工业油罐喷射清洗、底泥生成机理及其资源化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对工业油罐底泥脉冲喷射清洗、油泥生成机理及资源化综合处理进行研究。首次提出利用自激脉冲射流的聚能效果进行油罐底泥清洗,通过建立非定常液汽两相流空化模型,对自激喷嘴内部流场进行数值模拟,揭示了自激振荡腔的脉冲发生机理,进而建立自激脉冲喷嘴数值优化理论,并通过自激喷嘴优化模型试验加以验证。针对油罐油泥沉降、分离及资源化综合利用等工程问题,进行了相关理论和技术的试验研究,建立了油泥沉降模型,通过试验总结出油泥分离及资源化综合利用的成套技术。
     论文从工业应用背景出发,对油罐自动清洗技术及油泥分离技术的发展现状,以及国内外相关研究理论尤其是射流清洗理论进行了综述。第二章建立了定常空化射流数值模拟理论,主要讨论了利用双流体模型进行定常空化模拟的控制方程、方程离散、坐标变换、液汽两相流SIMPLE解法等,特别讨论了利用汽体密度分数进行相间压力分摊的必要性。第三章针对所提出的低压大流量自激脉冲清洗方式及自激脉冲喷嘴,建立了非定常二维空化数值模拟理论,对原空化模型进行了改进,通过对空化发生后腔内压力、速度及体积分数场的分区,揭示了自激脉冲射流发生机理。第四章讨论空化发生前,喷嘴结构参数及运行参数对激振效果的影响,提出自激喷嘴的数值优化理论。第五章通过试验对自激喷嘴优化模型加以验证。第六章进行油泥沉降试验研究,建立油泥沉降模型,揭示了油泥形成的层积机理。第七章深入探讨了油泥减量化的层次、内涵及其数学模型。确立了以“罐内油泥减量化、清罐油泥燃料化及焦化处理技术”为主的资源化发展方向。第八章总结了全文研究成果,并提出了进一步研究方向。
The technologies of pulse jet cleaning, sludge forming and resourceful treatment for the industrial oil tank bottom sludge have been studied. A new pulse jet method of cleaning bottom sludge is first proposed. The unsteady cavitations model is set up and the self-excited pulse jet chamber is simulated. The mechanism of self-excited pulse action is discovered and the numerical optimize design theory of the self-excited nozzle therefore is promoted. The model experiment of self-excited nozzle has been conducted to verify the theories. Other experiments of the theories and the technologies have also been done for the proposal of settlement, separating and synthesized utilizing the industrial oil tank bottom sludge. The settlement model of the oil tank is set. A complete set of technology of the bottom oil sludge treatment is proposed.
    The introduction in Chapter 1 concludes the technologies of the treatment of bottom oil sludge. The latest development on it has been summarized. In Chapter 2, the numerical theory of steady cavitations has been set up by the studying of the two-fluid model of liquid and vapor. The control equations are put forward and the method of equations segregating, the mesh grid transformation and SIMPLE for two-phase fluid is promoted. The method of sharing pressure by mass fraction is discussed especially. In chapter 3, unsteady cavitations model is presented and improved also. The mechanism of the self-excited pulse is opened through the dividing the pressure zone, velocity and the volume fraction zone. In chapter 4, the effects of the nozzle construction and the operating parameters to the self excitation before the cavitations actions have been discussed. In chapter 5, the verification has been made by the experiment. In chapter 6, the settlement experiment of the oil tank has been done and the mechanism of layer settlement is promoted. In chapter 7, the steps of the oil sludge reuse, the content of each reuse step and the model of reduction of oil sludge have been deeply studies. The serially reusable direction by the main way of 'reduction of oil sludge within tanks, the fuelization of oil
    
    
    
    sludge from tank cleaning, and coking treatment technology' has been set. In chapter 8, the summarization of the dissertation is given and the suggestions of further researches are promoted.
引文
[1] 中国石油天然气股份有限公司勘探开发研究院廊坊分院油气地下储备库研究设计中心,国外石
    
    油储备现状及我国石油地下储备的可行性,2001年10月.
    [2] 徐至均,大型储罐的设计选型及国产化条件,石油工程建设,1997,No.4 p16-19
    [3] Safe entry and cleaning of petroleum storage tanks. API publication 2015, 33p. Fourth edition, January 1991.
    [4] Safe entry and cleaning of petroleum storage tanks. Planning and managing tank entry from decommissioning through recommissioning. API standard 2015, 51p. Fifth edition, May 1994.
    [5] Guidelines and procedures for entering and cleaning petroleum storage tanks, First edition. ANSI/API standard-/2016, 98p August 2001.
    [6] Requirements for safe entry and cleaning of petroleum storage tanks[M], sixth edition. ANSI/API Standard-/2015 49p (august 2001) paper No.2015
    [7] Brown E D, Petroleum storage tank cleaning with treatment of vapor and recovery of hydrocarbon(s), US;920908;5144807
    [8] Domnichev V A, Naxarov V P, PoPov V I, Oil and petrochemical industry storage tank cleaning - with vapour concentration increased before hot petroleum is circulated to washing machine. SU;930223;1796298
    [9] 高光军编译,用整体加热法清理罐底油泥,国外油气储运,1995.8
    [10] De Almeida Franco Z, De Aquino Pereira O, Khalil C N, Thermochemical cleaning petroleum storage tank contg, sludge, Petrobras Petroleo Brasil SA, GB;950426;2283023.
    [11] Stress-free (storage) tank cleaning, Chemical engineering(ISSN 0009-2460) V100 No.12 137 (December 1993)
    [12] S.E.Shaem,周爱莲等译,油罐清洗的化学处理与机械作业,[J]国外油田工程,2000.7
    [13] Rowe C T, Goss M L, Lloyd H E, An Improved method for crude oil tank cleaning, Nat. Petrol. Refiners Ass. Mtg. (San Francisco, 3/19-21/89) Pap. No. AM-89-23 (1989) 16P Pet. Abstr. (ISSN 0031-6423) ABSTR. No. 478,826 V30 No. 11 (3/17/90)
    [14] Petroleum Ferment, Cleaning sludge from oil storage tank—using entirely hydraulic vehicle to fluidize sludge and jet resultant mix, US;880913 ;4770711,1988.
    [15] Jepsen E L, Cleaning tank interior with fluid jet, Toftejorg A/S, WO;9950810;9521033
    [16] Manabe N, Liqud jetting appts. For cleaning interior of oil tank, Taiho Ind Co Ltd, Furukawa Electric Co Ltd, EP;941012;0619148
    [17] Rechtzigel A, Petroleum storage tank cleaning, US;920211;5087294
    
    
    [18] Leigh industrial services Ltd, BP oil Ltd, Robot water jetter for oil tank cleaning, Corrosion Prevention and Control (ISSN 0010-9371) V37 No.2 CR2, April 1990
    [19] Hummer JS, Automated interior cleaning of large oil tanks, Erdoel Erdgas Kohle (ISSN 0179-3187) [J] ,V113 p10 440-41, October 1997
    [20] 李维绪编译,日本TAIHO株式会社清罐系统及清罐工艺,国外油气储运,Vol.13,No.4,1995.8
    [21] A. P. Kuriakose, S. Kochu Baby Manjooran. Bitumenous paints from refinery sludge. Surface and coatings Technology[J], 2001,145:132-138.
    [22] 戴良,徐峰等.油罐机械清洗设备COW在我国的首次应用.油气储运[J],1998,V17,No.2,p37-41
    [23] Wang C; Chen X, The injector used for oil tank cleaning, Oil Gas Storage transp. 14(5), (ISSN 1000-8241), 3a. 19-21, October 1995
    [24] 张军,郭军等,罐体油泥自动清理系统研究,环境技术,2000,V18,No.6,p34-37.
    [25] 渥茂股份有限公司.完整的原油罐之油泥处理作业[R].台湾:2002.
    [26] Kuriakose AP. Energy& Fuels. 1994,8(3):788~792.
    [27] 王毓仁,国外炼油厂含油污泥处理技术[J].炼油设计,1999,29(9):51~56
    [28] I. Lazar, S. Dobrata, A. Voicu, et al. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields[J]. Petroleum Science and Engineering, 1999,(22): 151~156.
    [29] Membrane bioreactor for tank truck cleaning, World Water and Environmental Engineering 22/7 11 (1992) Aqualine Abstracts (ISSN 0263-5534) 16/3 (March 2000)
    [30] 苏国荣,微生物对石油烃的降解机理及影响因素[J].化工环保,2001,21(4):205~208
    [31] Paspek C. Novel Technique for Rendering Oily Sludge environmentally Acceptable. Us Pat Appl, US 4 842 715. 1987.
    [32] Solomon MJ, Liquid Sludge Disposal Process. US Pat Appl, US 4 864 407,1987
    [33] Godino, Sludge Dewatering Destruction within Delayed Coking Process. Eur Pat Appl, EP 0339 849
    [34] 赵景霞等,用延迟焦化工艺处理炼厂含油污泥,抚顺烃加工技术,1999.5
    [35] Report on Sludge Disposal at Cochin Refinery, Indian Oil Corporation R & D Report, 1988
    [36] 徐如良、焦磊、王乐勤等,离心机在油罐底泥综合处理中的优化配置研究,流体机械,2002,Vol.30,No.5
    [37] 徐如良、王乐勤、李江云等,原油储存沉降规律及罐底油泥形成机理研究,油气储运,2004,Vol.23,No.2
    [38] 徐如良等,炼油厂“三泥”离心脱水处理技术,化工环保,2003,Vol.23,No.6
    
    
    [39]黄永港、徐如良等,油罐底含油污泥处理技术,石油炼制与化工,2003,Vol.34,No5
    [40]徐如良等,大型油罐底泥自动清理及资源化处理,石油化工环境保护,2002,Vol.25,No.4
    [41]徐如良、王乐勤等,工业油罐底泥处理现状与试验探索,石油化工安全技术,2003,Vol.19,No.3
    [42]徐如良等,油罐清洗技术综述,石油化工环境保护,2003,Vol.26,No.4
    [43]徐如良等,油罐自动清理技术和实践,石油安全,2003,Vol.4,No.6
    [44]徐如良等,油罐底泥的减量化和资源化技术,石油与天然气化工,2004,Vol,33,No.3
    [45]徐如良,黄永港等,油罐底泥无害化及资源化,江西农业大学学报(自然科学版ISSN 1000-2286),2002,V25,No.4,P552-555
    [46]陶文铨,数值传热学,[M]西安交通大学出版社,1988.7.
    [47]陈矛章,粘性流体力动力学理论及紊流工程计算,[M]北京航空学院出版社,1986.12
    [48]范洁川,近代流动显示技术,[M]国防工业出版社,2002.1.
    [49]P.J.罗奇,钟锡昌译,计算流体力学,[M]科学出版社,1983.6.
    [50]陆金铺,偏微分方程数值解法,[M]清华大学出版社,1987.7
    [51]陈景仁,流体力学及传热学,[M]国防工业出版社,1984.12
    [52]陈佐一,流体激振,[M]清华大学出版社,1998.7
    [53]马铁犹,计算流体动力学,[M]北京航空航天大学出版社,1986.6
    [54]童秉纲等,非定常流与涡运动,[M]国防工业出版社,1993.7
    [55]李江云、徐如良、王乐勤等,自激脉冲喷嘴发生机理数值模拟,工程热物理学报,2004,Vol.25,No.2
    [56]李江云、徐如良、王乐勤等,可逆流体转换器装置优化设计及应用,中国机械工程,2003,Vol.14,No.23
    [57]李炜,粘性流体的混合有限分析解法,[M]科学出版社,2000.1
    [58]唐川林、廖振方,自激振动脉冲射流装置的理论分析和实验研究,[J]煤炭学报,(No.1)1989.3
    [59]吕泽华,曹仁风,缩放喷管内两相流动的数值模拟及喷管设计,[J]热能动力工程,1996.9
    [60]胡寿根,朱美洲,空化水射流研究现状及其应用,[J]华东工业大学学报,Vol.18,1996.1
    [61]蒋海军,廖庆荣,自激振荡脉冲射流机理探讨,[J]西南石油学院学报,Vol.20,1998.3
    [62]廖定佳,液气二相湍射流和射流泵的数值模拟及实验研究,武汉大学(原武汉水利电力大学)
    
    博士论文,1997.5.
    [63] Martin A. Lopez de Dertodano, Two fluid model for two-phase turbulent jets, Nuclear Engineering and Design 179(1998) 65-74
    [64] Weixing Yuan, Jurgen Sauer, Gunter H. Schnerr, Modeling and computation of unsteady cavitation flows in injection nozzles, Mec. Ind. (2001)2, 383-394
    [65] A.K. Singhal etal, H.Y. Li, M.M. Athavale and Y.Jiang Mathematical Basis and validation of the full cavitation model, ASME FEDSM'01, New Orlean, Louisiana 2001.
    [66] C. Vortmann, G.H. Schnerr, S. Seelecke, Thermodynamic modeling and simulation of cavitating nozzle flow, International J. of Heat and Fluid Flow 24(2003) 774-783
    [67] Eugene B. Nebeker, Standoff distance improvement using percussive jets, WJTA, 1998.
    [68] J.I. Ramos, Compound liquid jets at low Reynolds numbers, polymer 43 (2002)2889-2896.
    [69] E.B. Nebeker, Development of large-diameter percussive jets, WJAT,1998.
    [70] J.L. Evers, D.L. Eddingfield,The effect of the piping system on liquid jet modulation, WJTA, 1998.
    [71] M.M. Vijay, W.H. Brierley, M.I.E.D., Cutting cleaning and fragmentation of materials with high pressure liquid jets, WJTA,1998
    [72] Simon Peadar, Dallas Swan, Economic considerations in water jet cleaning, WJTA, 1998.
    [73] B.H. Timmerman, D.W. Watt, P.J. Bryanston-Cross, Quantitative visualization of high-speed SD turbulent flow structures using holographic interferometric tomography, Optic & Laser Technology, 31 (1999) 53-65.
    [74] Arthur M. Sterling, Warren T. Abbott, Mechanisms of water jet instability, WJTA,1998.
    [75] Yamamoto,K.,Hiroki,F, and Hyodo,K.,Self-sustained Phenomena of Fluidic Flowmeters, Journal of Visualization,Vol. 1 ,No.4(1999)387-396
    [76] Andrew F. Comm, Virgil E. Johnson, Jr., William T. Lindenmuth, and Gary S. Frederick, Some industrial applicactions of cavitaing fluid jets, WJTA, 1998.
    [77] M. Mazurkiewicz, An analysis of one possibility for pulsating a high pressure water jet, WJTA, 1998.
    [78] Goran Gustafsson, The focused shock technique for producing transient water jets, WJTA,1998.
    [79] Larry L. Pater, Ph.D. and Paul H. Borst, An extrusion-type pulsed jet device,WJTA, 1998.
    [80] Masao Nakaya, Nobuo Nisuida etc. Development of variable delivery triple cating plunger pump
    
    for water jet cutting. WJAT. 1998.
    [81] A.N. Semko Fluctuating powder-driven pulsed water jet, Journal of Mathematical Sciences, Vol. 103(3). 2001 (418-422)
    [82] Andrew E Conn, Virgil E. Johnson, etc. Some industrial applications of cavijet cavitating fluid jets, WJTA,1998.