,Hofmann,B.,Haalck,L.,Hecht,H.J.,Spener,R,Schmid,R.D.,and Schomburg,D.(1996)Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution[J].J Mol Biol 259:704-717.
    Langin,D.,Laurell,H.,Hoist,L.S.,Belfrage,P.,and Holm,C.(1993)Gene organization and primary structure of human hormone-sensitive lipase:possible significance of a sequence homology with a lipase of Moraxella TA144,an antarctic bacterium[J].Proc Natl Acad Sci U S A 90:4897-4901.
    Le Mer,J.,and Roger,P.(2001)Production,oxidation,emission and consumption of methane by soils:A review[J].European Journal of Soil Biology 37:25-50.
    Lee,C.Y.,and Iandolo,J.J.(1985)Mechanism of bacteriophage conversion of lipase activity in Staphylococcus aureus[J].J Bacteriol 164:288-293.
    Lee,M.H.,Lee,C.H.,Oh,T.K.,Song,J.K.,and Yoon,J.H.(2006)Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments:evidence for a new family of bacterial lipases[J].Appl Environ Microbiol 72:7406-7409.
    Lee,S.W.,Won,K.,Lim,H.K.,Kim,J.C.,Choi,G.J.,and Cho,K.Y.(2004)Screening for novel lipolytic enzymes from uncultured soil microorganisms[J].Appl Microbiol Biotechnol 65:720-726.
    LeMer,J.,Escoffier,S.,Chessel,C,and Roger,P.A.(1996)Microbiological aspects of methane emission in a ricefield soil from the Camargue(France).2.Methanotrophy and related microflora[J].European Journal of Soil Biology 32:71-80.
    Lim,H.K.,Chung,E.J.,Kim,J.C.,Choi,G.J.,Jang,K.S.,Chung,Y.R.et al.(2005)Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli[J].Appl Environ Microbiol 71:7768-7777.
    Lipscomb,J.D.(1994)Biochemistry of the Soluble Methane Monooxygenase[J].Annual Review of Microbiology 48:371-399.
    Little,CD.,Palumbo,A.V.,Herbes,S.E.,Lidstrom,M.E.,Tyndall,R.L.,and Gilmer,P.J.(1988)Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium[J].Appl Environ Microbiol 54:951-956.
    Lobkovsky,E.,Moews,P.C.,Liu,H.,Zhao,H.,Frere,J.M.,and Knox,J.R.(1993)Evolution of an enzyme activity:crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase[J].Proc Natl Acad Sci U S A 90:11257-11261.
    Loveless,B.J.,and Saier,M.H.,Jr.(1997)A novel family of channel-forming,autotransporting,bacterial virulence factors[J].Mol Membr Biol 14:113-123.
    Martinez,A.,Kolvek,S.J.,Hopke,J.,Yip,C.L.,and Osburne,M.S.(2005)Environmental DNA fragment conferring early and increased sporulation and antibiotic production in Streptomyces species[J].Appl Environ Microbiol 71:1638-1641.
    McDonald,I.R.,and Murrell,J.C.(1997a)The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs[J].FEMS Microbiol Lett 156:205-210.
    McDonald,I.R.,and Murrell,J.C.(1997b)The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs[J].Appl Environ Microbiol 63:3218-3224.
    McDonald,I.R.,Kenna,E.M.,and Murrell,J.C.(1995)Detection of methanotrophic bacteria in environmental samples with the PCR[J].Appl Environ Microbiol 61:116-121.
    McDonald,I.R.,Hall,G.H.,Pickup,R.W.,and Murrell,J.C.(1996)Methane oxidation potential and preliminary analysis of methanotrophs in blanket bog peat using molecular ecology techniques[J].FEMS Microbiology Ecology 21:197-211.
    Mcfarland,M.J.,Vogel,C.M.,and Spain,J.C.(1992)Methanotrophic Cometabolism of Trichloroethylene(Tee)in a 2 Stage Bioreactor System[J].Water Research 26:259-265.
    Megraw,S.R.,and Knowles,R.(1990)Effect of Picolinic-Acid(2-Pyridine Carboxylic-Acid)on the Oxidation of Methane and Ammonia in Soil and in Liquid Culture[J].Soil Biology & Biochemistry 22:635-641.
    Misawa,E.,Chan Kwo Chion,C.K.,Archer,I.V.,Woodland,M.P.,Zhou,N.Y.,Carter,S.F.et al.(1998)Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp[J].Eur J Biochem 253:173-183.
    Miskin,J.E.,Farrell,A.M.,Cunliffe,W.J.,and Holland,K.T.(1997)Propionibacterium acnes,a resident of lipid-rich human skin,produces a 33 kDa extracellular lipase encoded by gehA[J].Microbiology 143(Pt 5):1745-1755.
    More,M.I.,Herrick,J.B.,Silva,M.C.,Ghiorse,W.C.,and Madsen,E.L.(1994)Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment[J].Appl Environ Microbiol 60:1572-1580.
    Morton,J.D.,Hayes,K.F.,and Semrau,J.D.(2000)Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b[J].Appl Environ Microbiol 66:1730-1733.
    Murrell,J.C,and Radajewski,S.(2000)Cultivation-independent techniques for studying methanotroph ecology[J].Res Microbiol 151:807-814.
    Murrell,J.C,McDonald,I.R.,and Bourne,D.G.(1998)Molecular methods for the study of methanotroph ecology[J].FEMS Microbiology Ecology 27:103-114.
    Murrell,J.C,Gilbert,B.,and McDonald,I.R.(2000)Molecular biology and regulation of methane monooxygenase[J].Arch Microbiol 173:325-332.
    Muyzer,G,de Waal,E.C.,and Uitterlinden,A.G.(1993)Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Appl Environ Microbiol 59:695-700.
    Nardini,M.,Lang,D.A.,Liebeton,K.,Jaeger,K.E.,and Dijkstra,B.W.(2000)Crystal structure of pseudomonas aeruginosa lipase in the open conformation.The prototype for family I.1 of bacterial lipases[J].J Biol Chem 275:31219-31225.
    Nguyen,H.H.,Shiemke,A.K.,Jacobs,S.J.,Hales,B.J.,Lidstrom,M.E.,and Chan,S.I.(1994)The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus(Bath)[J].J Biol Chem 269:14995-15005.
    Nicolaidis AA.,and Sargent,AW.(1987)Isolation of methane monooxygenase-deficient mutants from Methylosinus trichosporium oB3b.[J]FEMS microbiol Let 41:47-52.
    Nishizawa,M.,Shimizu,M.,Ohkawa,H.,and Kanaoka,M.(1995)Stereoselective production of(+)-trans-chrysanthemic acid by a microbial esterase:cloning,nucleotide sequence,and overexpression of the esterase gene of Arthrobacter globiformis in Escherichia coli[J].Appl Environ Microbiol 61:3208-3215.
    Noble,M.E.,Cleasby,A.,Johnson,L.N.,Egmond,M.R.,and Frenken,L.G(1993)The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate[J].FEBS Lett 331:123-128.
    Oldenhuis,R.,Vink,R.L.,Janssen,D.B.,and Witholt,B.(1989)Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase[J].Appl Environ Microbiol 55:2819-2826.
    Orita,M.,Iwahana,H.,Kanazawa,H.,Hayashi,K.,and Sekiya,T.(1989)Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J].Proc Natl Acad Sci U S A 86:2766-2770.
    Pohlenz,H.D.,Boidol,W.,Schuttke,1.,and Streber,W.R.(1992)Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene[J].J Bacteriol 174:6600-6607.
    Radajewski,S.,and Murrell,J.C.(2002)Stable isotope probing for detection of methanotrophs after enrichment with ~(13)CH4[J].Methods Mol Biol 179:149-157.
    Radajewski,S.,Ineson,P.,Parekh,N.R.,and Murrell,J.C.(2000a)Stable-isotope probing as a tool in microbial ecology[J].Nature 403:646-649.
    Radajewski,S.,Ineson,P.,Parekh,N.R.,and Murrell,J.C.(2000b)Stable-isotope probing as a tool in microbial ecology[J].Nature 403:646-649.
    Ranjan,R.,Grover,A.,Kapardar,R.K.,and Sharma,R.(2005)Isolation of novel lipolytic genes from uncultured bacteria of pond water[J].Biochem Biophys Res Commun 335:57-65.
    Rhee,J.K.,Ahn,D.G.,Kim,Y.G.,and Oh,J.W.(2005)New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family,cloned from a metagenomic library[J].Appl Environ Microbiol 71:817-825.
    Romanovskaia,V.A.,Shurova,Z.P.,Iurchenko,V.V.,Tkachuk,L.V.,and Malashenko Iu,R.(1977)Ability of obligate methylotrophs to perform nitrogen fixation[J].MikrobiologⅡa 46:66-70.
    Rondon,M.R.,August,P.R.,Bettermann,A.D.,Brady,S.F.,Grossman,T.H.,Liles,M.R.et al.(2000)Cloning the soil metagenome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms[J].Appl Environ Microbiol 66:2541-2547.
    Roslev,P.,Iversen,N.,and Henriksen,K.(1997)Oxidation and Assimilation of Atmospheric Methane by Soil Methane Oxidizers[J].Appl Environ Microbiol 63:874-880.
    Schmidt-Dannert,C,Rua,M.L.,Atomi,H.,and Schmid,R.D.(1996)Thermoalkalophilic lipase of Bacillus thermocatenulatus.I.molecular cloning,nucleotide sequence,purification and some properties[J].Biochim Biophys Acta 1301:105-114.
    Schrag,J.D.,Li,Y.,Cygler,M.,Lang,D.,Burgdprf,T.,Hecht,H.J.et al.(1997)The open conformation of a Pseudomonas lipase[J].Structure 5:187-202.
    Shen,R.,Yu,C,Ma,Q.,and Li,S.(1997)Direct evidence for a soluble methane monooxygenase from type I methanotrophic bacteria:purification and properties of a soluble methane monooxygenase from Methylomonas sp.GYJ3[J].Arch Biochem Biophys 345:223-229.
    Sommer,P.,Bormann,C,and Gotz,F.(1997)Genetic and biochemical characterization of a new extracellular lipase from Streptomyces cinnamomeus[J].Appl Environ Microbiol 63:3553-3560.
    Stein,J.L.,Marsh,T.L.,Wu,K.Y.,Shizuya,H.,and DeLong,E.F.(1996)Characterization of uncultivated prokaryotes:isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon[J].J Bacteriol 178:591-599.
    Svendsen,A.,Borch,K.,Barfoed,M.,Nielsen,T.B.,Gormsen,E.,and Patkar,S.A.(1995)Biochemical properties of cloned lipases from the Pseudomonas family[J].Biochim Biophys Acta 1259:9-17.
    Torsvik,V,and Ovreas,L.(2002)Microbial diversity and function in soil:from genes to ecosystems[J].Curr Opin Microbiol 5:240-245.
    Trotsenko,Y.A.,and Khmelenina,V.N.(2002)Biology of extremophilic and extremotolerant methanotrophs[J].Arch Microbiol 177:123-131.
    Uchiyama,T.,Abe,T.,Ikemura,T.,and Watanabe,K.(2005)Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes[J].Nat Biotechnol 23:88-93.
    Upton,C,and Buckley,J.T.(1995)A new family of lipolytic enzymes?[J]Trends Biochem Sci 20:178-179.
    van Pouderoyen,G,Eggert,T,Jaeger,K.E.,and Dijkstra,B.W.(2001)The crystal structure of Bacillus subtilis lipase:a minimal alpha/beta hydrolase fold enzyme[J].J Mol Biol 309:215-226.
    Venter,J.C.,Remington,K.,Heidelberg,J.F.,Halpern,A.L.,Rusch,D.,Eisen,J.A.et al.(2004)Environmental genome shotgun sequencing of the Sargasso Sea[J].Science 304:66-74.
    Verschueren,K.H.,Seljee,F,Rozeboom,H.J.,Kalk,K.H.,and Dijkstra,B.W.(1993)
    Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase[J].Nature 363:693-698.
    Voget,S.,Steele,H.L.,and Streit,W.R.(2006)Characterization of a metagenome-derived halotolerant cellulase[J].J Biotechnol 126:26-36.
    Watanabe,I.,Hashimoto,T.,and Shimoyama,A.(1997)Methane-oxidizing activities and methanotrophic populations associated with wetland rice plants[J].Biology and Fertility of Soils 24:261-265.
    Wei,Y.,Schottel,J.L.,Derewenda,U.,Swenson,L.,Patkar,S.,and Derewenda,Z.S.(1995)A novel variant of the catalytic triad in the Streptomyces scabies esterase[J].Nat Struct Biol 2:218-223.
    Wei,Y.,Swenson,L.,Castro,C,Derewenda,U.,Minor,W.,Arai,H.et al.(1998)Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases:Streptomyces exfoliatus lipase at 1.9 A resolution[J].Structure 6:511-519.
    Whitman,W.B.,Coleman,D.C.,and Wiebe,W.J.(1998)Prokaryotes:the unseen majority[J].Proc Natl Acad Sci U S A 95:6578-6583.
    Whittenbury,R.,Phillips,K.C.,and Wilkinson,J.F.(1970)Enrichment,isolation and some properties of methane-utilizing bacteria[J].J Gen Microbiol 61:205-218.
    Wise,M.G.,McArthur,J.V.,and Shimkets,L.J.(1999a)Methanotroph diversity in landfill soil:Isolation of novel type I and type Ⅱ methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis[J].Appl Environ Microbiol 65:4887-4897.
    Wise,M.G.,McArthur,J.V.,and Shimkets,L.J.(1999b)Methanotroph diversity in landfill soil:isolation of novel type I and type Ⅱ methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis[J].Appl Environ Microbiol 65:4887-4897.
    Yabuuchi,E.,Kosako,Y,Oyaizu,H.,Yano,I.,Hotta,H.,Hashimoto,Y et al.(1992)Proposal of Burkholderia gen.nov.and transfer of seven species of the genus Pseudomonas homology group Ⅱ to the new genus,with the type species Burkholderia cepacia(Palleroni and Holmes 1981)comb[J].nov.Microbiol Immunol 36:1251-1275.
    Yun,J.,and Ryu,S.(2005)Screening for novel enzymes from metagenome and SIGEX,as a way to improve it[J].Microb Cell Fact 4:8.
    Zhou,J.,Bruns,M.A.,and Tiedje,J.M.(1996)DNA recovery from soils of diverse composition[J].Appl Environ Microbiol 62:316-322.
    Zock,J.,Cantwell,C,Swartling,J.,Hodges,R.,Pohl,T.,Sutton,K.et al.(1994)The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase:cloning,sequence and high-level expression in Escherichia coli[J].Gene 151:37-43.
    Arpigny,J.L.,and Jaeger,K.E.(1999)Bacterial lipolytic enzymes:classification and properties[J].Biochem J 343 Pt 1:177-183.
    Bugg,T.D.(2004)Diverse catalytic activities in the alphabeta-hydrolase family of enzymes:
    activation of H_2O,HCN,H_2O_2,and O_2[J].Bioorg Chem 32:367-375.
    Elend,C,Schmeisser,C,Leggewie,C,Babiak,P.,Carballeira,J.D.,Steele,H.L.et al.(2006)Isolation and biochemical characterization of two novel metagenome-derived esterases[J].Appl Environ Microbiol 72:3637-3645.
    Hube,B.,Stehr,R,Bossenz,M.,Mazur,A.,Kretschmar,M.,and Schafer,W.(2000)Sreted lipases of Candida albicans:cloning,characterisation and expression analysis of a new gene family with at least ten members[J].Arch Microbiol 174:362-374.
    Jaeger,K.E.,and Eggert,T.(2002)Lipases for biotechnology[J].Curr Opin Biotechnol 13:390-397.
    Jaeger,K.E.,Dijkstra,B.W.,and Reetz,M.T.(1999)Bacterial biocatalysts:molecular biology,three-dimensional structures,and biotechnological applications of lipases[J].Annu Rev Microbiol 53:315-351.
    Lee,M.H.,Lee,C.H.,Oh,T.K.,Song,J.K.,and Yoon,J.H.(2006)Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments:evidence for a new family of bacterial lipases[J].Appl Environ Microbiol 72:7406-7409.
    Nierman,W.C.,DeShazer,D.,Kim,H.S.,Tettelin,H.,Nelson,K.E.,Feldblyum,T.et al.(2004)Structural flexibility in the Burkholderia mallei genome[J].Proc Natl Acad Sci U S A 101:14246-14251.
    Ranjan,R.,Grover,A.,Kapardar,R.K.,and Sharma,R.(2005)Isolation of novel lipolytic genes from uncultured bacteria of pond water[J],Biochem Biophys Res Commun 335:57-65.
    Stein,J.L.,Marsh,T.L.,Wu,K.Y.,Shizuya,H.,and DeLong,E.R(1996)Characterization of uncultivated prokaryotes:isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon[J].J Bacteriol 178:591-599.
    Thieme,R,Koebnik,R.,Bekel,T.,Berger,C,Boch,J.,Buttner,D.et al.(2005)Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv.vesicatoria revealed by the complete genome sequence[J].J Bacteriol 187:7254-7266.
    Aulakh,M.S.,Wassmann,R.,and Rennenberg,H.(2001)Methane emissions from rice fields-Quantification,mechanisms,role of management,and mitigation options[J].Advances in Agronomy,Vol 70 70:193-260.
    Auman,A J.,Stolyar,S.,Costello,A.M.,and Lidstrom,M.E.(2000)Molecular characterization of methanotrophic isolates from freshwater lake sediment[J].Appl Environ Microbiol 66:5259-5266.
    Bodelier,P.L.E.,Meima-Franke,M.,Zwart,G.,and Laanbroek,H.J.(2005)New DGGE strategies for the analyses of methanotrophic microbial communities using different combinations of existing 16S rRNA-based primers[J].FEMS Microbiology Ecology 52:163-174.
    Bowman,J.R,Sly,L.I.,Nichols,P.D.,and Hayward,A.C.(1993)Revised Taxonomy of the Methanotrophs-Description of Methylobacter Gen-Nov,Emendation of Methylococcus,Validation of Methylosinus and Methylocystis Species,and a Proposal That the Family Methylococcaceae Includes Only the Group-I Methanotrophs[J].Int J Syst Bacteriol 43:735-753.
    Dedysh,S.N.,Belova,S.E.,Bodelier,P.L.,Smirnova,K.V.,Khmelenina,V.N.,Chidthaisong,A.et al.(2007)Methylocystis heyeri sp.nov.,a novel type Ⅱ methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs[J],Int J Syst Evol Microbiol 57:472-479.
    Dunfield,P.F.,Yimga,M.T.,Dedysh,S.N.,Berger,U.,Liesack,W.,and Heyer,J.(2002)Isolation of a Methylocystis strain containing a novel pmoA-like gene[J].FEMS Microbiology Ecology 41:17-26.
    Heyer,J.,Galchenko,V.F.,and Dunfield,RE(2002)Molecular phylogeny of type Ⅱ methane-oxidizing bacteria isolated from various environments[J].Microbiology-Sgm 148:2831-2846.
    Knief,C,and Dunfield,P.F.(2005)Response and adaptation of different methanotrophic bacteria to low methane mixing ratios[J].Enviro Microbio 7:1307-1317.
    Lindner,A.S.,Pacheco,A.,Aldrich,H.C.,Costello Staniec,A.,Uz,I.,and Hodson,D.J.(2007)Methylocystis hirsuta sp.nov.,a novel methanotroph isolated from a groundwater aquifer[J].Int J Syst Evol Microbiol 57:1891-1900.
    Poly,F.,Monrozier,L.J.,and Bally,R.(2001)Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J].Research in Microbiology 152:95-103.
    Wartiainen,I.,Hestnes,A.G.,McDonald,I.R.,and Svenning,M.M.(2006)Methylocystis rosea sp.nov.,a novel methanotrophic bacterium from Arctic wetland soil,Svalbard,Norway(78 degrees N)[J].Int J Syst Evol Microbiol 56:541-547.
    Whittenbury,R.,Phillips,K.C.,and Wilkinson,J.F.(1970)Enrichment,isolation and some properties of methane-utilizing bacteria[J].J Gen Microbiol 61:205-218.
    Wise,M.G.,McArthur,J.V.,and Shimkets,L.J.(1999)Methanotroph diversity in landfill soil:Isolation of novel type Ⅰ and type Ⅱ methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis[J].Appl Environ Microbiol 65:4887-4897.