水稻无孢子生殖相关基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从简化种子生产程序考虑,今后杂交水稻育种的策略将沿三系法、两系法和一系法三个阶段发展(袁隆平,1988)。其中,所谓一系法便是借助无融合生殖途径固定杂种优势。无孢子生殖是普遍存在于草类植物的一种无融合生殖方式,其特征是:大孢子母细胞正常并发育成单倍体胚囊,其周围的二倍体珠心细胞发育成大小与大孢子母细胞相近的无孢子生殖起始细胞,这些细胞不经过减数分裂直接发育成二倍体胚囊,从而实现无孢子生殖。但在水稻中尚未发现这一生殖现象。敲除多胞囊基因(MULTIPLESPOROCYTES,MSP1)的水稻突变体msp1,在胚珠中虽能产生多个大孢子母细胞,然而其花粉囊绒毡层不发育,只形成额外小孢子母细胞,结果表现雄性不育,不能繁种。
     针对这一问题,本论文研究了与无孢子生殖特性相关的水稻基因,探索了人工合成水稻无孢子生殖的材料和方法,试图为实现固定水稻杂种优势提供一条重要的途径。主要研究结果包括:
     1.通过tBLASTn搜索水稻数据库,作者在日本晴(O. sativa. subsp. japonica. cv. Nipponbare)基因组中发现2个绒毡层决定基因(TAPETUM DETERMINANT1,TPD1)OsTDL1A和OsTDL1B,它们与拟南芥TPD1同源。RT-PCR结果显示,在幼穗中OsTDL1A和OsTDL1B与MSP1基因共表达。RNA原位杂交表明,这些基因的表达部位有差异。OsTDL1A和MSP1在大孢子母细胞周围的珠心细胞和小孢子母细胞周围的花粉囊囊壁细胞中均表达,而OsTDL1B仅在花粉囊囊壁细胞中表达,胚珠组织中并不表达。同时基于酵母双杂交和双分子荧光互补分析显示了这两个基因编码蛋白功能上的差异。OsTDL1A编码蛋白能与MSP1基因编码的富亮氨酸重复区域互作,而OsTDL1B却不能。通过RNA干扰技术抑制转化株OsTDL1A基因的转录水平,结果引发多个大孢子母细胞出现,而花粉囊仍然保持正常,由此推测,胚珠内的大孢子母细胞数目受MSP1与配体OsTDL1A的基因互作控制。基于上述实验,作者认为,应用RNA干扰技术产生的水稻OsTDL1A-RNA干扰系将成为人工合成水稻无孢子生殖的重要材料。
     2.通过ClaustalW多序列比对,发现栽培稻和不同基因组野生稻MSP1基因非编码区序列具有高度的保守性,通过聚类分析可将供试的6个基因组野生稻分成2群。其中AA基因组3个种为一群,它们间的序列同源性高达97.7%。另一群中CC、CCDD、EE基因组间的序列同源性为98%,它们与BBCC的亲缘关系比GG更近;这为研究水稻不同基因组的进化提供了线索。通过转录分析纠正了NCBI对MSP1上游基因注释的错误,其实这是MSP1的5′非翻译区,MSP1转录起始位点应位于Nonomura等(2003)克隆的全长cDNA序列转录起始位点上游2281bp。进一步应用双向电泳和质谱分析研究其编码蛋白的分离及其表达,结果发现在水稻大孢子母细胞时期(3mm幼穗),日本晴(野生型)和msp1突变体间,共显示9个差异蛋白。与野生型相比,突变体中P1的分了量降低,P2的等电点升高,出现了日本晴中未显示的P3蛋白,P4、P5、P6表达量下调,而P7、P8、P9上调。作者推测MSP1激酶域作为负调节物,可能导致下游冷激蛋白的磷酸化,而抑制信号传导。
     3.首次发现水稻基因组中存在2个腈水解酶基因(OsNITA和OsNITB),它们成簇分布在2号染色体上,与拟南芥NIT4基因聚为一类。OsNITA和玉米ZmNIT2的同源性(92%)高于OsNITB和ZmNIT1的同源性(81%)。通过RT-PCR显示,2个水稻腈水解酶基因能在根、茎、叶及幼穗等多种组织中表达,但在表达量上有差异,OsNITA明显高于OsNITB。利用RNA原位杂交技术检测了两基因在水稻根尖(种子萌发后10d)和幼穗(大孢子母细胞时期)中的表达部位。结果表明,OsNITA在根尖分生组织区有较强的杂交信号,而在根冠和伸长区不表达,OsNITB的表达模式与OsNITA相似,但信号很弱。OsNITA在胚珠内的珠心细胞中表达,而在大孢子母细胞内未检测到杂交信号。在花粉囊的表达主要集中于内层、中层和绒毡层,维管细胞中少量表达,小孢子母细胞中则不表达,OsNITB在3mm幼穗中未检测到任何信号。根据水稻腈水解酶基因的结构及时空表达特征,我们推测该基因可能参与催化生长素合成。
In the future, hybrid rice breeding will follow three developmental stages to facilitate seed production procedure, they are three-line hybrid, two-line hybrid and one-line hybrid (Yuan, 1988). One-line hybrid is to fix hybridity through apomixes. Although unknown in rice, apospory is a form of apomixis that is common in grasses. In apospory, the megaspore mother cell is normal and develops into a haploid embryo sac, while adjacent diploid nucellar cells give rise to aposporous initials. These resemble megaspore mother cells in their large size, but they bypass meiosis and generate diploid embryo sacs. The rice knockout mutants of the leucine-rich repeat receptor kinase MULTIPLE SPOROCYTES1 (MSP1) produce multiple megaspore mother cells in the ovule and replace the tapetum of the anther with excess meiocytes. However, msp1 homozygous mutant is sterile, it is difficult to work with.
     Our purpose is to study the function of some rice genes which are related to apospory developmental characteristics and explore relative materials and methods toward synthetic apospory in rice to fix hybridity. Herein the main results were summarized as follows.
     1. When conducting tBLASTn analysis of TPD1 (TAPETUM DETERMINANT1) against the rice genomes (O. sativa. subsp. japonica. cv. Nipponbare), we discovered two homologues in rice, they were tentatively named as OsTDL1A and OsTDL1B. RT-PCR results showed that OsTDL1A and OsTDL1B were co-expressed with MSP1 in 1-3 mm spikelets, at the peak of meiosis. RNA in situ hybridization establishes that OsTDL1A, like MSP1, is expressed in both ovule and anther of rice, whereas OsTDL1B is expressed in the anther but not the ovule. Only OsTDL1A displays an ability to bind to the LRR domain of MSP1, while OsTDL1B doesn't have this ability. RNA interference of OsTDL1A phenocopies the msp1 mutant in the ovule but not in the anther. We discuss these results in relation to the development of synthetic apospory for hybrid rice, producing multiple MeMCs without causing male sterility. Our data suggest that OsTDL1A-RNAi lines will be a suitable material for developing synthetic apospory for hybrid rice.
     2. We found that the un-translated region of MSP1 gene were highly conserved between cultivar and different genome wild rice by multiple sequence alignment analysis (ClustalW). Unrooted dendrogram based on sequencing results showed that six different genome wild rice was divided into two groups. Three AA genome belong to one group with 97.7% similarity. While in another group, the similarity between CC, CCDD and EE genome is 98%, and BBCC is less relative to GG genome comparing to CC, CCDD and EE genome. The results provide very valuable clues for rice evolution between different genome. Through detailed transcription analysis, we corrected the annotation of NCBI database on MSP1 upstream gene, the annotated upstream gene is only part of MSP1 un-translated region, and the real MSP1 transcription site is located on 2281bp upstream of the cloned full-length cDNA by Nonomura (Nonomura et al., 2003). Furthermore, using two dimensional electrophoresis method and mass spectrum analysis, at least 2000 protein spots were clearly separated from 3mm spikelets protein (Megaspore Mother Cell Stage) of wild type and msp1 homozygous mutant. Among those proteins, we found nine protein spots which showed difference between wild type and mutant. The molecular weight of P1 is lower in mutant than wild type, while the p1 of P2 is increased in mutant, and P3 was only appeared in mutant. In addition, P4, P5 and P6 were down-regulated, P7, P8 and P9 were up-regulated in mutant. According to the previous report, we hypothesize that the kinase domain of MSP1 encoded protein has the ability to phosphorylate the cold stress protein.
     3. We found that rice genome contains two nitrilase genes: OsNITA and OsNITB, they are tandemly arranged on chromosome2 and belong to Arabidopsis NIT4 group. The similarity (92%) between OsNITA and maize ZmNIT2 is higher than that of the similarity (81%) between OsNITB and ZmNIT1. RT-PCR results indicated that two rice nitrilase genes can express in a wide range of tissues including root, shoot leaf and spikelets, but in each tissue the expression level of OsNITA was several times higher than OsNITB. In addition, the cellular location of two rice nitrilase genes was also checked with 10DAG root tips and spikelets at the megaspore mother cell stage by RNA in situ hybridization. The data showed that strong signal was detected in meristem cells in root tips, while no signal in root cap cells and exlongation zone with OsNITA, OsNITB has the similar expression pattern, but the signal was very weak. In ovule, OsNITA can express in the nucellus cells, however, no signal was appeared in the megaspore mother cell. In anther, the signal was mainly concentrated in endothecium, middle layer and tepatum cells, with weak staining in vascular cells, but no signal in microspore mother cell. OsNITB was not expressed in 3mm spikelets.These dates will help us establish the relationship between nitrilase expression and IAA biosynthesis in rice.
引文
1. Albertini E. , Barcaccia G. , Porceddu A. , Sorbolini S. , and Falcinelli M. 2001a. Mode of reproduction is detected by Parthl and Sexl SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties. Mol Breed. 7: 293-300.
    2. Albertini E., Porceddu A., Ferranti F., Reale L., Barcaccia G., Romano B., and Falcinelli M. 200lb. Apospory and parthenogenesis and chloroplast phylogeography in the Arabis holboellii complex apomixis in maize-Tripsacum hybrids caused by a transmission ratiodistortion. Heredity 80: 40-47.
    3. Asker SE., Jerling L. 1992. Apomixis in Plants. (Boca Raton, FL: CRC Press).
    4. Bicknell RA. 1994a. Hieracium: A model system for studying the molecular genetics of apomixis. Apomixis Newsletter 7: 8-10.
    5. Bicknell RA. 1994b. Micropropagation of Hieracium aurantiacum. Plant Cell Tissue Organ Cult. 37: 197-199.
    6. Bicknell RA. 1997. Isolation of a diploid, apomictic plant of Hieracium aurantiacum. Sex Plant Reprod. 10: 168-172.
    7. Bicknell RA. 2001. Model systems to study the genetics and developmental biology of apomixis. In Flowering of Apomixis: FromMechanisms to Genetic Engineering, Y. Savidan Y., Carman JG., Dresselhaus T. eds (El Batan, Mexico: International Maize and Wheat Improvement Center, Institut de Recherche pour le Developpement, European Commission DG VI). Pp: 111-120.
    8. Bicknell RA., BicknellKB. 1999. Who will benefit from apomixis? Biotechnol Dev Mon. 37: 17-21.
    9. Bicknell RA., Borst NK. 1994. Agrobacterium-mediated transformation of Hieracium aurantiacum. Int. J. Plant Sci. 155: 467-470.
    10. Bicknell RA., Borst NK. 1996. Isolation of reduced genotypes of Hieracium pilosella using anther culture. Plant Cell Tissue Organ Cult. 45:197-199.
    11. Bicknell RA., Borst NK., Koltunow AM. 2000. Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity. 84: 228-237.
    12. Bicknell RA., Koltunow AM. 2004. Understanding apomixis: recent advances and remaining conundrums. The Plant Cell. 16: S228-S245.
    13. Bicknell RA., Lambie SC., Butler RC. 2003. Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas. 138:11-20.
    14. Blakey CA., Goldman SL., and Dewaid CL. 2001. Apomixis in Tripsacum: Comparative mapping of a multigene phenomenon. Genome. 44: 222-230.
    15. Carman JG. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc. 61: 51-94. Carman JG. 2001. The gene effect: Genome collisions and apomixis. In Flowering of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CtMMYT, IRD, European Commission DG VI). Pp: 95-110.
    16. Chapman H., Bicknell R. 2000. Recovery of a sexual and an apomictic hybrid from crosses between the facultative apomicts Hieracium caespitosum and H. praealtum. N Z J Ecol. 24: 81-85.
    17. Chen L., Miyazaki C., Kojima A., and Adachi T. 1999. Isolation and characterisation of a gene expressed during early embryo sac development in an apomictic guinea grass (Panicum maximum). J Plant Physiol. 154: 55-62.
    18. Crane CF. 2001. Classification of apomictic mechanisms. In Flowering of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI), pp: 24-34.
    19. Czapik R. 1994. How to detect apomixis in Angiospermae. Poi Bot Stud. 8: 13-21.
    20. Dresselhaus T., Carman JG., Savidan Y. 2001. Genetic engineering of apomixis in sexual crops: A critical assessment of the apomixis technology. In Flowering of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI).
    21. Dusi DMA., Willemse MTM. 1999. Apomixis in Brachiaria decumbens Stapf.: Gametophytic development and reproductive calendar. Acta Biol Cracov Bot. 41: 151-162.
    22. Eckardt NA. 2003. Patterns of gene expression in apomixis. Plant Cell 15: 1499-1501.
    23. Eilerstrom S., Zagorcheva L. 1977. Sterility and apomictic embryo-sac formation in Raphanobrassica. Hereditas. 87:107-120.
    24. Galitski T., Saldanha AJ., Styles CA., Lander ES., and Fink GR. 1999. Ploidy regulation of gene expression. Science. 285:251-254.
    25. Goel S., Chen Z., Conner JA., Akiyama Y., Hanna WW., and Ozias-Akins P. 2003. Delineation by fluorescence in situ hybridization of a single hemizygous chromosomal region associated with aposporous embryo sac formation in Pennisetum squamulatum and Cenchrus ciliaris. Genetics. 163:1069-1082.
    26. Grimanelli D., Hernandez M., Perotti E., and Savidan Y. 1997. Dosage effects in the endosperm of the diplosporous apomictic Tripsacum (Poaceae). Sex Plant Reprod. 10: 279-282.
    27. Grimanelli D., Leblanc O., Espinosa E., Perotti E., De Leon DG., and Savidan Y. 1998a. Mapping diplosporous apomixis in tetraploid Tripsacum: One gene or several genes? Heredity. 80: 33-39.
    28. Grimanelli D., Leblanc O., Espinosa E., Perotti E., De Leon DG., and Savidan Y. 1998b. Non-Mendelian transmission of apomixis in maize-Tripsacum hybrids caused by a transmission ratio distortion. Heredity. 80: 40-47.
    29. Grimanelli D., Leblanc O., Perotti E., and Grossniklaus U. 2001a. Developmental genetics of gametophytic apomixis. Trends Genet. 17: 597-604.
    30. Grimanelli D., Tohme J., Gonzalez-de-Leon D. 200lb. Applications of molecular genetics in apomixis research. In Fiowerin of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI). Pp: 83-94.
    31. Grossniklaus U. 2001. From sexuality to apomixis: Molecular and genetic approaches. In Flowering of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI). pp:168-211.
    32. Guerin J., Rossel JB., Robert S., Tsuchiya T., and Koltunow A. 2000. A DEFICIENS homoiogue is down-regulated during apomictic initiation in ovules of Hieracium. Planta 210:914-920.
    33. Hecht V., Vielle-Calzada JP., Hartog MV., Schmidt EDL., Boutilier K., Grossnikaus U., and de Vries SC. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127:803-816.
    34. Houliston G.J., Chapman HM. 2001. Sexual reproduction in field populations of the facultative apomict Hieracium pilosella. N Z J Bot. 39: 141-146.
    35. Jessup RW., Burson BL., Burow GB., Wang YW., Chang C., Li Z., Paterson AH., and Hussey MA. 2002. Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffelgrass as revealed by genome mapping. Crop Sci. 42: 1688-1694.
    36. Khush GS., ed 1994. Apomixis: Exploiting Hybrid Vigor in Rice. (Los Banos, Philippines: International Rice Research Institute).
    37. Kojima A., Nagato Y. 1997. Discovery of highly apomictic and highly amphimictic dihaploids in Allium tuberosum. Sex Plant Reprod. 10: 8-12.
    38. Koltunow AM. 1993. Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. The Plant Cell. 5: 1425-1437.
    39. Koltunow AM., Grossniklaus U. 2003. Apomixis: A developmental perspective. Annu Rev Plant Biol. 54: 547-574.
    40. Koltunow AM., Johnson SD., Bicknell RA. 1998. Sexual and apomictic development in Hieracium. Sex Plant Reprod. 11:213-230.
    41. Koltunow AM., Johnson SD., Bicknell RA. 2000. Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex Plant Reprod. 12: 253-266.
    42. Koltunow AM., Soltys K., Nito N., and McClure S. 1995b. Anther, ovule, seed and nucellar embryo development in Citrus sinensis cv. Valencia. Can J Bot. 73: 1567-1582.
    43. Koltunow AM., Tucker MR. 2003. Advances in apomixes research: Can we fix heterosis? In Plant Biotechnology and Beyond, Vasil IK ed (Dordrecht, The Netherlands: Kluwer Academic Publishers). Pp: 39-46.
    44. Labombarda P., Busti A., Caceres ME., Pupilli F., and Arcioni S. 2002. An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome. 45: 513-519.
    45. Leblanc O., Mazzucato A. 2001. Screening procedures to identify and quantify apomixis. In Flowering of Apomixis: From Mechanism to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI). pp: 121-136.
    46. Lee HS., Chen ZL. 2001. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA. 98: 6753-6758.
    47. Luo M(罗明)., Bilodeau P., Dennis ES., et al., 2000. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA.97: 10637-10642.
    48. Martinez EJ., Urbani MH., Quarin CL., and Ortiz JPA. 2001. Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas. 135:19-25.
    49. Matzk F., Hammer K., Schubert I. 2003. Co-evolution of apomixis and genome size within the genus Hypericum. Sex Plant Reprod. 16:51-58.
    50. Matzk F., Meister A., Brutovska R., and Schubert I. 2001. Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J. 26: 275-282.
    51. Naumova TN., Osadtchiy JV., Sharma VK., Dijkhuis P., and Ramulu KS. 1999. Apomixis in plants: Structural and functional aspects of dipiospory in Poa nemoralis and P. palustris. Protoplasma. 208: 186-195.
    52. Naumova TN., Vielle-Calzada JP. 2001. Ultrastructural analysis of apomictic development. In Flowering of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI). pp: 44-63.
    53. Nogler GA. 1984a. Gametophytic apomixis. In Embryology of Angiosperms, BM Johri, ed (Berlin: Springer-Verlag), pp: 475-518.
    54. Noyes RD., Rieseberg LH. 2000. Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics. 155: 379-390.
    55. Peel MD., Carman JG., Leblanc O. 1997. Megasporocyte callose in apomictic buffelgrass, Kentucky bluegrass, Pennisetum squamulatum Fresen, Tripsacum L., and weeping lovegrass. Crop Sci. 37: 724-732.
    56. Pessino SC., Espinoza F., Martinez EJ., Ortiz JPA., Valle EM., and Quarin CL.2001. Isolation of cDNA clones differentially expressed in flowers of apomictic and sexual Paspalum notatum. Hereditas. 134: 35-42.
    57. Pessino SC., Ortiz JP., Leblanc O., Leblanc O., do Valle CB., Evans C., and Hayward MD. 1997. Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet. 94: 439-444.
    58. Pessino, S.C., Ortiz, JPA., Hayward, MD., and Quarin. 1999. The molecular genetics of gametophytic apomixis. Hereditas 130:1-11.
    59. Quarin CL., Espinoza F., Martinez EJ., Pessino SC., and Bovo OA. 2001. A rise of ploidy level induces the expression of apomixes in Paspalum notatum. Sex Plant Reprod. 13: 243-249.
    60. Richards AJ. 1997. Plant Breeding Systems, 2nd ed. (London: Chapman and Hall).
    61. Roche D., Chen ZB., Hanna WW., and Ozias-Akins P. 2001a. Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet (Penniseturn glaucum) and an apomictic F1 (P. glaucum×P. squamulatum). Sex Plant Reprod. 13:217-223.
    62. Roche D., Cong PS., Chen ZB., Hanna WW., Gustine1999. An apospory-specific genomic region is conserved between buffelgrass (Cenchrus ciliaris L.) and Penniseturn squamulatum Fresen. Plant J. 19: 203-208.
    63. Roche D., Hanna WW., Ozias-Akins, P. 2001b. Is supernumerary chromatin involved in gametophytic apomixis of polyploidy plants? Sex Plant Reprod. 13: 343-349.
    64. Savidan Y. 1980. Chromosomal and embryological analyses in sexual apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet. 57: 153-156.
    65. Savidan Y. 2000a. Apomixis, the way of cloning seeds. Biofutur 2000: 38-43.
    66. Savidan Y. 2000b. Apomixis: Genetics and breeding. Plant Breed Rev. 18: 13-86.
    67. Savidan Y. 2001. Transfer of apomixis through wide crosses. In Flowering of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI). pp: 153-167.
    68. Schiefthaler U., Balasubramanian S., Sieber P., Chevalier D., Wisman E., and Schneitz K. 1999. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA. 96:11664-11669.
    69. Sharbel TF., Mitchell-Olds T. 2001. Recurrent polyploid origins and chloroplast phylogeography in the Arabis holboellii complex (Brassicaceae). Heredity. 87: 59-68.
    70. Sokolov VA., Kindiger B., Khatypova IV. 1998. Apomicticaily reproducing 39-chromosome maize-Tripsacum hybrids. Genetika. 34: 499-506.
    71. Sokolov VA., Kindiger B., Khatypova IV. 1998, Apomictically reproducing 39-chromosome maize-Tripsacum hybrids. Genetika 34: 499-506.
    72. Toenniessen GH. 2001. Feeding the world in the 21st century: Plant breeding, biotechnology, and the potential role of apomixis. In Flowering of Apomixis: From Mechanisms to' Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI). pp: 1-7.
    73. Tucker MR., Araujo ACG., Paech NA., Hecht V., Schmidt EDL., Rossell JB., De Vries SC., and Koltunow AMG. 2003. Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell. 15:1524-1537.
    74. Tucker MR., Paech NA., Willemse, MTM., and Koltunow AMG. 2001.Dynamics of callose deposition and beta-1,3-glucanase expression during reproductive events in sexual and apomictic Hieracium. Planta 212: 487-498.
    75. Vaile CB., MilesJW. 2001. Breeding in apomictic species. In Flowering of Apomixis: From Mechanisms to Genetic Engineering, Savidan Y., Carman JG., Dresselhaus T. eds (Mexico: CIMMYT, IRD, European Commission DG VI). Pp: 137-152.
    76. van der Hulst RGM., Mes THM., den Nijs JCM., and Bachmann K. 2000. Amplified fragment length polymorphism (AFLP) markers reveal that population structure of tripioid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol Ecol. 9: 1-8.
    77. van Dijk PJ., van Baarlen P., de Jong JH. 2003. The occurrence of phenotypically complementary apomixis-recombinants in crosses between sexual and apomictic dandelions (Taraxacum officinale). Sex Plant Reprod. 16:71-76.
    78. Vielle JP., Burson BL., Bashaw EC., and Hussey MA. 1995. Early fertilization events in the sexual and aposporous egg apparatus of Pennisetum ciliare (L.) Link Plant J. 8: 309-316.
    79. Vielle-Calzada JP., Nuccio ML., Budiman MA., Thomas TL., Burson BL., Hussey MA., and Wing RA. 1996. Comparative gene expression in sexual and apomictic ovaries of Pennisetum ciliare (L.) Lind. Plant J. Plant Mol Biol. 32: 1085-1092.
    80. Vijverberg K., van der Hulst RPL., van Dijk PJ. 2004. A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet. 108(4): 725-32.
    81. Weld RJ., Bicknell RA., Heinemann JA., and Eady CC. 2002. Ds transposition mediated by transient tran'sposase expression in Hieracium aurantiacum. Plant Cell Tissue Organ Cult. 69: 45-54.
    82. Wright S., Finnegan D. 2001. Genome evolution: Sex and the transposable element. Curr Biol. 11: 296-299.
    83. Yang WC (杨文才)., Ye D(叶德)., Xu J (徐继)., and Sundaresan V. 1999. The SPOROCYTELESS gene form Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev. 13:2108-2117.
    1.袁隆平,杂交稻的育种战略设想。1987 (1):1-3。
    2. Asker SE. , Jerling L. 1992. Apomixis in Plants. CRC Press, Boca Raton, Florida.
    3. Bicknell RA. , Koltunow AM. 2004. Understanding apomixis: recent advances and remaining conundrums. Plant Cell. 16 Suppl: S228-245.
    4. Bracha-Drori K. , Shichrur K. , Katz A. , Oliva M. , Angelovici R. , Yalovsky S. , Ohad N. 2004. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40: 419-427.
    5. Brar DS. , Elloran RM. , Lanuang MC. , Tolentino VS. , Khush GS. 1995. Screening wild species of rice for apomixis. Philippine J Crop Sci. 20: 6.
    6. Canales C. , Bhatt AM. , Scott R. , Dickinson, H. 2002. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol. 12: 1718-1727.
    7. Carman JG. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixes, bispory, tetraspory and polyembryony. Biol J Linn Soc. 61: 51-94.
    8. Chaudhury AM., Ming L., Miller C., Craig S, Dennis ES, Peacock WJ. 1997. Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA. 94:4223-4228.
    9. Chinchilla D., Bauer Z., Regenass M., Boller T., Felix G. 2006. The Arabidopsis receptor kinase FLS2 binds fig22 and determines the specificity of flagellin perception. Plant Cell. 18: 465-476.
    10. Gomez-Gomez L., Boiler T. 2000. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell. 5: 1003-1011.
    11. Grimanelli D., Garcia M., Kaszas E., Perotti E., Leblanc O. 2003. Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics. 165:1521-1531.
    12. Ingouff M., Haseloff J., Berger F. 2005. Polycomb group genes control developmental timing of endosperm. Plant J. 42:663-674.
    13. James P., Halladay J., Craig EA. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 144: 1425-1436.
    14. Ji XM., Van den Ende W., Schroeven L., Cierens S., Geuten K., Cheng S., Bennett J. 2007. The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae. New Phytol. 173: 50-62.
    15. Ji XM., Raveendran M., Oane R., Ismail A., Lafitte R., Bruskiewich R., Cheng SH., Bennett J. 2005. Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Mol Biol. 59: 945-964.
    16. Jung KH., Han MJ., Lee YS., Kim YW., Hwang I., Kim MJ., Kim YK., Nahm BH. 2005. Rice Undeveloped Tapetuml is a major regulator of early tapetum development. Plant Cell. 17: 2705-2722.
    17. Kathiresan A., Khush GS., Bennett J. 2002. Two rice DMC1 genes are differentially expressed during meiosis and during haploid and diploid mitosis. Sex Plant Reprod. 14: 257-267.
    18. Kobe B., Kajava AV. 2001. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 11: 725-732.
    19. Koltunow AM., Bicknell RA., Chaudhury AM. 1995. Apomixis: Molecular strategies for the generation of genetically identical seeds without fertilization. Plant Physiol. 108: 1345-1352.
    20. Koltunow AM., Hidaka T., Robinson SP. 1996. Polyembryony in Citrus Accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Physiol. 110: 599-609.
    21. Kondo T., Sawa S., Kinoshita A., Mizuno S., Kakimoto T., Fukuda H., Sakagami Y. 2006. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science. 313: 845-848.
    22. Luo M., Bilodeau P., Dennis ES., Peacock WJ, Chaudhury A. 2000. Expression and parent-of-origin effects for FIS2, MEA and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA. 97:10637-10642.
    23. Ma H. 2005. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol. 56: 393-434.
    24. Matsubayashi Y., Hanai H., Hara O., Sakagami Y. 1996. Active fragments and analogs of the plant growth factor, phytosulfokine: structure-activity relationships. Biochem Biophys Res Commun. 225: 209-214.
    25. Matsubayashi Y., Ogawa M., Morita A., Sakagami Y. 2002. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science. 296: 1470-1472.
    26. Matzk F., Prodanovic S., Baumlein H., Schubert I. 2005. The Inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. Plant Cell. 17: 13-24.
    27. Miki D., Itoh R., Shimamoto K. 2005. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138:1903-1913.
    28. Miki D., Shimamoto K. 2004. Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol. 45: 490-495.
    29. Nakai K., Kanehisa M. 1991. Expert system for predicting protein localization sites in gram-negative bacteria. Proteins. 11: 95-110.
    30. Ni J., Clark SE. 2006. Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain. Plant Physiol. 140: 726-33.
    31. Nonomura K., Miyoshi K., Eiguchi M., Tadzunu S., Akio M., Hirohiko H., and Nori K. 2003, The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell. 15: 1728-1739.
    32. Page RMD. 1996. TreeView: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4): 357-358.
    33. Petsalaki EI,, Bagos PG., Litou ZI., et al., 2006. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization. Genomics Proteomics Bioinformatics. 4: 48-55.
    34. Raghavan V. 1988. Anther and pollen development in rice (Oryza sativa). Am J Bot. 75(2):183-196.
    35. Sheridan WF., Avalkina NA., Shamrov I., Batygina TB., and Golubovskaya IN. 1996. The macl gene: controlling the commitment to the meiotic pathway in maize. Genetics. 142: 1009-1020.
    36. Sheridan WF., Golubeva EA., Abrhamova LI., Golubovskaya IN. 1999. The macl mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics. 153: 933-941.
    37. Tang W., Ezcurra I., Muschetti J., McCormick S. 2002. A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell. 14: 2277-2287.
    38. Toki S. 1997. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep. 15: 16-21.
    39. Tucker MR., Araujo AC., Paech NA., Hecht V., Schmidt ED., Rossell JB., De Vries SC., Koltunow AM. 2003. Sexual and apomictic reproduction in Hieracium subgenus pilosella are closely interrelated developmental pathways. Plant Cell. 15:1524-37.
    40. Virmani SS. 1994. Heterosis and Hybrid Rice Breeding. Springer Verlag, Berlin: 189.
    41. Virmani SS., Mao CX., Toledo RS., Hossain M., and Janiah A. 2002. Hybrid rice seed production technology and its impact on seed industries and rural employment opportunities in Asia. Technical Bulletin 156, Food and Fertilizer Technology Center, Taiwan, China.
    42. Waterhouse PM., Helliwell CA. 2003. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet. 4: 29-38.
    43. Yang SL., Jiang LX., Puah CS., Xie LF., Zhang XQ., Chen LQ., Yang WC., Ye D. 2005. Overexpression of TAPETUM DETERMINANTl alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with excess microsporocytesl/extra sporogenous cells. Plant Physiol. 139:186-191.
    44. Zhao DZ., Wang GF., Speal B., and Ma H. 2002. The excess microsporocytesl gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev. 16: 2021-2031.
    1. Blum H., Beier H., Gross H J. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels, Electrophoresis. 8: 93-99.
    2. Bradford, MM. 1976. A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.
    3. Doyle JJ., Kanazin V., Shoemaker RC. 1996. Phylogenetic utility of histone H3 intron sequences in the perennial relatives of soybean (Glycine: Leguminosae). Molecular Phylogenetics and Evolution. 6: 438-447.
    4. Feng Q., Zhang Y., Hao P., Wang S., Fu G., Huang Y., Li Y., Zhu J., Liu Y., Hu X., Jia P., Zhang Y., Zhao Q., Ying K., Yu S., Tang Y., Weng Q., Zhang L., Lu Y., Mu J., Lu Y., Zhang LS., Yu Z., Fan D., Liu X., Lu T., Li C., Wu Y., Sun T., Lei H., Li T., Hu H., Guan J., Wu M., Zhang R., Zhou B., Chen Z., Chen L., Jin Z., Wang R., Yin H., Cai Z., Ren S., Lv G., Gu W., Zhu G., Tu Y., Jia J., Zhang Y., Chen J., Kang H., Chert X., Shao C., Sun Y., Hu Q., Zhang X., Zhang W., Wang L., Ding C., Sheng H., Gu J., Chen S., Ni L., Zhu F., Chen W., Lan L., Lai Y., Cheng Z., Gu M., Jiang J., Li J., Hong G., Xue Y., Han B. 2002. Sequence and analysis of rice chromosome4. Nature. 420:316-320.
    5. Gaut BS. 1996. Evolution in the Genus Zea: Lessons from Studies of Nucleotide Polymorphism. Plant Species Biology. 1(1): 1-11.
    6. Ge S., Sang T., Lu BR., and Hong DY. 1999. Phylogeny of rice genomes with emphasis on origins of allotetrapioid species. 96(25): 14400-14405.
    7. Jeong S., Trotochaud AE., Clark SE. 1999. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell. 11: 1925-1934.
    8. Kobe B., Deisenhofer J. 1994. The leucine-rich repeat: a versatile binding motif.
    9. Komatsu S., Abbasi F., Kobori E., Fujisawa Y., KatoH., lwasaki Y. 2005. Proteomic analysis of rice embryo: an approach for investigating Galpha protein-regulated proteins. Proteomics.5(15): 3932-3941
    10. Kwak SH., Ronglai S., John S. 2005. Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science. 307:1111-1113.
    11. Neuhoff V., Arold N., Taube D. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Eiectrophoresis. 9: 255-262.
    12. Nonomura K., Miyoshi K., Eiguchi M., Tadzunu S., Akio M., Hirohiko H., and Nori K. 2003. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell. 15: 1728-1739.
    13. O'Farrell PH. 1975. High-resolution two-dimensional electrophoresis of proteins.J Biol Chem. 250: 4007-4021.
    14. Small RL., Ryburn JA., Cronn RC., Seelanan T., and Wendel JF. 1998. The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. American Journal of Botany. 85: 1301-1315.
    15. Tsunezuka H., Fujiwara M., Kawasaki T., Shimamoto K. 2005. Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mol Plant Microbe Interact. 18(1):52-59.
    16. Wendel JF., Albert VA.1992.Phylogenetics of the cotton genus (GossypiumL.): character-state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications. Syst. Bot. 17(1): 115-143.
    1. Bartel B. , Fink GR. 1994. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis tha[iana. Proc Natl Acad Sci U S A. 91: 6649-6653.
    2. Bartling D. , Seedorf M. , Mithofer A. , Weiler EW. 1992. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. European Journal of Biochemistry. 205: 417-424.
    3. Bartling D., SeedorfM., Schmidt R C., Weiler EW. 1994. Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc Natl Acad Sci U S A. 91:6021-6025.
    4. Bhalerao RP., Eklof J., Ljung K., Marchant A., Bennett M., and Sandberg G. 2002. Shoot derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J. 29: 325-332.
    5. Dohmoto M., Sano J., Tsunoda H., Yamaguchi K. 1999. Structural analysis of the TNIT4 genes encoding nitrilase-like protein from tobacco. DNA Research. 6:313-317.
    6. Dohmoto M., Tsunoda H., Isaji G., Yamaguchi K. 2000. Genes encoding nitrilase-like proteins from tobacco. DNA Research. 7: 283-289.
    7. Gallois JL., Nora FR., Mizukami Y., Sablowski R. 2004. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. GENES &DEVELOPMENT. 18:375-380.
    8. Green PJ., Kay SA., Chua NH. 1987. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J. 6: 2543-2549.
    9. Hillebrand H., Bartling D., Weiler EW. 1998. Structural analysis of the NIT2/NIT1/NIT3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol Biol. 36: 89-99.
    10. Klee H., Estelle M. 1991. Molecular genetic approaches to plant hormone biology. Annu Rev Plant Physiol &Plant Mol Biol. 42: 529-551.
    11. Kutz A., Muller A., Henning P., Kaiser WM., Piotrowski M., Weiler EW. 2002. A role for nitrilase3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J. 30(1): 95-106.
    12. Ljung K., Hull AK., Celenza J., Yamada M., Estelle M., Normanly J., Goran S. 2005. Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell. 17: 1090-1104.
    13. Nonomura K., Miyoshi K., Eiguchi M., Tadzunu S., Akio M., Hirohiko H., and Nori K. 2003. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. The Plant Cell. 15: 1728-1739.
    14. Park WJ., Kriechbaumer V., Muller A., Piotrowski M., Meeley RB., Gierl A., Glawischnig E. 2003. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiology. 133: 794-802.
    15. Piotrowski M., Schonfelder S., Weiler EW. 2001. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-Cyano-L-alanine hydratase/nitrilase. The Journal of Biological Chemistry. 276(4): 2616-2621.
    16. Thimann KV., Mahadevan S. 1964. NitrilaseI occurrence, preparation, and general properties of the enzyme. Arch Biochem Biophys. 105: 133-141.
    17. Vorwerk S., Biernacki S., Hillebrand H., Janzik I., Muller A., Weiler EW., Piotrowski M. 2001. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3 gene cluster. Planta. 212:508-516.
    18. Wang BB., Brendel V. 2006. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci U S A. 103(18):7175-7180.
    19. Yang HQ., Wei ZM., Xu ZH. 1997. Expression of indoleacetic acid-lysine synthetase gene in tapetum of tobacco affects pollen embryogenesis. Science China. 27: 320-326.