S-腺苷甲硫氨酸高产菌株的选育与发酵工艺的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
S腺苷甲硫氨酸(简称SAM),是生物体内重要的中间代谢体,具有转甲基、转硫、转氨丙基等作用,是半胱氨酸、牛磺酸、谷光甘肽、辅酶A等重要物质的前体。能治疗神经紊乱、精神抑郁、关节炎等多种疾病,有着巨大的国际市场需求。
     本文对SAM产生菌进行了选育并开展发酵工艺研究,结果如下:
     通过对S-腺苷甲硫氨酸生产菌Saccharomyces cerevisiae B9菌株进行分离复壮,获得一株遗传性能较为稳定的菌株SAM-39~#(1.765g/L),以SAM-39~#为出发菌株进行诱变育种,最后获得比出发菌株SAM-39~#产量高69.89%的诱变株YZ-33,其SAM含量为3.001g/L,而紫外诱变、原生质体再生育种方法提高产量的效果不明显。通过比较发现:紫外线-氯化锂复合诱变和原生质体紫外复合诱变对SAM生产菌的诱变效果较好。
     以高产稳定的诱变株YZ-33为出发菌株,通过测定生长曲线,探索蜗牛酶的酶解浓度、时间、温度等因素对原生质体形成的影响,确定了制备原生质体的最佳条件为:种子液培养16h,0.1%β-巯基乙醇预处理10min,酶解浓度2.5%,酶解时间150min,用0.5mol/L的蔗糖作为渗稳剂。
     针对YZ-33菌株在不改变原有培养基组成成分的基础上,对其各组成成分进行了正交实验,找到最佳配比。得出最佳培养基配方为:蔗糖12%、氯化铵0.8%,酵母粉0.8%,硫酸镁0.005%,L-甲硫氨酸1.2%,磷酸二氢钾0.4%,磷酸氢二钾0.2%。另外,对菌株YZ-33摇瓶发酵过程中的pH值、生物量、SAM含量、蔗糖含量、NH_4~+等代谢参数进行测定,为SAM发酵工艺的建立提供了参考。
     还对补料工艺做了初步的研究,确定了补料工艺与最适宜补料方式。初步补料工艺为:L-Met补料终浓度0.8%,补料起始时间24h,蔗糖补料终浓度10%,补料时间48h;最适宜补料方式为:在24h加入0.6%L-Met、3%蔗糖,在48h按0.2%补加L-Met,蔗糖在48h和72h分别按2.5%补给。在此种补料条件下SAM的产量达到4.041g/L。
S-adenosyl-L-methionine(s-adenosyl-L-methionine,as SAM),is important in the middle of metabolic body,has to methyl,to sulfur,such as to aminopropyl, homocysteine is,Taurine,Gu Gan-peptide,coenzyme A,and other important precursor substances.To treat nervous disorders,depression,arthritis and other diseases,has a huge demand on the international market.
     SAM of this paper have carried out a fermentation process of breeding and research results are as follows:
     Through the production of S-adenosylmethionine strains of Saccharomyces cerevisiaeB9 to separate Rejuvenation,access to a relatively stable genetic strains of SAM-39~#(1.765g/L),SAM-39~# as the starting to strain mutation Breeding, finally starting strain than the SAM-39~# high yield 69.89 percent of the mutation of YZ-33,its SAM content 3.001g/L,and UV-induced,protoplast renewable breeding methods to raise production ineffective.By comparison found: ultraviolet-lithium chloride compound and protoplast UV-induced mutation of the SAM production of the mutagenic effects better.
     High-yield stability to the mutation of YZ-33 as the starting strain,through the determination of the growth curve,and explore a snail's pace of the enzyme concentration,time,temperature and other factors on the formation of protoplasts,identified protoplast of the best conditions are as follows:seeds of training 16 hours,0.1%β-mercaptoethanol pretreatment 10 min,enzyme concentration of 2.5 percent,hydrolysis time 150 min,with 0.5 mol/L sucrose as the infiltration of stability.
     YZ-33 against the strain does not change the original composition of the medium on the basis of its various components of a orthogonal experiment,to fred the best ratio.That the best medium for the formula:12 percent sugar,ammonium chloride 0.8%,0.8%yeast powder,magnesium sulfate 0.005%,L-methionine 1.2%,0.4%potassium dihydrogen phosphate,hydrogen phosphate 2 Potassium 0.2 percent.In addition,the YZ-33 on the fermentation process of pH,biomass,SAM content,sugar content,NH_4~+,and other metabolic parameters were measured for the fermentation process of the establishment of SAM to provide a reference.
     Also,on the feeding process done a preliminary study to determine the feeding process and the most appropriate feeding methods.Initial feeding process is:L-Met-batch final concentration of 0.8 percent,the ted-start time 24h,the final concentration of sucrose feeding 10 percent,fed-time 48h;most appropriate way for the feeding:24h adding 0.6% L-met,3%sucrose,in 48h by 0.2 percent-plus L-Met,sucrose in 48h and 72h respectively by 2.5 percent recharge.In such conditions SAM-batch production totaled 4.041g/L.
引文
1.项昱红,莫晓燕,詹谷宇.S-腺苷甲硫氨酸的制备与药理[J].西北药学杂志,1999(1):38-39
    2.杨静,王昊,韦平和.S-腺苷蛋氨酸的临床及药理研究进展[J].药学进展,2001(3):164-167
    3.孔健,马桂荣,等.酵母菌高产蛋氨酸机理的研究[J].微生物学通,1992(2):217-219
    4.罗贇星,赵辅昆,罗贵民,等.S-腺苷甲硫氨酸的细胞生物化学功能及其开发应用研究[J].工业微生物,2006(1):54-59
    5.王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002
    6.余志良,杨静,蔡谨,等.S-腺苷甲硫氨酸研究进展[J].中国医药工业杂志,2003(1):49-52
    7.陈小龙.生物合成腺苷蛋氨酸.[硕士论文].杭州:浙江工业大学,2005
    8.景沛.腺苷甲硫氨酸[J].生命的化学,1995(2):49-50
    9.陶敏,干信.S-腺苷甲硫氨酸的研究现状及应用前景[J].氨基酸和生物资源,2005(3):49-51
    10.薄海波.蔗糖和还原糖测定方法的探讨[J].现代商检科技,1999(1):52-54
    11.沈萍.微生物学[M].北京:高等教育出版社,2000,231-232
    12.杜连祥.工业微生物学实验技术[M].天津:天津科学技术出版社,1992
    13.郭世宜等.酿酒酵母超微结构观察方法的研究[J].南开大学学报,1994(1):101-103
    14.王明兹,施巧琴,周晓兰,等.提高酵母菌原生质体制备与再生的方法研究[J].微生物学杂志,2005(3):10-13
    15.陈春涛,王岁楼,等.产类胡萝卜素酵母菌原生质体的制备、再生与诱变[J].生物技术,2002(12):23-25
    16.李用芳.面包酵母原生质体的制备,再生及紫外诱变的初步研究[J].生物技术,2000(2):23-27
    17.张伟.原生质体紫外诱变筛选还原双乙酰能力强的啤酒酵母[J].酿酒,2003(3):63-64
    18.马燕,黄敏,等.L-甲硫氨酸高产菌株的紫外线诱变育种[J].四川大学报,2004(4): 10-13
    19.高玉荣,李大鹏.利用原生质体诱变育种选育富硒能力强的酵母菌株[J].微生物学通报2005(2):10-14
    20.马晓燕,郑辉,李英军,等.紫外诱变原生质体选育发酵乳清高产酒精的克鲁维酵母[J].酿酒科技,2006(8):37-39
    21.张玉臻,孔键,马桂荣.丝孢酵母高产蛋氨酸突变株的选育及营养调控[J].微生物学通报,1996(4):256-262
    22.贾学杰,王雅琴,李亮.复合诱变和抗性筛选高产谷胱甘肽酵母菌株[J].中国医药工业杂志,2005(10),604-607
    23.何俊勇,裘娟萍,黄敏,等.高产谷胱甘肽新菌种的选育及其发酵条件的研究[J].工业微生物,2005(3):31-35
    24.胡林华,谭天伟.高产谷苷甘肽酵母菌株的选育和培养条件的初探[J].高校化学工程学报,2005(2):273-276
    25.申丽,余志良,姜涌明,等.重组Pichia pastoris的发酵条件初步研究[J].中国医药工业杂志,2004(2):73-74
    26.刘沛溢,王杰鹏,谭天伟.代谢过程中相关氨基酸对高密度发酵生产腺苷蛋氨酸的影响[J].生物加工过程,2007(5):48-50
    27.邓娟娟.利用毕赤酵母生产S-腺苷甲硫氨酸工艺的研究.[硕士论文].华中农业大学,2006
    28.刘惠林建平,吴坚平等.酿酒酵母生物转化蛋氨酸生产S-腺苷-L-蛋氨酸[J].化学反应工程与工艺,2002(4):310-314
    29.刘惠,林建平,吴坚平,等.酵母生物合成S-腺苷-L-蛋氨酸的动力学研究[J].高校化学工程学报,2004(7):168-173
    30.陈小龙,王远山,郑裕国,等.腺苷蛋氨酸发酵条件及发酵培养基的优化[J].中国生物工程杂志,2004(11):65-69
    31.张昀翌,李元广,金建,等.SAM产生菌酿酒酵母HYS98发酵动力学及比生长速率控制策略[J].过程工程学报,2005(3):322-326
    32.董函竹,刘沛溢,谭天伟.发酵生产S-腺苷-L-蛋氨酸培养条件的优化研究[J].微生物学通报,2006(1):110-113
    33.刘沛溢,董函竹,谭天伟.补加前体L-蛋氨酸对高密度发酵生产S-腺苷-L-蛋氨酸 的影响[J].生物工程学报,2006(2):268-272
    34.张建国.发酵重组pichia pastoris生产腺苷甲硫氨酸的研究.[硕士论文].沈阳农业大学,2004
    35.张昀翌.S-腺苷甲硫氨酸发酵工艺优化及中试放大研究.[硕士论文].华东理工大学,2004
    36.薛学东.S-腺苷甲硫氨酸的发酵和分离提取工艺优化研究.[硕士论文].华中农业大学,2006
    37.陈小龙,王远山,郑裕国.腺苷蛋氨酸发酵条件及发酵培养基的优化[J].中国生物工程杂志,2004(11):65-69
    38.郭美锦,吴康华.基因工程菌Pichia pastoris高密度培养条件研究[J].微生物学通报,2001(3):6-11
    39.李东阳,于健,田露,等.利用重组Pichia pastoris生产腺苷甲硫氨酸[J].生物工程学报,2002(3):36-39
    40.Berna,S L,Santambrogio G,et al.Process for the preparation of pharmaceutically acceptable salts of(SS.RS)-S-adenosyl-L-methionine[P].2002,21-24
    41.Schlenk F,Zydek C R,Ehninger D J,et al.The productionof S-adenosvl-L-methionine and S-adenosvl-L-ethionineby yeast[J].Enzymologia,1986,29:283-298.
    42.Osman E,Ow en JS,BurroughsA K.Review article:S -adeno syl-L 2m ethionine- a new therapeutic agent in liver diease[J].A linent Pharm acolTher,1993,21-28
    43.Otero-Losado ME,Rubio MC.Acute changes in 5HT metabolism after S-adenosylmethionine administration.Gen Pharmacol 1989,20:3-6
    44.Curcio M,Catto E,Stramentinoli G,Algeri S.Effect of SAMe on 5HT metabolism in rat brain.Prog Neuropsychopharmacol 1978,2:65-71.
    45.Otero - Losada ME,Rubio MC.Acute effects of S -adenosylmethionine on catecholaminergic central function[J].Eur J Pharmaco1,1990,163:353 - 360.
    46.Cimino M,Vantini G,Algeri S,Curala G,Pezzoli C,Stramentinoli G.Age-related modification of dopaminergic and beta-adrenergic receptor system:restoration,to normal activity by modifying membrane fluidity with S-adenosylmethionine.Life Sci 1984,34:29-39
    47.Muccioli G,Scordamaglia A,Bertacco S,Di Carlo R.Effect of S-adenosyl-L-methionine on brain muscarinic receptors.Eur J Pharmacol 1992,293-295
    48. Galan AI, Munoz M E, Jimenez R. S-adenosylmethionine protects against CyclosporinA-inducde alterations in rat liver plasm membrane fluidity and functions[J].J Pharmacology and ExperimentalTherapeutics ,1999,9:774-780
    49. Morrison LD,Smith DD, Kish SJ.Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease.J Neurochem 1996,67:28-31
    50. Schlenk F,Dainko JL.The alkaline hydrolysis of S-adenosylmethionine in tritiated water[J]. Biochem Biophys Res Commun,1962,8 (1):24
    51. Nitsch RM,Blusztajn JK,Pittas AG,Slack BE,Growdon JH,Wurtman RJ.Evidence for a membrane defect in Alzheimer disease brain.Proc Natl Acad Sci USA 1992,89:71-75
    52. Cuenod CA,Kaplan DB,Michot JL,et al.Phospholipid abnormalities in early Alzheimer's disease.In vivo phosphorus 31 magnetic resonance spectroscopy.Arch Neurol 1995,52:89-94
    53. Vetter G.Double blind comparative clinical trial with S-adenosylmethionine and indom ethacin in the treatm ent of o steoarthritis[J]. Am JM ed, 1987,83
    54. Fazio C,Andreoli V,Agnoli A,Casacchia M,Cerbo R.Therapeutic effects and mechanism of action of S-adenosyl-L-methionine (SAM) in depressive syndromes[J]. Minerva Med 1995,(4):15-19
    55. Janicak PG,Lipinski JD,Comaty JE,et al.S-Adenosylmethionine:a literature review and preliminary report.Ala J Med Sci 1988,(5):30-36
    56. Friedel HA, Goa KL, Benfield P.S-Adenosyl-L-methionine:a review of its therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism[p].Drugs 1989,(38):389-395
    57. Bressa . GM.S-Adenosyl-L-methionine(SAMe) as antidepressant: meta-analysis of clinical studies. Acta Neurol Scand 1994, (15):7-14
    58. Brown R,Gerbarg P,Bottiglieri T.S-Adenosylmethionine in the clinical practice of psychiatry,neurology and internal medicine.Clin Pract Intern Med 2000,(1):23-41
    59. Berna M,Siviefi L,Santambrogio G,el al . Process for the preparation of pharmaceutically acceptable salts of(SS. RS)-S-adenosyl-L-methionine[P], 002,21-24
    60. ShozoS,Sakaytt S,Hideaki Y.Prddttction of S-adenosyl-L-inethionine by Saccharomyces sake[J]. JBiotechnol,1986,(6) :345
    61. Martinov,Michael V,Vitvitsky et al.A substrate switch:A newmode of regulation in the methionine metabolic pathway.JTheoretical Biology,2000,20(4):52-53
    62.Darwish D,Tourigny G.The racemization of Butylethylmethyl sulfonium perchlorate[J].J Am Chem Soc,1966,88(18):4303
    63.Hoffman JL.Chromatographic Analysis of the Chiral and Covalent Instability of S-adenosyl-L-methionine[J].Biochemistry,1986,25(15):44
    64.Borchardt RT.Mechanismof Alkaline Hydrolysis of S-adenosyl-L-methionine and Related Sulfonium Nucleosides[J].J Am Chem Soc,1999,10(2):458
    65.Schlenk F,Zydek C R,EhningerD J,et al.Enzymologia,1985,29:283-289