连续—脉冲射流理论研究及其在原油底泥处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以用于原油底泥清理的连续射流和脉冲射流为研究对象,围绕射流清洗过程中的冲击射流流动及自激脉冲射流在发生装置内的湍流流动,对自激脉冲射流的发生机理及射流冲击靶物的流动特性进行理论分析和试验研究。
     通过对冲击射流内各区域流动特性的分析,给出了圆形冲击射流冲击区的范围,从喷嘴出口条件入手,导出了壁面射流区中壁面切应力和径向速度的沿程分布关系式,该式反应了壁面射流场对初始条件的依赖。
     推导了轴对称坐标下冲击射流势流区域的湍流时均方程,考虑冲击区流线强曲率变化的影响,对湍动能和能量耗散率方程进行修正,给出了改进的湍流模型,并将其应用于冲击射流的数值计算,得到与试验相一致的结果。根据计算结果探讨了冲击高度和喷嘴出口雷诺数对冲击射流中环形回流区的影响,得到了环形回流中心随冲击高度和喷嘴出口雷诺数的变化规律。
     通过对冲击射流湍流边界层的研究,给出了边界层的动量方程和能量方程,分析了边界层厚度的特点,应用轴对称坐标系,提出了边界层方程的求解方法。
     利用双流体模型推导了非定常空化模型的控制方程,讨论了方程离散化、坐标变换、液汽两相流SIMPLE解法等问题,论述了利用气体密度分数进行相间压力分摊的必要性,并结合改进的空化模型对典型工况的自激脉冲射流进行数值模拟,揭示了自激脉冲射流发生机理。
     通过自激脉冲射流和连续射流的喷射性能试验,分析了脉冲射流打击力的脉动特性,推导了最大打击力的经验计算式,总结了打击力水平较高的自激喷嘴结构及运行参数的优化配比范围。
     通过连续射流和自激脉冲射流打击油泥的试验,测得了油泥样本屈服时的最小打击力,并以此作为依据推导了连续射流射程的计算式。
The solid jet and pulsed jet applied to clean crude oil sludge are investigated in this paper, the movement performance of a jet directed to impinge against a wall and the self-excited pulsed jet flow mechanism and its experimental test method are studied according to the impinging jet and the turbulent flow in self-excited pulsed jet device.The flow property in all of the impinging jet area is analyzed to indicate the extension of impingement region. The shear stress and radial velocity distribution is derived from initial condition at the nozzle to show that the wall depends on the initial condition at the nozzle.The potential turbulent equation in the impinging jet is established as a function of flow stream rotation and curvature, the standard turbulent model is improved by modifying the kinetic energy and the dissipation equation, which is applied to compute the impinging jet and the computation result is consistent with the experiment. The movement characteristics of the center of the toroid as Jet-to-target plate spacing or the Reynolds number at nozzle is mappedBy employing axisymmetric coordinate, the momentum and energy equations based on the impingement wall layer are established to compute the hydraulic profit.The numerical theory of unsteady cavitations has been set up by studying the two-fluid model of liquid and vapor. The control equations are put forward and the method of equations segregating, the mesh grid transformation and SIMPLE for two-phase fluid are discussed. The method of sharing pressure by mass fraction is discussed, which is applied to improve cavitations model for numerical simulation on self-excited pulsed jet. The mechanism of the self-excited pulse is described through dividing the pressure zone, velocity and the volume fraction zone.The stagnation pressure of pulsed jet is discussed according to the experiment of self-excited pulsed jet. The computational formulate of maximum stagnation pressure is obtained from experimental result. The optimal range of structural and operate parameters are summarized.The minimum hitting force is measured when oil sludge yielding in the experiment of solid jet and pulsed jet impinging against oil sludge, and the computational formulate of jet range is derived from experimental result.
引文
[1] 徐如良,焦磊,王乐勤.离心机在油罐底泥综合处理中的优化配置研究[J] .流体机械,2002,29(5):13-15.
    [2] 董志勇.冲击射流[M] .北京:海洋出版社,1997:26-89.
    [3] Rockwell D, Naudascher E. Review-self-sustaining oscillations of flow past cavity[J] . Fluid Engineering, 1992, 48: 547-591.
    [4] 徐至均.大型储罐的设计选型及国产化条件.石油工程建设,1997,(4):16-19.
    [5] De Almeida Franco Z, De Aquino Pereira O, Khalil C N. Thermochemical cleaning petroleum storage tank contg, sludge, Petrobras Petroleo Brasil SA, GB;950426;2283023.
    [6] Stress-free (storage) tank cleaning. Chemical engineering(ISSN 0009-2460), 1993, 100 (12): 137.
    [7] S.E.Shaem,周爱莲等译.油罐清洗的化学处理与机械作业.国外油田工程,2000,7:139-146.
    [8] Yamamoto, K., Hiroki, F, and Hyodo, K., Self-sustained Phenomena of Fluidic Flowmeters. Journal of Visualization, 1999, 11 (4): 387-396.
    [9] Manabe N. Liqud jetting appts, for cleaning interior of oil tank. Taiho had Co Ltd, Furukawa Electric Co Ltd, EP;941012;0619148.
    [10] B. H. Timmerman, D. W. Watt, P. J. Bryanston-Cross.Quantitative visualization of high-speed SD turbulent flow structures using holographic interferometric tomography. Optic & Laser Technology, 1999, 31: 53-65.
    [11] Andrew F. Comm, Virgil E. Johnson, Jr., William T. Lindenmuth, and Gary S. Frederick. Some industrial applicactions of cavitaing fluid jets. WJTA, 1998.
    [12] Eugene B. Nebeker. Standoff distance improvement using percussive jets. WJTA, 1998.
    [13] 廖定佳.液气二相湍射流和射流泵的数值模拟及实验研究[D] .武汉:武汉大学,1997:65-78.
    [14] J. I. Ramos. Compound liquid jets at low Reynolds numbers. Polymer 2002, 43: 2889-2896.
    [15] M. M. Vijay, W. H. Brierley, M. I. E. D. Cutting cleaning and fragmentation of materials with high pressure liquid jets. WJTA, 1998.
    [16] J. L. Evers, D. L. Eddingfield. The effect of the piping system on liquid jet modulation. WJTA, 1998.
    [17] Larry L. Pater, Ph. D. and Paul H. Borst. An extrusion-type pulsed jet device. WJTA, 1998.
    [18] A. N. Sernko. Fluctuating powder-driven pulsed water jet. Journal of Mathematical Sciences, 2001, 103(3): 418-422.
    [19] Simon Peadar. Dallas Swan, Economic considerations in water jet cleaning. WJTA, 1998.
    [20] M. Mazurkiewicz. An analysis of one possibility for pulsating a high pressure water jet. WJTA, 1998.
    [21] Goran Gustafsson. The focused shock technique for producing transient water jets. WJTA, 1998.
    [22] Masao Nakaya, Nobuo Nisuida etc. Development of variable delivery triple cating plunger pump for water jet cutting. WJAT. 1998.
    [23] Arthur M. Sterling, Warren T. Abbott. Mechanisms of water jet instability, WJTA, 1998.
    [24] Eugene B. Nebeker. Standoff distance improvement using percussive jets. WJTA, 1998.
    [25] 徐惊雷,徐忠.冲击高度对自由冲击射流影响的试验研究.力学与实践,2002,24(1):21-25.
    [26] 高激飞,徐春明,杨光华等.淹没磨料射流的试验研究.石油学报,1998,14(1):27-33.
    [27] Yakhot, V., Orszag, S. A.. Renormalization group analysis of turbulence. J. Sci. Compt. 1988, 1: 3-51.
    [28] 陈庆光,徐忠,张永建.两种差分格式和两种湍流模型在轴对称冲击射流数值计算中的比较.空气动力学学报,2003,21(1):82-90.
    [29] Chou, P. Y.. On velocity correlations and the solution of the equations of the fluctuation. Quart. Appl. Math., 1945, 3(1): 38-54.
    [30] Rodi, W., Z. Angew. New algebraic relations for calculating the Reynolds stresses. Math. Mech. (ZAMM), 1976, 56: 219-221.
    [31] GHIA U, GHIA KN, SHIN C T. High Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid-method[J] . J Compute Phys, 1982, 48: 387-411.
    [32] Crowe, C. T., Sharma, M. P., Stock, D. E.. The particle-Source-in-Cell (PSI-CELL) for gas-droplet flows. J. Fluid Engn., 1977, 99: 325-331.
    [33] 周力行.湍流两相流动和燃烧的统一关联矩封闭模型.工程热物理学报.1991,12(2):203-209.
    [34] 郭印诚,王希麟,林文漪等.提升管内气固两相流数值模拟.第七届计算传热学会议论文集,1997:217-224.
    [35] 高金森,徐春明,杨光华等.提升管反应器内流机理分析.石油学报,1998,14(1):27-33.
    [36] Nieuwland. and Rajaratnam, N. Plane turbulent impinging jets. J. Hydraulic Research, 1973, 11 (1): 29-59.
    [37] Samuelsberg. and Rajaratnam, N. Impinging circular turbulent jets. J. Hydraulics Div. ASCE, 1974, 100 (10): 1313~1328.
    [38] Boemer. Oblique impingement of plane turbulent jets. J. Hydraulics Div. ASCE, 1976, 102 (9): 1177-1192.
    [39] Gera. The impact iof an axisymmetric jet onto a normal ground. Aeronautical Quarterly, 1972, 23 (5): 141-147.
    [40] Spalding. Satkar, S. Gatski, T. B.. Modeling the pressure-strain correlation of turbulence: an invariant dynamical system approach. J. Fluid Mech., 1991, 227: 245-272.
    [41] 王长安.密相液固两相三维湍流流动的研究及其在泵叶轮内流场计算与分析中的应用[D] .西安:西安交通大学,1996:21-35
    [42] 魏进家.密相液固两相湍流KET模型和数值计算及离心泵叶轮内两相流场实验研究[D] .[博士学位论文] ,西安:西安交通大学,1998:14-26.
    [43] Cola, R. Energy dissipation of a high velocity vertical jet entering a basin. Proc. 11th Int. Association for Hydraulic Research Congress. Leningrad, USSR, 1965, 1: 1-13.
    [44] Donaldson, C. dul., Snedeker, R. S. A study of free jet impingement. Part 1. Mean Properties of free and impinging jets. J. Fluid Mech, 1975, 45 (2): 281-319.
    [45] Donaldson, C. dul., Snedeker, R. S. Margolis, D. P. A study of free jet impingement. Part 2. Free jet turbulent structure and impingement heat transfer. J. Fluid Mech., 1971, 44(3): 477-512.
    [46] Gutmark, E., Wolshtein, M. and Wygnanski, I. The Plane turbulent impinging jet. J. Fluid Mech. 1978, 88(4): 737-756.
    [47] Gutmark, E. and Wygnanski, I. The planar turbulent jet. J. Fluid Mech. 1976, 73: 465-495
    [48] Heskestad, G. A Transient Electromagnetic Flowmeter and Calibration Facility. J. Appl. Sci. Res., 1965: 293-302.
    [49] Hinze, J. O. Turbulent statistics in fully developed channel flow at low Reynolds number. Turbulence, 2nd edition McGraw-Hill Inc., 1975
    [50] Kamoi, A. and Tanaka, H. Measurements of wall shear stress, wall prassure and fluentuations in the stagnation region produced by obligue jet impingement. Fluid Dynamic Measurements. Conference papers. Leicester Univ. Press, 1972, 1: 217~227.
    [51] Tani, I. and Komatsu, Y. Impingement of a round jet on a flat surface. Proc, 11th Int. Congress Appl.. Mech. Munich, 1964: 672~676.
    [52] Wolfshtein, M. Some solntions of the plane turbulent impinging jet. J. Basic Engineering, ASME, 1970, 92(12): 915-922.
    [53] Wygnanski, I. and Fiedler, H. Some measurements in the self-preserving jet. J. Fluid Mech., 1969, 33: 577~612.
    [54] 何川,潘良明等.窄流道内过冷流动沸腾汽泡生长的数值研究.工程热物理学报,2002,23(5):614-616.
    [55] 李炜.粘性流体的混合有限分析解法[M] .北京:科学出版社,2000.
    [56] 帕坦卡著,张政译.传热与流体流动的数值计算[M] .北京:科学出版社,1984.
    [57] 陶文铨.数值传热学[M] .西安:西安交通大学出版社,1988.
    [58] M A Leschzner and W Rodi. Calculation of annular and twin parallel jets using discretization schemes and turbulence model variations. Trans. ASME, J. Fluids Engng, 1981, 103: 352-360.
    [59] N Takemitsu. An analytical study of the standard κ-ε model. ASME, J. Fluids Engng, 1990, 112: 192-198.
    [60] 吴望一.流体力学[M] .北京:北京大学出版社,1982.
    [61] 陆金铺.偏微分方程数值解法[M] .北京:清华大学出版社,1987.
    [62] 陆宏圻著.射流泵技术的理论及应用[M] .武汉:水利电力出版社,1989.
    [63] 廖定佳.液气二相湍射流和射流泵的数值模拟及实验研究.工学博士论文.武汉:武汉水利电力大学,1997.
    [64] 龙新平.定常及脉冲有限空间射流的研究.工学博士论文.武汉:武汉水利电力大学,1995.
    [65] 沈忠厚著.水射流理论与技术[M] .东营:石油大学出版社,1998.
    [66] 陈景仁著.湍流模型及有限分析法[M] .上海:上海交通大学出版社,1988.
    [67] 马铁犹编著.计算流体力学[M] .北京:北京航空学院出版社,1986.
    [68] P.J.罗奇著,钟锡昌,刘学宗译.多相湍流流动[M] .北京:科学出版社,1983.
    [69] 赵志勇等.气液两相段塞流中双流体模型分析.管道技术与设备,2001,2l(1):3-7.
    [70] D. L. Eddingfield J. L. Evers. Mathematical Modeling of High Velocity Water Jets. WJTA., 1998.
    [71] Sedat Sami and Hamid Ansari. Goveming equatuins in a modulated liquid jet. WJTA., 1998.
    [72] Dimitrios K. Atmatzidis and Frederick R. Ferrin. Laboratory investigation of soil cutting with a water jet. WJTA., 1998.
    [73] Simon Peadar Dallas Swan. Economic considerations in water jet cleaning. WJTA., 1998: 209-241.
    [74] Werner Lauterbom, Claus-Dieter Ohl. Cavitation bubble dynamics. Ultrasonics Sonochemistry, 1997, 4: 65-75.
    [75] T. Momma. A. Lichtarowicz. A study of pressures and erosion produced by collapsing cavitation. Wear, 1995, 186: 425-436.
    [76] L. Umlauf, H. Burchard, K. Hutter. Extending the κ-ω turbulence model towards oceanic applications. Ocean Moselling 2003, 5: 195-218.
    [77] Shuichi Torii. Numerical simulation of turbulent jet diffusion flames by means of two-equation heat transfer model. Energy Conversion and Management 2001, 42: 1953-1962.
    [78] D. G. Koubogiannis, A. N. Athanasiadis, K. C. Giannakoglou. One-and two-equation turbulence models for the prediction of complex cascade using unstructured grids. Computers & Fluids, 2003, 32: 403-430.
    [79] Florin Ilinca, Dominique Pelletier. Positicity preservation and adaptive solution of two-equation models of turbulence. Int. J. of Heat and Fluid Flow. 2001, 22(5)593-602.
    [80] 夏国泽.不可压缩边界层理论.武汉:华中理工大学出版社,1992:24-67.
    [81] P Bradshaw. Calculation of three-dimensional boundary layers. Journal of Fluid Mech., 1971, 46(3): 78-86.
    [82] H Splading. Boundary layer theory. New York: McGraw Hill, 1979: 37-59.
    [83] A J Musker. Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer. AIAA J, 1979, 17(6): 43-52.
    [84] M R Head. Entrainment in the turbulent boundary layer. ARC RM, 1958.
    [85] T Cebeci and P Bradshaw. Momentum transfer in boundary layers. Wash Hemisphere: Publishing Corporation, 1977: 198-226.
    [86] Zhenghua Yan, Go_ran Holmstedt. A two-equation turbulence model and its application to abuoyant diffusion flame. International Journal of Heat and Mass Transfer, 1999, 42: 1305-1315.
    [87] L. Ignat, D. Pelletier, E Ilinca. A universal formulation of two-equation models for adaptive computation of turbulent flows. Compute Methods Appl. Mech. Engineering. 2000, 189: 1119-1139.
    [88] 廖振方,唐川林等.自激振荡脉冲射流喷嘴的试验研究[J] .重庆大学学报,2002,25(2):22-27.
    [89] 唐川林,廖振方.石油钻井钻头用字激振荡喷嘴的研究[J] .石油学报,1993, 14(1):13-18.
    [90] 唐川林,张风华等.高速振荡脉冲射流振荡腔内涡旋—碰撞壁相互作用的模拟分析与实验[J] .振动与冲击,2001,20(4):88-92.
    [91] 张德斌,李根生,沈忠厚.围压作用下白振空化射流脉动特性试验研究.中国安全科学学报,1999,9(2):47-53.
    [92] 李根生,沈忠厚,周长山等.自振空化射流冲击压力脉动特性试验研究.水动力学研究与进展,2003,18(5):109-114.
    [93] 李根生,张德斌,黄中伟等.自激波动注水机理试验研究.石油学报,2002,23(6):111-119.
    [94] 朱美洲,胡寿根.锥形喷嘴结构参数及淹没空化射流冲蚀性能的实验研究.水动力学研究与进展,1998,13(3):69-75.
    [95] 王萍辉,方湄.超声空化清洗技术及其应用.河北理工学院学报,2002,24(4):87-93.
    [96] 唐川林,廖振方.自激振动脉冲射流装置的理论分析和实验研究[J] .煤炭学报,1989,3(1):17-21.
    [97] 范洁川.近代流动显示技术[M] .北京:国防工业出版社,2002,1.
    [98] Yamamoto, K., Hiroki, F, and Hyodo, K. Self-sustained Phenomena of Fluidic Flowmeters. Journal of Visualization, 1999, 1 (4): 387-396.
    [99] 童秉纲等.非定常流与涡运动[M] .北京:国防工业出版社,1993,7.
    [100] 陆金铺.偏微分方程数值解法[M] .北京:清华大学出版社,1987,7.
    [101] 李根生,李春楼,张德斌.带哨嘴喷嘴射流流场的离散涡模拟[J] .石油大学学报(自然科学版),2002,126(6):12-18.
    [102] 廖振方,唐川林.自激振荡脉冲射流喷嘴的理论分析[J] .重庆大学学报,2002,25(2):24-29.
    [103] 李晓红,王建生等.流体在准直管内的高速流动及相变分析[J] .应用力学学报,2002,17(4):12-18.
    [104] Jian-Jun Shu. Modelling vaporous cavitation on fluid on fluid transients. International Journal of Pressure and Piping, 2003, 80: 187-195.
    [105] Yiannis Ventikos, George Tzabiras. A numerical method for the simulation of steady and unsteady cavitation flows. Computers & Fluids, 2000, 29: 63-88.
    [106] Guoyu Wang. Senocak I. etc. Dynamics of attached turbulent cavitating flows. Progress in Aerospace Sciences, 2001,37:551-581.
    [107] Martin A. Lopez de Dertodano. Two fluid model for two-phase turbulent jets, Nuclear Engineering and Design. 1998,179: 65-74.
    [108] Weixing Yuan, Jurgen Sauer, Gunter H. Schnerr, Modeling and computation of unsteady cavitation flows in injection nozzles, Mec. Ind. 2001,2:83-394.
    [109] C. Vortmann, GH. Schnerr, S. Seelecke. Thermodynamic modeling and simulation of cavitating nozzle flow, nternational J. of Heat and Fluid Row 24(2003) 774-783.
    [110] Chen Y, Heister SD. Modeling hydrodynamic nonequilibruim in cavitating flows. J fluids Eng,1996,118:172-189.
    [111] Chen Y, Heister S. Two-phase modeling of cavitating flows. Computers and Fluids, 1995,24(7):799-809.
    [112] Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 1987,34:94-108.
    [113] Plesset Ms. The dynamics of cavitation bubbles. Trans ASME J Appl Mech 1949,16:228-31.
    [ 114] Kunz RF, Chyczewski TS, Boger DA, etc. Muti-phase CFD analysis of natural and ventilared cavitation about submerged bodies. ASME Paper FEDSM99-7364, Proceedinds of the Third ASME JSME Joints Fluids Engineering Conference, 1999.
    [115] Kunz RF, Boger DA, Stinebring DR, Chyczewski TS. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Compute Fluids, 2000,29:849-75.
    [116] Ahuja V, Cavallo PA, Hosangadi, A. Multi-phase flow modeling on adaptive unstructured meshes. AIAA Fluids 2000 and Exihibit, Paper No. AIAA-2000-2662, June 19-22, Denver, Colorado, 2000.
    [117] Ventikos Y, Tzabi G A numerical study of the steady and unsteady cavitation phenomenon around hydrofoil In:CAV'95 International Conference, Deauville, France. 1995.
    [118] Ventikos Y. numerical investigation of unsteady, cavitating and non-cavitating flows around hydrofoils. Doctorate Thesis. National Technical University of Athens, 1996.
    [119] Kubota A, Kato H, Yamaguchi H. A new modeling of cavitation flow: a numerical study of unsteady cavitation on a hydrofoil section. J Fluid Mech 1992,240:59-96
    [ 120 ] Eugene B. Nebeker, Standoff distance improvement using percussive jets. WJTA, 1998.
    [121] J.I. Ramos.Compound liquid jets at low Reynolds numbers. Polymer, 2002, 43:2889-2896.
    [ 122] E.B. Nebeker, Development of large-diameter percussive jets, WJAT, 1998.
    [ 123 ] J.L. Evers, D.L. Eddingfield,The effect of the piping system on liquid jet modulation, WJTA,1998.
    [124] M.M. Vijay, W.H. Brierley, M.I.E.D., Cutting cleaning and fragmentation of materials with high pressure liquid jets, WJTA, 1998
    [ 125 ] Simon Peadar, Dallas Swan, Economic considerations in water jet cleaning, WJTA, 1998.
    [126] B.H. Timmerman, D.W. Watt, P.J. Bryanston-Cross, Quantitative visualization of high-speed SD turbulent flow structures using holographic interferometric tomography, Optic & Laser Technology, 1999,31:53-65.
    [ 127 ] Arthur M. Sterling, Warren T. Abbott, Mechanisms of water jet instability, WJTA, 1998.
    [ 128 ] Yamamoto,K.,Hiroki,F,and Hyodo,K.,Self-sustained Phenomena of Fluidic Flowmeters, Journal of Visualization, 1999,1(4):387-396.
    [ 129 ] K. Szabel Ski and J. Warminski,Vibration of a non-linear self-excited system with two degrees of freedom under external and parametric excitation, 1997:23-36.
    [130] Andrew R Comm, Virgil E. Johnson, Jr., William T. Iindenmuth, and Gary S. Frederick, Some industrial applicactions of cavitaing fluid jets, WJTA,1998.
    [131] M. Mazurkiewicz, An analysis of one possibility for pulsating a high pressure water jet, WJTA,1998.
    [132] Goran Gustafsson, The focused shock technique for producing transient water jets, WJTA, 1998.
    [ 133 ] Larry L. Pater, Ph.D. and Paul H. Borst, An extrusion-type pulsed jet device, WJTA, 1998.
    [ 134] M.M. Vijay, Ph.D., W.H. Brierley, Cutting cleaning and fragmentation of materials with high pressure liquid jets, WJTA, 1998.
    [135] Simon Peadar, Economic considerations in water jet cleaning,WJTA, 1998.
    [136] Andrew F. Conn, Virgil E. Johnson, etc. Some industrial applications of cavijet cavitating fluid jets, WJTA,1998.
    [ 137] Philippe R. and Hieu H.M.. Numerical prediction of unsteady compressible turbulent coaxial jets. Computers & Fluids, 1998,77(2):239-254.