太行山南段低丘区不同土地利用方式土壤碳通量组成及其影响机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为揭示太行山南段森林群落土壤碳组成及其影响因子的变化特征,以加深对森林生态系统碳输入与输出过程的理解。本研究以太行山南段低丘区农田、农田撂荒地、10年刺槐人工林和43年刺槐人工林为研究对象,采用土壤呼吸自动观测系统,结合壕沟法和同位素法区分土壤呼吸组分,进而探讨不同林龄刺槐人工林土壤呼吸及其组分的动态特征及其环境影响机制,主要结论如下:
     (1)采用土壤质量综合指数对不同土地利用方式土壤质量进行了综合评价,探讨不同土地利用方式对土壤质量的影响。结果表明:随着林龄的增加,刺槐人工林土壤养分的表层富集作用显著,且0-5cm土层土壤改良效果增强;与农田相比,刺槐人工林的土壤物理性状得到改善,养分含量增加,土壤微生物生物量显著提高。不同土地利用方式土壤质量综合指数为43年刺槐林(0.542)>10年刺槐林(0.536)>撂荒地(0.499)>农田(0.498),说明人工造林改善了太行山南段低丘山区的土壤质量。
     (2)基于LI-8150多通道土壤呼吸自动观测系统的实测数据,对太行山南段刺槐人工林土壤呼吸测定代表性时间进行研究,探讨不同月份土壤呼吸的代表性时刻,并分析土壤呼吸代表性时刻测定值与日均值间偏差大小。结果表明,刺槐人工林的土壤呼吸日变化和季节变化与5cm土壤温度(Ts)的变化格局均趋于一致。各月土壤温度在6-8点达到日最低值,14-16点达到日最高值。除1月土壤体积含水量(W)最低值为18.32%外,其他各月W均在20%以上。刺槐人工林土壤呼吸月均值季节变化呈单峰趋势,在7月最大,1月最低。刺槐人工林在6月-11月8:00-10:00、12月-5月9:00-11:00土壤呼吸测定均值与日均值间的绝对偏差分别为1.27%和4.91%,且土壤呼吸代表时段均值与24h土壤呼吸日均值相对差异均在±10%以内。全年测定期内各月代表性时刻的土壤呼吸测定值与24h日均值呈极显著正相关。因此6月-11月8:00-10:00、12月-5月9:00-11:00土壤呼吸测定均值可作为本研究区刺槐人工林土壤呼吸测定的最佳代表时段。
     (3)本研究利用13C的自然丰度法来区分土壤呼吸各组分结果发现,土壤CO2气体δ13C随土层梯度减小,植被根系和土壤有机质δ13C则变化不明显。比较埋置管道土壤CO2气体δ13C值与利用GVP(Gas Vapor Probe Kits)50cm土层CO2气体δ13C值,得出本研究区土壤CO2气体50cm土层的δ13C同位素分馏系数为2.03‰。随着土层深度的增加,自养呼吸对土壤总呼吸的贡献率(fRA)逐渐增大。而异养呼吸对土壤总呼吸的贡献率(fRh)随着土层增加逐渐减小。关于壕沟法和同位素法测定自养呼吸贡献率的差异比较可知,壕沟法fRA(23.50%)与埋置管道稳定同位素法fRA(21.03%)差异不显著。
     (4)基于气体红外分析技术,以农田、撂荒地为对照,分析43年和10年刺槐人工林土壤呼吸速率的季节变化及其环境影响机制,结果表明:人工造林恢复措施的实施显著的提高了土壤固碳能力。43年和10年刺槐人工林0-5cm土层的土壤有机质含量分别是农田的3.9倍和1.6倍。43年、10年刺槐人工林、撂荒地和农田的全年土壤呼吸平均速率分别为2.33、1.21、2.40、2.04μmol·m-2·s-1,其中撂荒地的全年土壤呼吸平均速率最大,43年刺槐林的全年土壤呼吸平均速率大于10年刺槐林。研究区内四种土地利用方式土壤呼吸速率主要受土壤温度(5cm)的影响。43年刺槐林、10年刺槐林、撂荒地及农田的土壤呼吸温度敏感系数Q10分别为2.47、2.53、2.06、1.56,其中刺槐林的Q10均显著高于农田。四种土地利用方式Q10值均存在显著的季节变异,其主要受温度影响。
     (5)利用壕沟法来区分太行山南段不同林龄刺槐人工林土壤自养呼吸和异养呼吸,结果表明:刺槐人工林土壤呼吸及其组分均呈明显的季节变化,表现为夏季高、冬季低的格局;10年和43年刺槐林土壤总呼吸月均值均显著高于自养呼吸,与异养呼吸无显著差异。
     土壤呼吸及其组分与5cm土壤温度之间均呈极显著指数相关;与自养呼吸相比,刺槐人工林异养呼吸更易受土壤温度变化的影响,且5cm土壤温度(Ts)分别解释R10和R43的组分RH和RA的77.82%和38.6%,77.87%和43.43%;刺槐人工林土壤呼吸及其组分与土壤体积含水量均呈极显著相关,0-10cm土壤体积含水量(W)分别解释R10和R43的组分RH和RA的25.54%和10.6%,31.72%和11.55%;R10的Rs、RH与ECp、R43的Rs、RA与ECp间呈极显著相关,但0-10cm土壤电导率(ECp)与各呼吸速率的拟合决定系数均较低。与Ts及W相比,ECp不是土壤呼吸的主要控制因子。
     不同林龄刺槐土壤呼吸及其组分的Q10季节变化与土壤温度变化相反;刺槐林在生长季(5月-7月)内土壤呼吸及其组分的Q10值大小排序均为RH>Rs>RA。10年刺槐在温度较高的生长季内的总呼吸和自养呼吸的温度敏感性变异要大于43年刺槐,而在温度较低的非生长季则出现相反的现象。不同林龄刺槐的自养呼吸对土壤总呼吸的贡献率(RC)呈明显季节变化。刺槐林各月份RC值均无显著差异;在本研究中10年和43年刺槐自养呼吸和异养呼吸的年通量对土壤总呼吸年通量的贡献率分别为25.14%和90.69%、30.84%和70.26%,异养呼吸年通量在不同林龄刺槐林土壤总呼吸的年通量中所占的比重较高。
In order to assess the components and influence mechanism of soil carbon flux, andunderstand the carbon input and output of forest communities in southern Taihang Mountains,China, it is necessary to analyse the carbon budget of studied forest communities. In this study,the automatic observation system of soil respiration combined with trenched and stableisotopic method were employed to distinguish the components of soil respiration. Four landuse types, including of cropland (CL), abandoned cropland (AL),10-year-old (R10) and43-year-old Robinia pseudoacacia L. plantations (R43) were measured in southern TaihangMountains, China. The dynamic characteristics of soil respiration rate (Rs) and itssubcomponents, and the effects of environmental factors on the soil respiration wereinvestigated. The main conclusions are as following:
     (1) In order to obtain influences of different land use types on soil quality, soil qualityindex was employed to compare differences of soil quality among various ages of R.pseudoacacia plantations. The results showed that the nutrient of topsoil increased significantlywith the increase of tree ages. Soil properties were improved with the tree age increasing,especially at the soil layer of0-5cm. In the two R. pseudoacacia plantations (R10and R43), soilphysical and chemical properties were improved and the soil microbial biomass C and N wereincreased significantly compared with the abandoned cropland and the cropland. The soilquality index of43-year-old R. pseudoacacia plantation was0.542, larger than the10-year-oldR. pseudoacacia plantation (0.536), the abandoned cropland (0.499) and the cropland (0.498).The results indicated that the soil quality was improved during the conversion from cropland toforestland.
     (2) Based on the measured data by LI-8150, the proper measuring times to represent dailyRsof43-year-old R. pseudoacacia plantation were analysed in southern Taihang Mountains.The results showed that the diurnal and seasonal variation of soil respiration was almost consistent with that of soil temperature at5cm depth (Ts) in R. pseudoacacia plantation. Ingeneral, soil temperature reached its lowest value at6:00-8:00and achieved the highest valueat14:00-16:00. Except for the minimum soil volumetric water content (18.32%) at0-10cmdepth (W) in January, the values of W were larger than20%in other months. During themeasurement period, monthly averages of soil respiration reached its peak in July anddecreased to the minimum in January gradually. The relative deviations between daily averagevalues and values measured at8:00-10:00from July to November or at9:00-11:00fromDecember to May were1.27%and4.91%, respectively. Comparing with the daily averagevalues, the relative errors of measured soil respiration rate during representative times werewithin±10%. In this study, the representative times for measuring soil respiration of R.pseudoacacia plantation during the measurement period were8:00-10:00from July toNovember and9:00-11:00from December to May.
     (3) The measurement of the13C value of soil CO2were used to separate total soilrespiration into subcomponents of RAand RHin R10and R43, and the calculated RC wasemployed to compared to the trenched approach. The results demonstrated that the13C value ofsoil CO2decreased with soil depths, while the δ13C of root and soil organic matter did notchange significantly with soil depths. A preliminary test was performed to compare the δ13C ofsoil CO2extracted from buried steel tubes and from GVP (Gas Vapor Probe Kits) at50cm soildepth. It is concluded that the isotopic fractionation parameter of the δ13C of soil CO2at50cmsoil depth in plantation was about2.03‰. Data analysis indicated that the contribution ofautotrophic respiration on total soil respiration (fRA) increased gradually with soil depths, whilethe contribution of heterotrophic respiration on total soil respiration (fRH) decreasing with soildepths. Analysis on contribution of autotrophic respiration on total soil respiration (fRA) withtrenched method and stable isotopic method showed that the difference between fRAestimatedby trenched-plot method (23.50%) and isotopic method (21.03%) was not significantly.
     (4) Seasonal variations and influence mechanisms of soil respiration rate (Rs) under43-year-old and10-year-old R. pseudoacacia plantations, abandoned land, and cropland were studied at southern Taihang Mountains. The results showed that sequestration capacity of soilorganic carbon was improved in two plantations significantly. At0-5cm depth, for example,soil organic matter of43-year-old and10-year-old R. pseudoacacia plantations were3.9and1.6times of cropland, respectively. For43-year-old and10-year-old R. pseudoacaciaplantations, abandoned land, and cropland, measured annual soil respiration rates were2.33,1.21,2.40, and2.04μmol·m-2·s-1, respectively. The abandoned land had the largest annual Rs,and the annual Rsof43-year-old R. pseudoacacia plantation was larger than that of10-year-oldR. pseudoacacia plantation. Statistical analysis indicated that soil temperature at5cm depthwas the dominant environmental factor affecting the seasonal variation of Rs. In this study,calculated temperature sensitivity of soil respiration (Q10) was2.47,2.53,2.06, and1.56for43-year-old and10-year-old R. pseudoacacia plantations, abandoned land, and cropland,respectively. In contrast to cropland, two plantations presented a larger temperature sensitivityof soil respiration. Moreover, significant seasonal variations of Q10under four land use typeswere observed, and soil temperature was the key factor affecting the temperature sensitivity ofsoil respiration.
     (5) The trenched method was used to distinguish the autotrophic respiration (RA) andheterotrophic respiration (RH) of10-year-old and43-year-old R. pseudoacacia plantations.Results showed that soil respiration and its components had obvious seasonal dynamics, andthe maximum rate occurred in the summer whereas the minimum occurring in winter. Monthlymean total soil respiration rate (Rs) of R10and R43was significantly higher than autotrophicrespiration rate. No significant difference was found between total soil respiration andheterotrophic respiration. There were significant exponential relationships between soilrespiration and its components in two R. pseudoacacia plantations and soil temperature at5cmdepth (P<0.01). Compared with autotrophic respiration, heterotrophic respiration was affectedmore with changes of soil temperature at5cm depths, which explained77.82%and77.87%ofRHand38.60%and43.43%of RAin R10and R43, respectively. Soil volumetric water content at0-10cm depth demonstrated a highly significant correlation with soil respiration and its components. The W could explain25.54%and31.72%of RHand10.6%and11.55%of RAinR10and R43. In addition, a significant linear relationship between Rsor RHin R10and soil porewater conductivity at0-10cm (ECp) was found. There were similar correlations between RsorRAand ECpin R43. Due to the lower determination coefficient (R2) between ECpand soilrespiration or its components, ECpwas not the major control factors influencing soil respiration.The seasonal trends of temperature sensitivities of soil respiration (Q10) and its components inR10and R43were opposite with that of soil temperature. Comparing with Rsor RA, RHwas moreaffected by soil temperature change during growing season (from May to July). Thetemperature sensitivity variations of Rsor RAin R10were greater than that in R43in growingseason with higher temperature, while the opposite trend was found at non-growing seasonwith lower temperature. The monthly root respiration contribution to total soil respiration (RC)in R10and R43also presented obvious seasonal variations. There was no significant differenceon monthly RC between R10and R43. The estimated contributions of annual autotrophic andheterotrophic CO2fluxes on annual total soil respiration were25.14%and90.69%on R10, and30.84%and70.26%on R43, respectively. In this study, calculated results showed that annualheterotrophic annual CO2flux generally accounted for a high proportion of total soilrespiration in studied region.
引文
Adachi M, Bekku YS, Konuma A, et al. Required sample size for estimating soil respiration rates in largeareas of two tropical forests and of two types of plantation in Malaysia. Forest Ecology andManagement,2005,210(1):455-459
    Adviento-Borbe M, Doran JW, Drijber RA, et al. Soil electrical conductivity and water content affect nitrousoxide and carbon dioxide emissions in intensively managed soils. Journal of environmental quality,2006,35(6):1999-2010
    Amundson R. The carbon budget in soils. Annual Review of Earth and Planetary Sciences,2001,29(1):535-562
    Amundson R, Stern L, Baisden T, et al. The isotopic composition of soil and soil-respired CO2. Geoderma,1998,82(1):83-114
    Amundson RG, Davidson EA. Carbon dioxide and nitrogenous gases in the soil atmosphere. Journal ofGeochemical Exploration,1990,38(1):13-41
    Andrews JA, Harrison KG, Matamala R, et al. Separation of root respiration from total soil respiration usingcarbon-13labeling during free-air carbon dioxide enrichment (FACE). Soil Science Society of AmericaJournal,1999,63(5):1429-1435
    Arrhenius S. The effect of constant influences upon physiological relationships. Scandinavian Archives ofPhysiology,1898,8:367-415
    Arshad MA, Coen GM. Characterization of soil quality: Physical and chemical criteria. American Journal ofAlternative Agriculture,1992,7(1-2):25-31
    B th E, Wallander H. Soil and rhizosphere microorganisms have the same Q10for respiration in a modelsystem. Global Change Biology,2003,9(12):1788-1791
    Baddeley JA, Watson CA. Influences of root diameter, tree age, soil depth and season on fine rootsurvivorship in Prunus avium. Plant and Soil,2005,276(1-2):15-22
    Baggs EM. Partitioning the components of soil respiration: a research challenge. Plant and Soil,2006,284(1-2):1-5
    Bajracharya RM, Lal R, Kimble JM. Diurnal and Seasonal CO2-C Flux from Soil as Related to ErosionPhases in Central Ohio. Soil Science Society of America Journal,2000,64(1):286-293
    Barbour MM, McDowell NG, Tcherkez G, et al. A new measurement technique reveals rapidpost-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant, Cell&Environment,2007,30(4):469-482
    Barlow J, Gardner TA, Araujo IS, et al. Quantifying the biodiversity value of tropical primary, secondary,and plantation forests. Proceedings of the National Academy of Sciences,2007,104(47):18555-18560
    Barlow J, Mestre LA, Gardner TA, et al. The value of primary, secondary and plantation forests forAmazonian birds. Biological Conservation,2007,136(2):212-231
    Behera N, Joshi SK, Pati DP. Root contribution to total soil metabolism in a tropical forest soil from Orissa,India. Forest Ecology and Management,1990,36(2):125-134
    Bekku YS, Nakatsubo T, Kume A, et al. Effect of warming on the temperature dependence of soilrespiration rate in arctic, temperate and tropical soils. Applied Soil Ecology,2003,22(3):205-210
    Bloom AJ, Sukrapanna SS, Warner RL. Root respiration associated with ammonium and nitrate absorptionand assimilation by barley. Plant Physiology,1992,99(4):1294-1301
    Boden TA, Marland G, Andres RJ. Global, regional, and national fossil-fuel CO2emissions. In: Oak Ridge,Tenn., USA: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S.Department of Energy,2010
    Bond Lamberty B, Wang C, Gower ST. A global relationship between the heterotrophic and autotrophiccomponents of soil respiration. Global Change Biology,2004,10(10):1756-1766
    Bond-Lamberty B, Wang C, Gower ST. Contribution of root respiration to soil surface CO2flux in a borealblack spruce chronosequence. Tree Physiology,2004,24(12):1387-1395
    Boone RD, Nadelhoffer KJ, Canary JD, et al. Roots exert a strong influence on the temperature sensitivity ofsoil respiration. Nature,1998,396(6711):570-572
    Borken W, Xu YJ, Brumme R, et al. A Climate Change Scenario for Carbon Dioxide and Dissolved OrganicCarbon Fluxes from a Temperate Forest Soil Drought and Rewetting Effects. Soil Science Society ofAmerica Journal,1999,63(6):1848-1855
    Borken W, Xu YJ, Davidson EA, et al. Site and temporal variation of soil respiration in European beech,Norway spruce, and Scots pine forests. Global Change Biology,2002,8(12):1205-1216
    Boudot JP, Hadj BA, Choné T. Carbon mineralization in Andosols and aluminium-rich highland soils. Soilbiology and biochemistry,1986,18(4):457-461
    Boussingault JB, Léwy B. Mémoire sur la composition de l'air confiné dans la terre végétale. Ann. Chen.Phys.,1853,375-50
    Bouwman AF, Leemans R. The role of forest soils in the global carbon cycle. In: Carbon forms andfunctions in forest soils. Soil Science Society of America,1995,503-525
    Bowden RD, Nadelhoffer KJ, Boone RD, et al. Contributions of aboveground litter, belowground litter, androot respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal ofForest Research,1993,23(7):1402-1407
    Bronson DR, Gower ST, Tanner M, et al. Response of soil surface CO2flux in a boreal forest to ecosystemwarming. Global Change Biology,2008,14(4):856-867
    Brumme R. Mechanisms of carbon and nutrient release and retention in beech forest gaps. Plant and Soil,1995,168(1):593-600
    Brumme R, Beese F. Effects of liming and nitrogen fertilization on emissions of CO2and N2O from atemperate forest. Journal of Geophysical Research: Atmospheres (1984-2012),1992,97(D12):12851-12858
    Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biologyand Biochemistry,2000,32(11):1625-1635
    Burton AJ, Pregitzer K, Ruess R, et al. Root respiration in North American forests: effects of nitrogenconcentration and temperature across biomes. Oecologia,2002,131(4):559-568
    Burton AJ, Pregitzer KS. Field measurements of root respiration indicate little to no seasonal temperatureacclimation for sugar maple and red pine. Tree physiology,2003,23(4):273-280
    Campbell JL, Sun OJ, Law BE. Supply-side controls on soil respiration among Oregon forests. GlobalChange Biology,2004,10(11):1857-1869
    Canadell JG, Raupach MR. Managing forests for climate change mitigation. science,2008,320(5882):1456-1457
    Carbone MS, Still CJ, Ambrose AR, et al. Seasonal and episodic moisture controls on plant and microbialcontributions to soil respiration. Oecologia,2011,167(1):265-278
    Carbone MS, Vargas R. Automated soil respiration measurements: new information, opportunities andchallenges. New Phytologist,2008,177(2):295-297
    Carlisle EA, Steenwerth KL, Smart DR. Effects of Land Use on Soil Respiration. Journal of environmentalquality,2006,35(4):1396-1404
    Carter MR, Gregorich EG, Anderson DW, et al. Concepts of soil quality and their significance. In:Gregorich EG, Carter MR (eds). Soil quality for crop production and ecosystem health. Amsterdam:Elsevier,1997,1-19
    Cerling TE. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earthand Planetary science letters,1984,71(2):229-240
    Cerling TE, Quade J. Carbon isotopes in modern soils. Encycl Earth System Sci,1992,1:423-429
    Cerling TE, Solomon DK, Quade J, et al. On the isotopic composition of carbon in soil carbon dioxide.Geochimica et Cosmochimica Acta,1991,55(11):3403-3405
    Chen Q, Wang Q, Han X, et al. Temporal and spatial variability and controls of soil respiration in atemperate steppe in northern China. Global Biogeochemical Cycles,2010,24(2):1-11
    Chen S, Huang Y, Zou J, et al. Modeling interannual variability of global soil respiration from climate andsoil properties. Agricultural and forest meteorology,2010,150(4):590-605
    Cheng W. Measurement of rhizosphere respiration and organic matter decomposition using natural13C.Plant and Soil,1996,183(2):263-268
    Cheng W, Coleman DC, Carroll R, et al. Investigating short-term carbon flows in the rhizospheres ofdifferent plant species, using isotopic trapping. Agronomy Journal,1994,86(5):782-788
    Coleman DC, Fry B. Carbon isotope techniques. Academic Press,1991
    Coleman DC, Hunter MD, Hutton J, et al. Soil respiration from four aggrading forested watershedsmeasured over a quarter century. Forest Ecology and Management,2002,157(1):247-253
    Cox PM, Betts RA, Jones CD, et al. Acceleration of global warming due to carbon-cycle feedbacks in acoupled climate model. Nature,2000,408(6809):184-187
    Crow SE, Wieder RK. Sources of CO2emission from a northern peatland: root respiration, exudation, anddecomposition. Ecology,2005,86(7):1825-1834
    Czimczik CI, Trumbore SE, Carbone MS, et al. Changing sources of soil respiration with time since fire in aboreal forest. Global Change Biology,2006,12(6):957-971
    Dale VH. The relationship between land-use change and climate change. Ecological applications,1997,7(3):753-769
    Dalias P, Anderson JM, Bottner P, et al. Temperature responses of carbon mineralization in conifer forestsoils from different regional climates incubated under standard laboratory conditions. Global ChangeBiology,2001,7(2):181-192
    Davidson E, Belk E, Boone RD. Soil water content and temperature as independent or confounded factorscontrolling soil respiration in a temperate mixed hardwood forest. Global change biology,1998,4(2):217-227
    Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climatechange. Nature,2006,440(7081):165-173
    Davidson EA, Janssens IA, Luo Y. On the variability of respiration in terrestrial ecosystems: moving beyondQ10. Global Change Biology,2006,12(2):154-164
    Davidson EA, Savage K, Bolstad P, et al. Belowground carbon allocation in forests estimated from litterfalland IRGA-based soil respiration measurements. Agricultural and Forest Meteorology,2002,113(1):39-51
    Davidson EA, Savage K, Verchot LV, et al. Minimizing artifacts and biases in chamber-based measurementsof soil respiration. Agricultural and Forest Meteorology,2002,113(1):21-37
    Davidson EA, Savage KE, Trumbore SE, et al. Vertical partitioning of CO2production within a temperateforest soil. Global Change Biology,2006,12(6):944-956
    Davidson EA, Verchot LV, Cattanio JH, et al. Effects of soil water content on soil respiration in forests andcattle pastures of eastern Amazonia. Biogeochemistry,2000,48(1):53-69
    Davidson EC, Belk E, Boone RD. SS-Soil water content and temperature as independent or confoundedfactors controlling soil respiration in a temperate mixed hardwood forest. Global change biology,2002,4(2):217-227
    De Deyn GB, Cornelissen JH, Bardgett RD. Plant functional traits and soil carbon sequestration incontrasting biomes. Ecology letters,2008,11(5):516-531
    Díaz-Pinés E, Schindlbacher A, Pfeffer M, et al. Root trenching: a useful tool to estimate autotrophic soilrespiration. A case study in an Austrian mountain forest. European journal of forest research,2010,129(1):101-109
    Dilly O, Munch J. Ratios between estimates of microbial biomass content and microbial activity in soils.Biology and Fertility of Soils,1998,27(4):374-379
    Dixon RK, Solomon AM, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190
    Doerr H, Münnich KO. Carbon-14and carbon-13in soil CO2. Radiocarbon,1980,22(3):909-918
    Doran JW, Parkin TB. Defining and assessing soil quality. SSSA special publication,1994,35(3):1-21
    Dornbush ME, Raich JW. Soil temperature, not aboveground plant productivity, best predicts intra-annualvariations of soil respiration in central Iowa grasslands. Ecosystems,2006,9(6):909-920
    D rr H, Münnich KO. Annual variation in soil respiration in selected areas of the temperate zone. Tellus B,1987,39(1-2):114-121
    Dugas WA. Micrometeorological and chamber measurements of CO2flux from bare soil. Agricultural andForest Meteorology,1993,67(1):115-128
    Dumanski J. Carbon sequestration, soil conservation, and the Kyoto Protocol: summary of implications.Climatic Change,2004,65(3):255-261
    Echeverría C, Coomes D, Salas J, et al. Rapid deforestation and fragmentation of Chilean temperate forests.Biological conservation,2006,130(4):481-494
    Edwards NT. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forestfloor. Soil Science Society of America Journal,1975,39(2):361-365
    Edwards NT. Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytologist,1991,118(2):315-321
    Edwards NT, Harris WF, Shugart HH. Carbon cycling in deciduous forest. The belowground ecosystem: asynthesis of plant-associated processes. Range Science Department Science Series,1977,(26):153-157
    Edwards NT, Sollins P. Continuous measurement of carbon dioxide evolution from partitioned forest floorcomponents. Ecology,1973,406-412
    Ekblad A, Bostr m B, Holm A, et al. Forest soil respiration rate and13C is regulated by recent above groundweather conditions. Oecologia,2005,143(1):136-142
    Elberling B. Seasonal trends of soil CO2dynamics in a soil subject to freezing. Journal of Hydrology,2003,276(1):159-175
    Eliasson PE, McMurtrie RE, Pepper DA, et al. The response of heterotrophic CO2flux to soil warming.Global Change Biology,2005,11(1):167-181
    Emmett BA, Beier C, Estiarte M, et al. The response of soil processes to climate change: results frommanipulation studies of shrublands across an environmental gradient. Ecosystems,2004,7(6):625-637
    Enting IG, Trudinger CM, Francey RJ. A synthesis inversion of the concentration and δ13C of atmosphericCO2. Tellus B,1995,47(1‐2):35-52
    Epron D, Farque L, Lucot E, et al. Soil CO2efflux in a beech forest: the contribution of root respiration.Annals of Forest Science,1999,56(4):289-295
    Epron D, Le Dantec V, Dufrene E, et al. Seasonal dynamics of soil carbon dioxide efflux and simulatedrhizosphere respiration in a beech forest. Tree Physiology,2001,21(2-3):145-152
    Epron D, Nouvellon Y, Roupsard O, et al. Spatial and temporal variations of soil respiration in a Eucalyptusplantation in Congo. Forest Ecology and Management,2004,202(1-3):149-160
    Etter A, McAlpine C, Pullar D, et al. Modeling the age of tropical moist forest fragments in heavily-clearedlowland landscapes of Colombia. Forest Ecology and Management,2005,208(1):249-260
    Ewel KC, Cropper. Jr WP, Gholz HL. Soil CO2evolution in Florida slash pine plantations. II. Importance ofroot respiration. Canadian Journal of Forest Research,1987,17(4):330-333
    Fang C, Moncrieff JB. The dependence of soil CO2efflux on temperature. Soil Biology and Biochemistry,2001,33(2):155-165
    Feng W, Zou X, Schaefer D. Above-and belowground carbon inputs affect seasonal variations of soilmicrobial biomass in a subtropical monsoon forest of southwest China. Soil Biology and Biochemistry,2009,41(5):978-983
    Friedlingstein P, Houghton RA, Marland G, et al. Update on CO2emissions. Nature Geoscience,2010,3(12):811-812
    Fu S, Cheng W. Rhizosphere priming effects on the decomposition of soil organic matter in C4and C3grassland soils. Plant and Soil,2002,238(2):289-294
    Gallardo A, Schlesinger WH. Factors limiting microbial biomass in the mineral soil and forest floor of awarm-temperate forest. Soil Biology and Biochemistry,1994,26(10):1409-1415
    G rden s AI. Soil respiration fluxes measured along a hydrological gradient in a Norway spruce stand insouth Sweden (Skogaby). Plant and Soil,2000,221(2):273-280
    Gaumont Guay D, Black TA, Mccaughey H, et al. Soil CO2efflux in contrasting boreal deciduous andconiferous stands and its contribution to the ecosystem carbon balance. Global change biology,2009,15(5):1302-1319
    Gaumont-Guay D, Black TA, Barr AG, et al. Biophysical controls on rhizospheric and heterotrophiccomponents of soil respiration in a boreal black spruce stand. Tree Physiology,2008,28(2):161-171
    Gloser J, Tesarova M. Litter, soil, and root respiration measurement. An improved compartmental analysismethod. Pedobiologia,1978,18:76-81
    Gough CM, Vogel CS, Harrold KH, et al. The legacy of harvest and fire on ecosystem carbon storage in anorth temperate forest. Global Change Biology,2007,13(9):1935-1949
    Goulden ML, Crill PM. Automated measurements of CO2exchange at the moss surface of a black spruceforest. Tree physiology,1997,17(8-9):537-542
    Grace J, Rayment M. Respiration in the balance. Nature,2000,404(6780):819-820
    Gregory PJ, Atwell BJ. The fate of carbon in pulse-labelled crops of barley and wheat. Plant and Soil,1991,136(2):205-213
    Grogan P, Chapin Iii FS. Arctic soil respiration: effects of climate and vegetation depend on season.Ecosystems,1999,2(5):451-459
    Gulledge J, Schimel JP. Controls on soil carbon dioxide and methane fluxes in a variety of taiga forest standsin interior Alaska. Ecosystems,2000,3(3):269-282
    Guo LB, Gifford RM. Soil carbon stocks and land use change: a meta analysis. Global change biology,2002,8(4):345-360
    Gupta SR, Singh JS. Soil respiration in a tropical grassland. Soil Biology and Biochemistry,1981,13(4):261-268
    Hanson PJ, Edwards NT, Garten CT, et al. Separating root and soil microbial contributions to soil respiration:a review of methods and observations. Biogeochemistry,2000,48(1):115-146
    Hanson PJ, Wullschleger SD, Bohlman SA, et al. Seasonal and topographic patterns of forest floor CO2efflux from an upland oak forest. Tree Physiology,1993,13(1):1-15
    Hartley IP, Heinemeyer A, Evans SP, et al. The effect of soil warming on bulk soil vs. rhizosphererespiration. Global Change Biology,2007,13(12):2654-2667
    Hashimoto S, Komatsu H. Relationships between soil CO2concentration and CO2production, temperature,water content, and gas diffusivity: implications for field studies through sensitivity analyses. Journal ofForest Research,2006,11(1):41-50
    Haynes BE, Gower ST. Belowground carbon allocation in unfertilized and fertilized red pine plantations innorthern Wisconsin. Tree Physiology,1995,15(5):317-325
    Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature,2008,451(7176):289-292
    Herrick JE. Soil quality: an indicator of sustainable land management. Applied Soil Ecology,2000,15(1):75-83
    Hirano T, Kim H, Tanaka Y. Long-term half-hourly measurement of soil CO2concentration and soilrespiration in a temperate deciduous forest. Journal of Geophysical Research-Atmospheres (1984-2012),2003,108(D20):4631
    Hirsch AI, Trumbore SE, Goulden ML. The surface CO2gradient and pore-space storage flux in ahigh-porosity litter layer. Tellus B,2004,56(4):312-321
    H gberg P, Nordgren A, gren GI. Carbon allocation between tree root growth and root respiration in borealpine forest. Oecologia,2002,132(4):579-581
    H gberg P, Nordgren A, Buchmann N, et al. Large-scale forest girdling shows that current photosynthesisdrives soil respiration. Nature,2001,411(6839):789-792
    H gberg P, Read DJ. Towards a more plant physiological perspective on soil ecology. Trends in Ecology&Evolution,2006,21(10):548-554
    Holland EA, Braswell BH, Lamarque JF, et al. Variations in the predicted spatial distribution of atmosphericnitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. Journal of GeophysicalResearch: Atmospheres (1984–2012),1997,102(D13):15849-15866
    Horwath WR, Pregitzer KS, Paul EA.14C allocation in tree-soil systems. Tree Physiology,1994,14(10):1163-1176
    Houghton JT, Ding Y, Griggs DJ, et al. Climate change2001: the scientific basis. Cambridge, UK:Cambridge University Press,2001
    Houghton JT, Meiro Filho LG, Callander BA, et al. Climate Change1995: the Science of Climate Change.Cambridge, UK: Cambridge University Press,1996
    Houghton RA. The annual net flux of carbon to the atmosphere from changes in land use1850-1990. TellusB,1999,51(2):298-313
    Houghton RA, Hackler JL, Lawrence KT. The US carbon budget: contributions from land-use change.Science,1999,285(5427):574-578
    Hudgens DE, Yavitt JB. Land-use effects on soil methane and carbon dioxide fluxes in forests near Ithaca,New York. Ecoscience,1997,4(2):214-222
    Hutchinson GL, Livingston GP. Use of chamber systems to measure trace gas fluxes. In: Rolston DE,Duxbury JM, Harper LA, et al (eds). Agricultural Ecosystem Effects on Trace Gases and GlobalClimate Change. Madison, WI: American Society of Agronomy,1993,79-93
    Hyv nen R, gren GI, Linder S, et al. The likely impact of elevated [CO2], nitrogen deposition, increasedtemperature and management on carbon sequestration in temperate and boreal forest ecosystems: aliterature review. New Phytologist,2007,173(3):463-480
    Irvine J, Law BE. Contrasting soil respiration in young and old-growth ponderosa pine forests. GlobalChange Biology,2002,8(12):1183-1194
    Islam KR, Mulchi CL, Ali AA. Interactions of tropospheric CO2and O3enrichments and moisture variationson microbial biomass and respiration in soil. Global Change Biology,2000,6(3):255-265
    Ito A, Inatomi M, Mo W, et al. Examination of model-estimated ecosystem respiration using fluxmeasurements from a cool-temperate deciduous broad-leaved forest in central Japan. Tellus B,2007,59(3):616-624
    Janssens IA, Carrara A, Ceulemans R. Annual Q10of soil respiration reflects plant phenological patterns aswell as temperature sensitivity. Global Change Biology,2004,10(2):161-169
    Janssens IA, Kowalski AS, Longdoz B, et al. Assessing forest soil CO2efflux: an in situ comparison of fourtechniques. Tree Physiology,2000,20(1):23-32
    Janssens IA, Lankreijer H, Matteucci G, et al. Productivity overshadows temperature in determining soil andecosystem respiration across European forests. Global Change Biology,2002,7(3):269-278
    Janssens IA, Pilegaard K. Large seasonal changes in Q10of soil respiration in a beech forest. Global ChangeBiology,2003,9(6):911-918
    Jassal R, Black A, Novak M, et al. Relationship between soil CO2concentrations and forest-floor CO2effluxes. Agricultural and Forest Meteorology,2005,130(3):176-192
    Jassal RS, Black TA. Estimating heterotrophic and autotrophic soil respiration using small-area trenched plottechnique: theory and practice. Agricultural and forest meteorology,2006,140(1):193-202
    Jassal RS, Black TA, Novak MD, et al. Effect of soil water stress on soil respiration and its temperaturesensitivity in an18-year-old temperate Douglas-fir stand. Global Change Biology,2008,14(6):1305-1318
    Jenkinson DS, Adams DE, Wild A. Model estimates of CO2emissions from soil in response to globalwarming. Nature,1991,351(6324):304-306
    Jenkinson DS, Andrew S, Lynch JM, et al. The Turnover of Organic Carbon and Nitrogen in Soil.Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,1990,329(1255):361-368
    Jensen B. Rhizodeposition by14CO2-pulse-labelled spring barley grown in small field plots on sandy loam.Soil Biology and Biochemistry,1993,25(11):1553-1559
    Jensen LS, Mueller T, Tate KR, et al. Soil surface CO2flux as an index of soil respiration in situ: Acomparison of two chamber methods. Soil Biology and Biochemistry,1996,28(10):1297-1306
    Jia B, Zhou G, Wang Y, et al. Effects of temperature and soil water-content on soil respiration of grazed andungrazed Leymus chinensis steppes, Inner Mongolia. Journal of Arid Environments,2006,67(1):60-76
    Jiang L, Shi F, Li B, et al. Separating rhizosphere respiration from total soil respiration in two larchplantations in northeastern China. Tree physiology,2005,25(9):1187-1195
    Johnson LC, Shaver GR, Cades DH, et al. Plant carbon-nutrient interactions control CO2exchange inAlaskan wet sedge tundra ecosystems. Ecology,2000,81(2):453-469
    Jones CD, Cox P, Huntingford C. Uncertainty in climate-carbon-cycle projections associated with thesensitivity of soil respiration to temperature. Tellus B,2003,55(2):642-648
    Judson S. Erosion of the land, or What's Happening to Our Continents. American Scientist,1968,356-374
    Kao W, Chang K. Soil CO2efflux from a mountainous forest-grassland ecosystem in central Taiwan.Botanical Studies,2009,50(3):337-342
    Khomik M, Arain MA, McCaughey JH. Temporal and spatial variability of soil respiration in a borealmixedwood forest. Agricultural and Forest Meteorology,2006,140(1):244-256
    Killham K, Yeomans C. Rhizosphere carbon flow measurement and implications: from isotopes to reportergenes. Plant and Soil,2001,232(1-2):91-96
    King JA, Harrison R. Measuring soil respiration in the field: an automated closed chamber system comparedwith portable IRGA and alkali absorption methods. Communications in soil science and plant analysis,2002,33(3-4):403-423
    King JS, Hanson PJ, Bernhardt E, et al. A multiyear synthesis of soil respiration responses to elevatedatmospheric CO2from four forest FACE experiments. Global Change Biology,2004,10(6):1027-1042
    Kirita H. Re-examination of the absorption method of measuring soil respiration under field conditions. IV.An improved absorption method using a disc of plastic sponge as absorbent holder. Japanese journal ofecology,1971,21:119-127
    Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect ofglobal warming on soil organic C storage. Soil Biology and Biochemistry,1995,27(6):753-760
    Klopatek JM. Belowground carbon pools and processes in different age stands of Douglas-fir. TreePhysiology,2002,22(2-3):197-204
    Knohl A, S e AR, Kutsch WL, et al. Representative estimates of soil and ecosystem respiration in an oldbeech forest. Plant and soil,2008,302(1-2):189-202
    Knorr W, Prentice IC, House JI, et al. Long-term sensitivity of soil carbon turnover to warming. Nature,2005,433(7023):298-301
    Kucera CL, Kirkham DR. Soil respiration studies in tallgrass prairie in Missouri. Ecology,1971,912-915
    Kuhns MR, Gjerstad DH. Distribution of14C-labeled photosynthate in loblolly pine (Pinus taeda) seedlingsas affected by season and time after exposure. Tree physiology,1991,8(3):259-271
    Kuzyakov Y. Separating microbial respiration of exudates from root respiration in non-sterile soils: acomparison of four methods. Soil Biology and Biochemistry,2002,34(11):1621-1631
    Kuzyakov Y. Separation of root and rhizomicrobial respiration by natural13C abundance: theoreticalapproach, advantages, and difficulties. Eurasian Soil Science,2004,37(Suppl.1):79-84
    Kuzyakov Y. Theoretical background for partitioning of root and rhizomicrobial respiration by δ13C ofmicrobial biomass. European Journal of Soil Biology,2005,41(1):1-9
    Kuzyakov Y. Sources of CO2efflux from soil and review of partitioning methods. Soil Biology andBiochemistry,2006,38(3):425-448
    Kuzyakov Y, Cheng W. Photosynthesis controls of rhizosphere respiration and organic matterdecomposition. Soil Biology and Biochemistry,2001,33(14):1915-1925
    Kuzyakov Y, Gavrichkova O. Review: Time lag between photosynthesis and carbon dioxide efflux from soil:a review of mechanisms and controls. Global Change Biology,2010,16(12):3386-3406
    Kuzyakov Y, Larionova AA. Root and rhizomicrobial respiration: A review of approaches to estimaterespiration by autotrophic and heterotrophic organisms in soil. Journal of Plant Nutrition and SoilScience,2005,168(4):503-520
    Kuzyakov YV, Larionova AA. Contribution of rhizomicrobial and root respiration to the CO2emission fromsoil (a review). Eurasian Soil Science,2006,39(7):753-764
    Lal R. Soil erosion and land degradation: the global risks. Advances in Soil Science,1990,11:129-172
    Lambers H, Atkin OK, Scheurwater I. Respiratory patterns in roots in relation to their functioning. In:Waisel Y, Eshel A, Kafkafi U (eds). Plant Roots, The Hidden Half. New York: Marcel Dekker,1995,323-362
    Landi L, Valori F, Ascher J, et al. Root exudate effects on the bacterial communities, CO2evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology and Biochemistry,2006,38(3):509-516
    Larionova AA, Rozonova LN, Samoylov TI. Dynamics of gas exchange in the profile of a gray forest soil.Soviet soil science,1989,21(3):104-110
    Larionova AA, Yermolayev AM, Blagodatsky SA, et al. Soil respiration and carbon balance of gray forestsoils as affected by land use. Biology and Fertility of Soils,1998,27(3):251-257
    Lavigne MB, Boutin R, Foster RJ, et al. Soil respiration responses to temperature are controlled more byroots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research,2003,33(9):1744-1753
    Lee K, Jose S. Soil respiration and microbial biomass in a pecan-cotton alley cropping system in SouthernUSA. Agroforestry Systems,2003,58(1):45-54
    Lee M, Nakane K, Nakatsubo T, et al. Seasonal changes in the contribution of root respiration to total soilrespiration in a cool-temperate deciduous forest. Plant and Soil,2003,255(1):311-318
    Lee MS, Mo WH, Koizumi H. Soil respiration of forest ecosystems in Japan and global implications.Ecological Research,2006,21(6):828-839
    Li Y, Xu M, Zou X. Heterotrophic soil respiration in relation to environmental factors and microbialbiomass in two wet tropical forests. Plant and soil,2006,281(1):193-201
    Lin G, Ehleringer JR. Carbon isotopic fractionation does not occur during dark respiration in C3and C4plants. Plant Physiology,1997,114(1):391-394
    Lin G, Ehleringer JR, Rygiewicz P, et al. Elevated CO2and temperature impacts on different components ofsoil CO2efflux in Douglas-fir terracosms. Global Change Biology,1999,5(2):157-168
    Litton CM, Raich JW, Ryan MG. Carbon allocation in forest ecosystems. Global Change Biology,2007,13(10):2089-2109
    Litton CM, Ryan MG, Knight DH, et al. Soil-surface carbon dioxide efflux and microbial biomass inrelation to tree density13years after a stand replacing fire in a lodgepole pine ecosystem. GlobalChange Biology,2003,9(5):680-696
    Liu W, Moriizumi J, Yamazawa H, et al. Depth profiles of radiocarbon and carbon isotopic compositions oforganic matter and CO2in a forest soil. Journal of environmental radioactivity,2006,90(3):210-223
    Liu Y, Han S, Li X, et al. The contribution of root respiration of Pinus koraiensis seedlings to total soilrespiration under elevated CO2concentrations. Journal of Forestry Research,2004,15(3):187-191
    Livingston GP, Hutchinson GL. Enclosure-based measurement of trace gas exchange: applications andsources of error. In: Matson P, RC H (eds). Biogenic Trace Gases: Measuring emission from soil andwater. London: Blackwell Science,1995,14-51
    Lloyd J, Taylor JA. On the temperature dependence of soil respiration. Functional ecology,1994,315-323
    Lomander A, K tterer T, Andrén O. Modelling the effects of temperature and moisture on CO2evolutionfrom top-and subsoil using a multi-compartment approach. Soil Biology and Biochemistry,1998,30(14):2023-2030
    Luan J, Liu S, Wang J, et al. Rhizospheric and heterotrophic respiration of a warm-temperate oakchronosequence in China. Soil Biology and Biochemistry,2011,43(3):503-512
    Luan J, Liu S, Zhu X, et al. Soil carbon stocks and fluxes in a warm-temperate oak chronosequence in China.Plant and soil,2011,347(1-2):243-253
    Lundeg rdh H. Carbon dioxide evolution of soil and crop growth. Soil Science,1927,23(6):417-453
    Luo Y, Wan S, Hui D, et al. Acclimatization of soil respiration to warming in a tall grass prairie. Nature,2001,413(6856):622-625
    Luo Y, Zhou X. Soil respiration and the environment. San Diego, CA, USA: Academic/Elsevier,2006
    Ma Y, Piao S, Sun Z, et al. Stand ages regulate the response of soil respiration to temperature in a Larixprincipis-rupprechtii plantation. Agricultural and Forest Meteorology,2014,184:179-187
    Maestre FT, Cortina J. Small-scale spatial variation in soil CO2efflux in a Mediterranean semiarid steppe.Applied Soil Ecology,2003,23(3):199-209
    Maier CA, Kress LW. Soil CO2evolution and root respiration in11year-old loblolly pine (Pinus taeda)plantations as affected by moisture and nutrient availability. Canadian Journal of Forest Research,2000,30(3):347-359
    M kiranta P, Minkkinen K, Hyt nen J, et al. Factors causing temporal and spatial variation in heterotrophicand rhizospheric components of soil respiration in afforested organic soil croplands in Finland. SoilBiology and Biochemistry,2008,40(7):1592-1600
    McGuire AD, Melillo JM, Kicklighter DW, et al. Equilibrium responses of soil carbon to climate change:Empirical and process-based estimates. Journal of Biogeography,1995,22:785-796
    Meharg AA, Killham K. A comparison of carbon flow from pre-labelled and pulse-labelled plants. Plant andsoil,1988,112(2):225-231
    Meir P, Malhi Y, Hodnett M, et al. Soil CO2efflux in a tropical forest in the central Amazon. Global ChangeBiology,2004,10(5):601-617
    Mielnick PC, Dugas WA. Soil CO2flux in a tallgrass prairie. Soil Biology and Biochemistry,2000,32(2):221-228
    Mikan CJ, Schimel JP, Doyle AP. Temperature controls of microbial respiration in arctic tundra soils aboveand below freezing. Soil Biology and Biochemistry,2002,34(11):1785-1795
    Millard P, Midwood AJ, Hunt JE, et al. Partitioning soil surface CO2efflux into autotrophic andheterotrophic components, using natural gradients in soil δ13C in an undisturbed savannah soil. SoilBiology and Biochemistry,2008,40(7):1575-1582
    Millard P, Sommerkorn M, Grelet GA. Environmental change and carbon limitation in trees: a biochemical,ecophysiological and ecosystem appraisal. New Phytologist,2007,175(1):11-28
    Miller FP, Wali MK. Land use issues and sustainability of agriculture. Trans of15th WCSS, Mexico,1994,71-16
    M ller J. über die freie Kohlens ure im Boden. Forsch. Gebiete Agric. Physiol.,1879,2:329-338
    Moyano FE, Kutsch WL, Rebmann C. Soil respiration fluxes in relation to photosynthetic activity inbroad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology,2008,148(1):135-143
    Nakane K, Kohno T, Horikoshi T. Root respiration rate before and just after clear-felling in a mature,deciduous, broad-leaved forest. Ecological Research,1996,11(2):111-119
    Natelhoffer KJ, Fry B. Controls on natural nitrogen-15and carbon-13abundances in forest soil organicmatter. Soil Science Society of America Journal,1988,52(6):1633-1640
    Nay SM, Mattson KG, Bormann BT. Biases of chamber methods for measuring soil CO2effluxdemonstrated with a laboratory apparatus. Ecology,1994,75(8):2460-2463
    Ngao J, Longdoz B, Granier A, et al. Estimation of autotrophic and heterotrophic components of soilrespiration by trenching is sensitive to corrections for root decomposition and changes in soil watercontent. Plant and soil,2007,301(1-2):99-110
    Nordgren A, Ottosson L fvenius M, H gberg MN, et al. Tree root and soil heterotrophic respiration asrevealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant,Cell&Environment,2003,26(8):1287-1296
    Norman JM, Garcia R, Verma SB. Soil surface CO2fluxes and the carbon budget of a grassland. Journal ofGeophysical Research,1992,97(D17):18845-18853
    O Neill KP, Richter DD, Kasischke ES. Succession-driven changes in soil respiration following fire in blackspruce stands of interior Alaska. Biogeochemistry,2006,80(1):1-20
    O'Connell AM. Microbial decomposition (respiration) of litter in eucalypt forests of south-western Australia:an empirical model based on laboratory incubations. Soil Biology and Biochemistry,1990,22(2):153-160
    Oechel WC, Vourlitis GL, Hastings SJ, et al. Acclimation of ecosystem CO2exchange in the Alaskan Arcticin response to decadal climate warming. Nature,2000,406(6799):978-981
    Ogle SM, Jay Breidt F, Eve MD, et al. Uncertainty in estimating land use and management impacts on soilorganic carbon storage for US agricultural lands between1982and1997. Global Change Biology,2003,9(11):1521-1542
    Ohashi M, Kumagai TO, Kume T, et al. Characteristics of soil CO2efflux variability in an aseasonal tropicalrainforest in Borneo Island. Biogeochemistry,2008,90(3):275-289
    O'Leary MH. Carbon isotopes in photosynthesis. Bioscience,1988,38(5):328-336
    O'Neill KP, Kasischke ES, Richter DD. Environmental controls on soil CO2flux following fire in blackspruce, white spruce, and aspen stands of interior Alaska. Canadian Journal of Forest Research,2002,32(9):1525-1541
    Pajari B. Soil respiration in a poor upland site of Scots pine stand subjected to elevated temperatures andatmospheric carbon concentration. Plant and Soil,1995,168(1):563-570
    Parkin TB, Kaspar TC. Temperature controls on diurnal carbon dioxide flux. Soil Science Society ofAmerica Journal,2003,67(6):1763-1772
    Paterson E, Hall JM, Rattray E, et al. Effect of elevated CO2on rhizosphere carbon flow and soil microbialprocesses. Global Change Biology,1997,3(4):363-377
    Pendall E, Leavitt SW, Brooks T, et al. Elevated CO2stimulates soil respiration in a FACE wheat field.Basic and Applied Ecology,2001,2(3):193-201
    Phillips RP, Fahey TJ. Patterns of rhizosphere carbon flux in sugar maple (Acer saccharum) and yellowbirch (Betula allegheniensis) saplings. Global Change Biology,2005,11(6):983-995
    Pietik inen J, Pettersson M, B th E. Comparison of temperature effects on soil respiration and bacterial andfungal growth rates. FEMS Microbiology Ecology,2006,52(1):49-58
    Post WM, Emanuel WR, Zinke PJ, et al. Soil carbon pools and world life zones.1982,298(5870):156-159
    Pregitzer KS, Euskirchen ES. Carbon cycling and storage in world forests: biome patterns related to forestage. Global Change Biology,2004,10(12):2052-2077
    Pregitzer KS, Zak DR, Maziasz J, et al. Interactive effects of atmospheric CO2and soil-N availability on fineroots of Populus tremuloides. Ecological Applications,2000,10(1):18-33
    Pulliam WM. Carbon dioxide and methane exports from a southeastern floodplain swamp. EcologicalMonographs,1993,29-53
    Pumpanen J, Ilvesniemi H, Kulmala L, et al. Respiration in boreal forest soil as determined from carbondioxide concentration profile. Soil Science Society of America Journal,2008,72(5):1187-1196
    Qi Y, Xu M. Separating the effects of moisture and temperature on soil CO2efflux in a coniferous forest inthe Sierra Nevada mountains. Plant and Soil,2001,237(1):15-23
    Raich JW, Bowden RD, Steudler PA. Comparison of two static chamber techniques for determining carbondioxide efflux from forest soils. Soil Science Society of America Journal,1990,54(6):1754-1757
    Raich JW, Potter CS. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles,1995,9(1):23-36
    Raich JW, Potter CS, Bhagawati D. Interannual variability in global soil respiration. Global Change Biology,2002,8(8):800-812
    Raich JW, Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship tovegetation and climate. Tellus B,1992,44(2):81-99
    Raich JW, Tufekciogul A. Vegetation and soil respiration: correlations and controls. Biogeochemistry,2000,48(1):71-90
    Rakonczay Z, Seiler JR, Kelting DL. Carbon efflux rates of fine roots of three tree species decline shortlyafter excision. Environmental and Experimental Botany,1997,38(3):243-249
    Rakonczay Z, Seiler JR, Samuelson LJ. A method for the in situ measurement of fine root gas exchange offorest trees. Environmental and Experimental Botany,1997,37(2):107-113
    Ratkowsky DA, Olley J, McMeekin TA, et al. Relationship between temperature and growth rate ofbacterial cultures. Journal of Bacteriology,1982,149(1):1-5
    Reichstein M, Beer C. Soil respiration across scales: the importance of a model-data integration frameworkfor data interpretation. Journal of Plant Nutrition and Soil Science,2008,171(3):344-354
    Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and large-scale spatial variability of soilrespiration from soil water availability, temperature and vegetation productivity indices. GlobalBiogeochemical Cycles,2003,17(4):15-1-15-14
    Risk D, Kellman L, Beltrami H. Carbon dioxide in soil profiles: production and temperature dependence.Geophysical Research Letters,2002a,29(6):11-1-11-4
    Risk D, Kellman L, Beltrami H. Soil CO2production and surface flux at four climate observatories in easternCanada. Global Biogeochemical Cycles,2002b,16(4):61-69
    Robinson D, Scrimgeour CM. The contribution of plant C to soil CO2measured using δ13C. Soil Biologyand Biochemistry,1995,27(12):1653-1656
    Rochette P, Flanagan LB. Quantifying rhizosphere respiration in a corn crop under field conditions. SoilScience Society of America Journal,1997,61(2):466-474
    Rochette P, Flanagan LB, Gregorich EG. Separating soil respiration into plant and soil components usinganalyses of the natural abundance of carbon-13. Soil Science Society of America Journal,1999,63(5):1207-1213
    Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperaturegradient in the Italian Alps. Global Change Biology,2005,11(7):1024-1041
    Ross DJ, Tate KR, Scott NA, et al. Afforestation of pastures with Pinus radiata influences soil carbon andnitrogen pools and mineralisation and microbial properties. Soil Research,2002,40(8):1303-1318
    Rout SK, Gupta SR. Soil respiration in relation to abiotic factors, forest floor litter, root biomass and litterquality in forest ecosystems of Siwaliks in northern India. Acta oecologica. Oecologia plantarum,1989,10(3):229-244
    Russell CA, Voroney RP. Carbon dioxide efflux from the floor of a boreal aspen forest. I. Relationship toenvironmental variables and estimates of C respired. Canadian Journal of Soil Science,1998,78(2):301-310
    Rustad LE, Huntington TG, Boone RD. Controls on soil respiration: implications for climate change.Biogeochemistry,2000,48(1):1-6
    Ryan MG, Law BE. Interpreting, measuring, and modeling soil respiration. Biogeochemistry,2005,73(1):3-27
    Saiz G, Byrne KA, Butterbach Bahl K, et al. Stand age-related effects on soil respiration in a first rotationSitka spruce chronosequence in central Ireland. Global Change Biology,2006,12(6):1007-1020
    Saleska SR, Harte JN, Torn MS. The effect of experimental ecosystem warming on CO2fluxes in a montanemeadow. Global Change Biology,1999,5(2):125-141
    Salimon CI, Davidson EA, Victoria RL, et al. CO2flux from soil in pastures and forests in southwesternAmazonia. Global Change Biology,2004,10(5):833-843
    Sánchez ML, Ozores MI, Colle R, et al. Soil CO2fluxes in cereal land use of the Spanish plateau: influenceof conventional and reduced tillage practices. Chemosphere,2002,47(8):837-844
    Sapronov DV, Kuzyakov YV. Separation of root and microbial respiration: comparison of three methods.Eurasian Soil Science,2007,40(7):775-784
    Savage K, Davidson EA, Richardson AD. A conceptual and practical approach to data quality and analysisprocedures for high-frequency soil respiration measurements. Functional Ecology,2008,22(6):1000-1007
    Schimel DS. Terrestrial ecosystems and the carbon cycle. Global change biology,1995,1(1):77-91
    Schindlbacher A, Zechmeister Boltenstern S, Jandl R. Carbon losses due to soil warming: do autotrophic andheterotrophic soil respiration respond equally. Global Change Biology,2009,15(4):901-913
    Schlentner RE, Van Cleve K. Relationships between CO2evolution from soil, substrate temperature, andsubstrate moisture in four mature forest types in interior Alaska. Canadian Journal of Forest Research,1985,15(1):97-106
    Schlesinger WH. Carbon balance in terrestrial detritus. Annual review of ecology and systematics,1977,8(1):51-81
    Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry,2000,48(1):7-20
    Schuur EA, Trumbore SE. Partitioning sources of soil respiration in boreal black spruce forest usingradiocarbon. Global Change Biology,2006,12(2):165-176
    Scott Denton LE, Rosenstiel TN, Monson RK. Differential controls by climate and substrate over theheterotrophic and rhizospheric components of soil respiration. Global Change Biology,2006,12(2):205-216
    Shen CD, Beer J, Ivy-Ochs S, et al.10Be,14C distribution, and soil production rate in a soil profile of agrassland slope at Heshan hilly land, Guangdong. Radiocarbon,2004,46(1):445-454
    Sikora LJ, McCoy JL. Attempts to determine available carbon in soils. Biology and fertility of soils,1990,9(1):19-24
    Singh JS, Gupta SR. Plant decomposition and soil respiration in terrestrial ecosystems. The botanical review,1977,43(4):449-528
    Singh KP, Shekhar C. Seasonal pattern of total soil respiration, its fractionation and soil carbon balance in awheat-maize rotation cropland at Varanasi. Pedobiologia,1986,29:305-318
    S e AR, Buchmann N. Spatial and temporal variations in soil respiration in relation to stand structure andsoil parameters in an unmanaged beech forest. Tree physiology,2005,25(11):1427-1436
    S e AR, Giesemann A, Anderson T, et al. Soil respiration under elevated CO2and its partitioning intorecently assimilated and older carbon sources. Plant and Soil,2004,262(1-2):85-94
    Solomon S, Qin D, Manning M, et al. Climate change2007: the physical science Basis. Cambridge, UK:Cambridge University Press,2007
    Sowerby A, Blum H, Gray TR, et al. The decomposition of Lolium perenne in soils exposed to elevated CO2:comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biology andBiochemistry,2000,32(10):1359-1366
    Stoy PC, Palmroth S, Oishi AC, et al. Are ecosystem carbon inputs and outputs coupled at short time scales.A case study from adjacent pine and hardwood forests using impulse–response analysis. Plant, cell&environment,2007,30(6):700-710
    Stoyan H, De-Polli H, B hm S, et al. Spatial heterogeneity of soil respiration and related properties at theplant scale. Plant and Soil,2000,222(1-2):203-214
    Striegl RG, Wickland KP. Effects of a clear-cut harvest on soil respiration in a jack pine-lichen woodland.Canadian Journal of Forest Research,1998,28(4):534-539
    Stuiver M. Atmospheric carbon dioxide and carbon reservoir change. Science,1978,(199):253-258
    Subke J, Hahn V, Battipaglia G, et al. Feedback interactions between needle litter decomposition andrhizosphere activity. Oecologia,2004,139(4):551-559
    Subke J, Tenhunen JD. Direct measurements of CO2flux below a spruce forest canopy. Agricultural andforest meteorology,2004,126(1):157-168
    Subke JA, Inglima I, Francesca Cotrufo M. Trends and methodological impacts in soil CO2effluxpartitioning: a metaanalytical review. Global Change Biology,2006,12(6):921-943
    Subke JA, Reichstein M, Tenhunen JD. Explaining temporal variation in soil CO2efflux in a mature spruceforest in Southern Germany. Soil Biology and Biochemistry,2003,35(11):1467-1483
    Sulzman EW, Brant JB, Bowden RD, et al. Contribution of aboveground litter, belowground litter, andrhizosphere respiration to total soil CO2efflux in an old growth coniferous forest. Biogeochemistry,2005,73(1):231-256
    Susfalk RB, Cheng WX, Johnson DW, et al. Lateral diffusion and atmospheric CO2mixing compromiseestimates of rhizosphere respiration in a forest soil. Canadian journal of forest research,2002,32(6):1005-1015
    Swinnen J, Van Veen JA, Merckx R.14C pulse-labelling of field-grown spring wheat: An evaluation of itsuse in rhizosphere carbon budget estimations. Soil Biology and Biochemistry,1994,26(2):161-170
    Tang J, Baldocchi DD. Spatial-temporal variation in soil respiration in an oak–grass savanna ecosystem inCalifornia and its partitioning into autotrophic and heterotrophic components. Biogeochemistry,2005,73(1):183-207
    Tang J, Baldocchi DD, Xu L. Tree photosynthesis modulates soil respiration on a diurnal time scale. GlobalChange Biology,2005,11(8):1298-1304
    Tang J, Bolstad PV, Desai AR, et al. Ecosystem respiration and its components in an old-growth forest in theGreat Lakes region of the United States. Agricultural and forest meteorology,2008,148(2):171-185
    Tang J, Bolstad PV, Martin JG. Soil carbon fluxes and stocks in a Great Lakes forest chronosequence.Global Change Biology,2009,15(1):145-155
    Tang J, Misson L, Gershenson A, et al. Continuous measurements of soil respiration with and without rootsin a ponderosa pine plantation in the Sierra Nevada Mountains. Agricultural and Forest Meteorology,2005,132(3):212-227
    Tarnocai C, Canadell JG, Schuur E, et al. Soil organic carbon pools in the northern circumpolar permafrostregion. Global biogeochemical cycles,2009,23(2): B2023
    Tedeschi V, Rey A, Manca G, et al. Soil respiration in a Mediterranean oak forest at different developmentalstages after coppicing. Global Change Biology,2005,12(1):110-121
    Thierron V, Laudelout H. Contribution of root respiration to total CO2efflux from the soil of a deciduousforest. Canadian Journal of Forest Research,1996,26(7):1142-1148
    Tierney GL, Fahey TJ. Fine root turnover in a northern hardwood forest: a direct comparison of theradiocarbon and minirhizotron methods. Canadian Journal of Forest Research,2002,32(9):1692-1697
    Toland DE, Zak DR. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests.Canadian Journal of Forest Research,1994,24(8):1711-1716
    Trueman RJ, Gonzalez Meler MA. Accelerated belowground C cycling in a managed agriforest ecosystemexposed to elevated carbon dioxide concentrations. Global Change Biology,2005,11(8):1258-1271
    Trumbore S. Carbon respired by terrestrial ecosystems–recent progress and challenges. Global ChangeBiology,2006,12(2):141-153
    Tufekcioglu A, Ozbayram AK, Kucuk M. Soil respiration in apple orchards, poplar plantations and adjacentgrasslands in Artvin, Turkey. Journal of Environmental Biology,2009,30(5):815-820
    Turcu VE, Jones SB, Or D. Continuous soil carbon dioxide and oxygen measurements and estimation ofgradient-based gaseous flux. Vadose Zone Journal,2005,4(4):1161-1169
    Vargas R, Allen MF. Environmental controls and the influence of vegetation type, fine roots andrhizomorphs on diel and seasonal variation in soil respiration. New Phytologist,2008,179(2):460-471
    Vargas R, Baldocchi DD, Bahn M, et al. On the multi-temporal correlation between photosynthesis and soilCO2efflux: reconciling lags and observations. New Phytologist,2011,191(4):1006-1017
    Verburg PSJ, Larsen J, Johnson DW, et al. Impacts of an anomalously warm year on soil CO2efflux inexperimentally manipulated tallgrass prairie ecosystems. Global Change Biology,2005,11(10):1720-1732
    Vogel JC, Uhlitzsch I. Carbon-14as an indicator of CO2pollution in cities. In: Symposium on Isotope Ratiosas Pollutant Source and Behaviour Indicators. Vienna (Austria).18Nov1974.1975,
    Vose JM, Ryan MG. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth,tissue N, and photosynthesis. Global Change Biology,2002,8(2):182-193
    Wan S, Norby RJ, Ledford J, et al. Responses of soil respiration to elevated CO2, air warming, and changingsoil water availability in a model old-field grassland. Global Change Biology,2007,13(11):2411-2424
    Wang C, Bond Lamberty B, Gower ST. Soil surface CO2flux in a boreal black spruce fire chronosequence.Journal of Geophysical Research: Atmospheres (1984–2012),2002,107(D3): WFX5-1-WFX5-8
    Wang C, Yang J. Rhizospheric and heterotrophic components of soil respiration in six Chinese temperateforests. Global Change Biology,2007,13(1):123-131
    Wang W, Guo JX, Feng J, et al. Contribution of root respiration to total soil respiration in a Leymuschinensis (Trin.) Tzvel. grassland of northeast China. Journal of Integrative Plant Biology,2006,48(4):409-414
    Warembourg FR, Paul EA. The use of14CO2canopy techniques for measuring carbon transfer through theplant-soil system. Plant and Soil,1973,38(2):331-345
    Webster KL, Creed IF, Bourbonniere RA, et al. Controls on the heterogeneity of soil respiration in a toleranthardwood forest. Journal of Geophysical Research,2008,113(G3):1-15
    Wedin DA, Tieszen LL, Dewey B, et al. Carbon isotope dynamics during grass decomposition and soilorganic matter formation. Ecology,1995,76(5):1383-1392
    Werner C, Zheng X, Tang J, et al. N2O, CH4and CO2emissions from seasonal tropical rainforests and arubber plantation in Southwest China. Plant and Soil,2006,289(1):335-353
    Werth M, Kuzyakov Y. Assimilate partitioning affects13C fractionation of recently assimilated carbon inmaize. Plant and soil,2006,284(1-2):319-333
    Werth M, Kuzyakov Y.13C fractionation at the root-microorganisms-soil interface: A review and outlook forpartitioning studies. Soil Biology and Biochemistry,2010,42(9):1372-1384
    Wiant HV. Contribution of roots to forest soil respiration. Adv. Front. Plant Sci,1967,18:163-167
    Wiant HV. Has the contribution of litter decay to forest" soil respiration" been overestimated. Journal ofForestry,1967,65(6):408-409
    Widén B, Majdi H. Soil CO2efflux and root respiration at three sites in a mixed pine and spruce forest:seasonal and diurnal variation. Canadian Journal of Forest Research,2001,31(5):786-796
    Wise M, Calvin K, Thomson A, et al. Implications of limiting CO2concentrations for land use and energy.Science,2009,324(5931):1183-1186
    Wiseman PE, Seiler JR. Soil CO2efflux across four age classes of plantation loblolly pine (Pinus taeda L.)on the Virginia Piedmont. Forest Ecology and Management,2004,192(2):297-311
    Witkamp M. Decomposition of leaf litter in relation to environment, microflora, and microbial respiration.Ecology,1966,47(2):194-201
    Witkamp M. Cycles of temperature and carbon dioxide evolution from litter and soil. Ecology,1969,50(5):922-924
    Wollny E. Untersuchungen über den Einfluss der physikalischen Eigenschaften des Bodens auf dessenGehalt an freier Kohlensaure. Forsch. Gebiete Agric. Phys.,1831,4:1-28
    Xinglong J, Boyd CE. Relationship between organic carbon concentration and potential pond bottom soilrespiration. Aquacultural engineering,2006,35(2):147-151
    Xu JG, Juma NG. Carbon kinetics in a black chernozem with roots in situ. Canadian journal of soil science,1995,75(3):299-305
    Xu M, Qi Y. Soil-surface CO2efflux and its spatial and temporal variations in a young ponderosa pineplantation in northern California. Global Change Biology,2001,7(6):667-677
    Xu M, Qi Y. Spatial and seasonal variations of Q10determined by soil respiration measurements at a SierraNevadan forest. Global Biogeochemical Cycles,2001,15(3):687-696
    Yan J, Wang Y, Zhou G, et al. Estimates of soil respiration and net primary production of three forests atdifferent succession stages in South China. Global Change Biology,2006,12(5):810-821
    Yim MH, Joo SJ, Nakane K. Comparison of field methods for measuring soil respiration: a static alkaliabsorption method and two dynamic closed chamber methods. Forest Ecology and Management,2002,170(1):189-197
    Yim MH, Joo SJ, Shutou K, et al. Spatial variability of soil respiration in a larch plantation: estimation of thenumber of sampling points required. Forest Ecology and Management,2003,175(1):585-588
    Zak DR, Pregitzer KS, Curtis PS, et al. Elevated atmospheric CO2and feedback between carbon andnitrogen cycles. Plant and Soil,1993,151(1):105-117
    Zhang W, Parker KM, Luo Y, et al. Soil microbial responses to experimental warming and clipping in atallgrass prairie. Global Change Biology,2005,11(2):266-277
    Zhou X, Wan S, Luo Y. Source components and interannual variability of soil CO2efflux underexperimental warming and clipping in a grassland ecosystem. Global Change Biology,2007,13(4):761-775
    Zogg GP, Zak DR, Burton AJ, et al. Fine root respiration in northern hardwood forests in relation totemperature and nitrogen availability. Tree Physiology,1996,16(8):719-725
    Zogg GP, Zak DR, Ringelberg DB, et al. Compositional and functional shifts in microbial communities dueto soil warming. Soil Science Society of America Journal,1997,61(2):475-481
    陈宝玉,王洪君,杨建,等.土壤呼吸组分区分及其测定方法.东北林业大学学报,2009,37(1):96-99
    陈芙蓉,程积民,刘伟,等.不同干扰对黄土区典型草原土壤理化性质的影响.水土保持学报,2012,26(2):105-110
    陈光水.杉木林年龄序列土壤呼吸与地下碳分配.福建师范大学博士学位论文,2009
    陈光水,杨玉盛,吕萍萍,等.中国森林土壤呼吸模式.生态学报,2008,28(4):1748-1761
    陈光水,杨玉盛,王小国,等.格氏栲天然林与人工林根系呼吸季节动态及影响因素.生态学报,2005,25(8):1941-1947
    陈泮勤.地球系统碳循环.北京:科学出版社,2004
    陈全胜.内蒙古锡林河流域草原全裸土壤呼吸的时空变异及其影响因子研究.中国科学院植物研究所博士学位论文,2002
    陈全胜,李凌浩,韩兴国,等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系.生态学报,2004,24(4):831-836
    程慎玉,张宪洲.土壤呼吸中根系与微生物呼吸的区分方法与应用.2003,18(4):597-602
    程水英,李团胜.土地退化的研究进展.干旱区资源与环境,2004,18(3):38-43
    褚金翔,张小全.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分.生态学报,2006,26(6):1693-1700
    单正军,蔡道基,任阵海.土壤有机质矿化与温室气体释放初探.环境科学学报,1996,16(2):150-154
    邓恢.马尾松阔叶树混交林土壤理化性质比较研究.福建林业科技,2012,39(1):41-44
    邓琦,刘世忠,刘菊秀,等.南亚热带森林凋落物对土壤呼吸的贡献及其影响因素.地球科学进展,2007,22(9):976-986
    董莉丽,郑粉莉.土地利用类型对土壤微生物量和有机质的影响.水土保持通报,2009,(6):10-15
    范少辉,肖复明,汪思龙.湖南会同林区毛竹林地的土壤呼吸.生态学报,2009,29(11):5971-5977
    方精云,刘国华,徐嵩龄,等.中国陆地生态系统碳循环及其全球意义.王庚辰,温玉璞.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,1996
    房秋兰,沙丽清.西双版纳热带季节雨林与橡胶林土壤呼吸.植物生态学报,2006,30(1):97-103
    冯朝阳,吕世海,高吉喜,等.华北山地不同植被类型土壤呼吸特征研究.北京林业大学学报,2008,30(2):20-26
    高东,鲁绍伟,饶良懿,等.淮北平原四种土地利用类型非生长季土壤呼吸速率.农业工程学报,2011,27(4):94-99
    高润清.园林树木学.北京:气象出版社,2005
    高祥照,杜森.土壤分析技术规范.北京:中国农业科学出版社,2006
    巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响.应用生态学报,2005,15(12):2292-2296
    关松荫.土壤酶及其研究法.北京:农业出版社,1986
    郭婷.皇甫川五分地沟小流域不同土地利用方式下土壤呼吸特征的研究.内蒙古大学硕士学位论文,2006
    韩天丰,周国逸,李跃林,等.中国南亚热带森林不同演替阶段土壤呼吸的分离量化.植物生态学报,2011,35(9):946-954
    韩晓增,王守宇,宋春雨,等.土地利用/覆盖变化对黑土生态环境的影响.地理科学,2005,25(2):203-208
    侯琳,雷瑞德,王得祥,等.秦岭火地塘天然次生油松林间草本层碳密度.草地学报,2008,16(3):262-266
    黄志霖,肖文发.生物群区和林龄对森林土壤呼吸及其组分的影响.生态学报,2008,28(9):4078-4087
    贾子毅.干旱区白刺荒漠生态系统土壤呼吸对增雨的响应.中国林业科学研究院博士学位论文,2011
    姜丽芬,石福臣,王化田,等.东北地区落叶松人工林的根系呼吸.植物生理学通讯,2004,40(1):27-30
    蒋延玲,周广胜,赵敏,等.长白山阔叶红松林生态系统土壤呼吸作用研究.植物生态学报,2005,29(3):411-414
    孔雨光.苏北海岸防护林地土壤呼吸及微生物量碳研究.南京林业大学博士学位论文,2009
    李娟,孙会民,周朝彬,等.准噶尔盆地南缘两种土地利用方式土壤呼吸特征.西北农业学报,2011,20(1):184-189
    李凌浩,韩兴国,王其兵,等.锡林河流域一个放牧草原群落中根系呼吸占土壤总呼吸比例的初步估计.植物生态学报,2002,26(1):29-32
    李民赞,王琦,汪懋华.一种土壤电导率实时分析仪的试验研究.农业工程学报,2004,20(1):51-55
    李艳,李鹏,赵忠,等.退耕地植被恢复演替的生态环境效应研究进展.西北农林科技大学学报(自然科学版),2007,35(8):155-159
    李裕元,邵明安,郑纪勇,等.黄土高原北部草地的恢复与重建对土壤有机碳的影响.生态学报,2007,62279-2287
    刘光菘.土壤理化性质与剖面描述.北京:中国标准出版社,1996,
    刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的试验研究.土壤通报,2009,(z1):85-87
    刘建军,王得祥,雷瑞德,等.火地塘林区锐齿栎林土壤碳循环的动态模拟.西北农林科技大学学报(自然科学版),2004,31(6):14-18
    刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸.植物生态学报,1998,22(2):119-126
    刘颖,韩士杰,胡艳玲,等.土壤温度和湿度对长白松林土壤呼吸速率的影响.应用生态学报,2005,16(9):1581-1585
    刘允芬,欧阳华,曹广民,等.青藏高原东部生态系统土壤碳排放.自然资源学报,2001,16(2):152-160
    刘占锋,傅伯杰,刘国华,等.土壤质量与土壤质量指标及其评价.生态学报,2013,26(3):901-913
    卢华正,沙丽清,王君,等.西双版纳热带季节雨林与橡胶林土壤呼吸的季节变化.应用生态学报,2009,20(10):2315-2322
    卢宁,李晋川,郭春燕,等.露天煤矿复垦地土壤呼吸的日变化研究——以平朔安太堡露天煤矿排土场为例.山西农业科学,2010,38(4):52-54
    罗璐,申国珍,谢宗强,等.神农架海拔梯度上4种典型森林的土壤呼吸组分及其对温度的敏感性.植物生态学报,2011,35(7):722-730
    吕春花,郑粉莉.黄土高原子午岭地区植被恢复过程中的土壤质量评价.中国水土保持科学,2009,7(3):12-18
    孟春,罗京,庞凤艳.白桦人工林土壤各组分呼吸通量的变化特征.林业科学,2013,49(10):28-34
    潘成忠,上官周平,刘国彬.黄土丘陵沟壑区退耕草地土壤质量演变.生态学报,2006,26(3):690-696
    彭文英,张科利,陈瑶,等.黄土坡耕地退耕还林后土壤性质变化研究.自然资源学报,2005,20(2):272-278
    彭文英,张科利,杨勤科.黄土坡面土壤性质随退耕时间的动态变化研究.干旱区资源与环境,2006,20(5):153-158
    秦璐,吕光辉,何学敏,等.艾比湖地区土壤呼吸测定代表性时段.生态学杂志,2013,32(11):3109-3116
    邱莉萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响.自然资源学报,2006,21(6):965-972
    沙丽清,郑征,唐建维,等.西双版纳热带季节雨林的土壤呼吸研究.中国科学D辑,地球科学,2004,34(增刊Ⅱ):167-174
    施政,汪家社,何容,等.武夷山不同海拔土壤呼吸及其主要调控因子.生态学杂志,2008,27(4):563-568
    宋长春,王毅勇,王跃思,等.人类活动影响下淡水沼泽湿地温室气体排放变化.地理科学,2006,26(1):82-86
    孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法.地理科学进展,1999,18(2):118-128
    涂利华,胡庭兴,黄立华,等.华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应.植物生态学报,2009,33(4):728-738
    王传宽,杨金艳.北方森林土壤呼吸和木质残体分解释放出的CO2通量.生态学报,2005,25(3):633-638
    王春梅,刘艳红,邵彬,等.量化退耕还林后土壤碳变化.北京林业大学学报,2007,29(3):112-119
    王光军,田大伦,朱凡,等.长沙樟树人工林生长季土壤呼吸特征.林业科学,2008,44(10):20-24
    王国兵,唐燕飞,阮宏华,等.次生栎林与火炬松人工林土壤呼吸的季节变异及其主要影响因子.生态学报,2009,29(2):966-975
    王鹤松,张劲松,孟平,等.华北山区非主要生长季典型人工林土壤呼吸变化特征.林业科学研究,2008,20(6):820-825
    王鹤松,张劲松,孟平,等.侧柏人工林地土壤呼吸及其影响因子的研究.土壤通报,2009,(5):1031-1035
    王建国,单艳红.模糊数学在土壤质量评价中的应用研究.土壤学报,2001,38(2):176-183
    王景燕,胡庭兴,龚伟,等.川南坡地不同退耕模式对土壤团粒结构分形特征的影响.应用生态学报,2010,21(6):1410-1416
    王启兰,王溪,曹广民,等.青海省海北州典型高寒草甸土壤质量评价.应用生态学报,2011,22(6):1416-1422
    王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-356
    王文杰.林木非同化器官CO2通量的测定方法及对结果的影响.生态学报,2004,24(9):2056-2067
    王效举,龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析.地理科学,1997,17(2):141-149
    王星,李占斌,李鹏.陕西省丹汉江流域退耕地恢复过程中的植被演替.应用生态学报,2012,23(2):347-356
    王旭,周广胜,蒋延玲,等.长白山红松针阔混交林与开垦农田土壤呼吸作用比较.植物生态学报,2006,30(6):887-893
    王迎红.陆地生态系统温室气体排放观测方法研究,应用及结果比对分析.中国科学院博士学位论文,2005
    吴建国,徐德应.土地利用变化对土壤有机碳的影响:理论,方法和实践.北京:中国林业出版社,2004
    吴建国,张小全,徐德应.六盘山林区几种土地利用方式土壤呼吸时间格局.环境科学,2003,24(6):23-32
    信忠保,许炯心.黄土高原地区植被覆盖时空演变对气候的响应.自然科学进展,2007,17(6):770-778
    许明祥,刘国彬.黄土丘陵区刺槐人工林土壤养分特征及演变.植物营养与肥料学报,2004,10(1):40-46
    许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价指标研究关.应用生态学报,2005,16(10):1843-1848
    许明祥,刘国彬,赵允格.黄土丘陵区土地利用及环境因子对土壤质量指标变异性的影响.应用生态学报,2011,22(2):409-417
    杨金艳,王传宽.东北东部森林生态系统土壤呼吸组分的分离量化.生态学报,2006,26(6):1640-1647
    杨昕,王明星.一个计算平均土壤呼吸速率和土壤碳密度的简单模型.中国科学院研究生院学报,2001,18(1):90-96
    杨玉盛,陈光水,王小国,等.中国亚热带森林转换对土壤呼吸动态及通量的影响.生态学报,2005,25(7):1684-1690
    杨玉盛,陈光水,谢锦升,等.格氏栲天然林与人工林土壤异养呼吸特性及动态.土壤学报,2006,43(1):53-61
    杨玉盛,董彬,谢锦升,等.林木根呼吸及测定方法进展.植物生态学报,2004,28(3):426-434
    杨玉盛,谢锦升,盛浩,等.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响.地理学报,2007,62(11):1123-1131
    姚玉刚,张一平,于贵瑞,等.热带雨林土壤呼吸测定代表性时段研究.南京林业大学学报(自然科学版),2011,35(4):74-78
    易志刚,蚁伟民,周丽霞.土壤各组分呼吸区分方法研究进展.生态学杂志,2003,22(2):65-69
    于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006
    张慧东,尤文忠,邢兆凯,等.辽东山区天然次生林和落叶松人工林的土壤呼吸.水土保持学报,2011,25(3):198-201
    张金波,宋长春,杨文燕.沼泽湿地垦殖对土壤碳动态的影响.地理科学,2006,26(3):340-344
    张劲松,孟平,王鹤松,等.华北石质山区刺槐人工林的土壤呼吸.林业科学,2008,44(2):8-14
    张丽华,陈亚宁,李卫红,等.干旱荒漠区不同土地利用/覆盖类型土壤呼吸速率的季节变化.中国科学D辑,地球科学,2006,36(增刊Ⅱ):68-76
    张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系.生态学报,1999,19(2):174-178
    张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系.武汉植物学研究,1990,8(4):325-334
    张社奇,王国栋,张蕾.黄土高原刺槐林对土壤养分时空分布的影响.水土保持学报,2008,22(5):91-95
    张希彪,上官周平.黄土丘陵区主要林分生物量及营养元素生物循环特征.生态学报,2005,25(3):527-537
    张宪权,王文杰,祖元刚,等.东北地区几种不同林分土壤呼吸组分的差异性.东北林业大学学报,2005,33(2):46-47
    张笑培,杨改河,任广鑫,等.黄土高原南部植被恢复对土壤理化性状与土壤酶活性的影响.干旱地区农业研究,2010,28(6):64-68
    张学权,胡庭兴,李伟,等.华西雨屏区退耕地不同植被经营模式坡面径流和产沙特征分析.水土保持学报,2005,18(6):27-29
    张增信,施政,何容,等.北亚热带次生栎林和人工松林土壤呼吸日变化.南京林业大学学报(自然科学版),2010,34(1):19-23
    赵忠,成向荣,薛文鹏,等.黄土高原不同水分生态区刺槐细根垂直分布的差异.林业科学,2006,42(11):1-7
    周非飞,林波,刘庆,等.青藏高原东缘不同林龄云杉林冬季土壤呼吸特征.2009,15(6):761-767
    周文君,沙丽清,沈守艮,等.西双版纳橡胶林土壤呼吸季节变化及其影响因子.山地学报,2008,26(3):317-325