典型有色金属矿山矿井通风系统优化与防尘技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿井通风系统对地下开采犹如血液循环系统对人体一样重要,矿井通风是地下矿山安全生产的重要保障。随着矿井向深部延伸和开采强度的增加,矿井必将出现岩温增高、风路延长、阻力增大、风流压缩放热、风量调节困难、漏风突出、有毒有害物质和热湿排除受阻等问题。因此,矿井通风的作用将更加重要。
     目前我国许多有色金属矿山开采已经进入了500~1000m的开采深度(本文将该深度定义为亚深部),上述矿井通风问题非常突出;与此同时,深部开采粉尘污染问题的解决也非常困难。由于铜绿山铜铁矿是大冶有色金属公司的主力矿山和老矿山,目前即将进入的开采深度为500~800m,其矿井通风与防尘问题在我国有色金属矿山中具有典型性,因此本文将铜绿山铜铁矿确定为研究对象,结合该矿井通风与防尘的具体情况和存在的主要问题及其实际工程要求开展研究。论文的主要研究内容和成果如下:
     (1)在系统地查阅和分析了国内外有关矿井通风与防尘的主要文献和相关研究成果基础上,有针对性地开展矿井通风系统优化理论研究,并将有关优化理论结合到矿井通风系统的优化改造和通风网络分析研究中。
     (2)开展了现场情况调查、资料收集和测定工作,获得了需要的矿井通风与防尘基础信息和测定数据,对现有矿井通风系统进行了正确的评价。
     (3)对现场获得的资料进行系统分析、处理,建立铜绿山铜铁矿矿井通风系统的数据模型,对不同的矿井通风系统改造方案进行网络解算、分析,为矿井通风系统的优化改造方案和合理矿井通风模式的确定奠定了基础。
     (4)根据上述各项工作提出了铜绿山铜铁矿深部矿井通风系统改造方案。包括适宜-425m~-245m、-725m~-425m中段矿体开采的新通风系统、矿井阶段通风网络方案以及改造方案实施主要工程。对中段回风石门主扇和辅扇硐室的方案、通风构筑物的方案、南主扇叶片安装角参数调整、局部通风大直径风筒应用、中段通风系统改造工程费用概算等进行了合理设计。
     (5)结合铜绿山铜铁矿矿井通风风流控制的需要,分析了应用空气幕隔断风流的可行性。对空气幕隔断风流的实际有效压力、空气幕对风流增阻的计算、单机空气幕的阻风率、多机并联空气幕的阻风率等进行了计算分析;并对井下不带风墙辅扇的动压通风分析及其应用、无风墙辅扇通风、无风墙辅扇在巷道中单独工作等进行了研究。
     (6)应用事故树分析方法分析了铜绿山铜铁矿矿井通风系统可靠性影响因素分析。建立了矿井通风系统不稳定性事故树,对有关影响因素的影响范围及程度进行了分析,提出了提高矿井通风系统可靠性的相应对策。
     (7)以化学抑尘方法为防尘关键手段,开展了矿尘湿润剂实验研究。对铜绿山矿矿尘试样进行了分析,确定了湿润剂的类型及其溶液配制方法,试验了表面活性剂添加卤化物的湿润性能,开发了适合铜绿山铜铁矿防尘的化学抑尘剂优化配方。
     (8)根据开发的化学抑尘剂配方,对铜绿山铜铁矿卸矿站的添加湿润剂喷雾防尘系统进行了设计。包括喷雾系统设计、喷嘴选型与布置、自动喷雾供水系统设计、供水水源与水质要求、影响喷雾除尘效果的因素分析、通风与喷雾除尘结合除尘、卸矿站喷雾防尘系统经济可行性等。
     (9)对铜绿山铜铁矿井下溜井放矿时冲击气流扬尘机理进行了分析,提出了控制放矿时粉尘污染的有效综合措施。
     (10)提出了铜绿山铜铁矿矿井通风管理、粉尘防治管理和劳动安全卫生管理对策等通风与防尘综合措施。
     上述矿井通风与防尘关键技术的许多内容已经结合到铜绿山铜铁矿矿井深部开采的工程中,并证明这些成果是行之有效的和具有广泛的推广应用价值。
Ventilation is sometimes described as the lifeblood of a mine. Mine ventilation is very important for safety production in underground mines. With the depth and strength increasing of the mine, many touch issues, e. g. higher temperature of rock, longer roadways, larger resistance, more compressed heat generated by airflow, more difficulties of airflow adjusting, more leakage, more pollutants and wet, etc. will occur in the future. Therefore, mine ventilation will play more significant role.
     Currently, many nonferrous mines in China will reach at 500 to 1000 m depth (this depth is defined as sub-depth in the thesis). The problems described in above will become more serious. At the same time, the dust prevention will also be more difficult. In this thesis, a typical nonferrous mine named Tonglushan Copper and Iron Mine (TLSCIM) was selected as the research project, because it is the main mine of Daye Nonferrous Metal Company and a famous old mine and its mining depth is at 500 to 800 m. The ventilation and dust pollution issues of TLSCIM can also considered as the common problems in similar mines. Combined with the practical situations and conditions of mine ventilation and dust prevention of TLSCIM, a lot of investigations were conducted and some fruits were achieved as follows.
     (1) Based on a systematical literature reviews on the mine ventilation and dust controlling technology, optimum approach for mine ventilation was carried out and the research results were used in the mine ventilation system improvement and network analysis of TLSCIM.
     (2) By making detailed in-situ investigation and measurement, lot of information and data of mine ventilation and dust pollution were obtained. Accordingly, the suitable assessment of the mine ventilation system of TLSCIM was finished.
     (3) Depending upon analyzing the data and relevant information, the digital model of mine ventilation system of TLSCIM was set up. Various plans of improving the mine ventilation were obtained by network analysis technology. These works are the foundation of improving the mine ventilation system and getting the optimum ventilation models.
     (4) Based on the mine ventilation network analysis and other works, the optimum planning of new mine ventilation system was put forward, including -425m~-245m and -725m~-425m levels networks, position of main and auxiliary fans, airflow adjusting constructions, vane angle of main fans, large diameter tube for heading ventilation, cost, etc.
     (5) By considered the practical requirements of airflow adjusting of TLSCIM, the possibility of air curtain used for adjusting airflow was analyzed. The effective pressure of air curtain for sealing airflow, the resistance of air curtain, the efficiency of single and multi curtains, etc. were calculated and analyzed. Also, booster with or without sealing were discussed and investigated to use in adjusting airflow.
     (6) According to the fault tree analysis method, the relevant factors and reliability of mine ventilation system of TLSCIM was analyzed. The un-stabilized fault tree of mine ventilation system was set up and accordingly the effective measures of increasing the reliability of mine ventilation system were put forward.
     (7) Taking the chemical suppression of dust as the approach, the wetting agents for controlling dust were investigated. After analyzed the samples of dust of TLSCIM, the type of wetting agent was selected and its preparation method was obtained. Also, solution of surfactant adding chloride for improving the wetting behavior was tested. An optimum compositions of wetting agent for dust control of TLSCIM was innovated.
     (8) Based on the compositions of wetting agent in laboratory, a spraying system of water adding wetting agent for controlling the dust pollution in ore drawing station of TLSCIM was designed. The designing work includes the spraying system, nozzle selection and installing position, water supplying system, water quantity requirement, etc. Also, the affecting factors to dust suppressing efficiency, the efficiency by ventilation and water spraying and the cost of spraying station were analyzed.
     (9) The dust releasing mechanism by dynamic airflow when ores are drawing into an ore pass was analyzed. The effective measures for controlling dust releasing were put forward.
     (10) At last, comprehensive measures for mine ventilation management, dust suppression management and work safety and health administration were listed.
     The key technologies for mine ventilation and dust control described in above were used in the project of deep mining engineering of TLSCIM. The practical application verified that the research fruits are effective and can be widely applied in other similar mines.
引文
[1]刘何清,吴 超,王卫军。矿井降温技术研究述评。金属矿山,2005,(6):43-46
    [2]胡汉华,吴超,李茂楠。地下工程通风与空调。长沙:中南大学出版社,2005
    [3]岑衍强,侯祺棕,矿内热环境工程[M],武汉:武汉工业大学出版社,1989
    [4]余恒昌,邓孝,陈碧婉,矿山地热与热害治理[M],北京:煤炭工业出版社,1991
    [5]赵以蕙,矿井通风与空调[M],北京:中国矿业大学出版社,2001
    [6]Hartman H L,Mutmansky J M,Ramani R V,et al.Mine Ventilation and Air Conditioning,Third Edition[M],John Wiley and Sons,1997
    [7]汪峰 王雷 于宝海等,高温矿井风流热力参数测定及其变化规律和热湿源的分析[J].煤矿现代化,2004,3:51-53
    [8]杨胜强,高温矿井风流热力参数程序设计及分析[J].煤矿现代化,1994,1:18-19
    [9]石建中,刘堂文,高温矿井空调冷负荷计算[J].工业安全与防尘,2001,27(3):24-25
    [10]吴钢,高温矿井排热降温风量计算[J].铀矿冶,1998,17(4):223-229
    [11]彭担任,杨长海,隋金峰等.高温矿井热害的防治[J].矿业安全与环保,1999,6:45-47
    [12]程卫民,张庆友,基于神经元网络的巷道风流温湿度预测法[J].煤炭工程师,1998,3:35-36
    [13]顾孟寒,矿建工程中防治高温热害的设想[J].建井技术,1995,1:31-34
    [14]胡亚非,矿井风流可压缩流动规律及热风压的影响[J].工程热物理学报,1999,6:717-720
    [15]安树峰,矿井井下循环风的利用与控制[J].西部探矿工程,2005,108:211-213
    [16]陈安国,矿井热害产生的原因、危害及防治措施[J].中国安全科学学报2004,14(8):2-5
    [17]王文,桂祥友,王国君.矿井热害的产生与治理[J].工业安全与环保,2003,29(4)33-35
    [18]李振顶,彭辉仕.矿井热害的治理方法及效果[J].2002,30(1):22-24
    [19]李莉,张人伟,王亮等.矿井热害分析及其防治[J].2006,71(2):34-36
    [20]孟庆财,康虎林.矿井通风的新发展与新观念[J].煤炭技术,2003,22(11):65-66
    [21]王德银,胡春胜,霍正齐.矿用制冷设备的研制与应用[J].2005,32(4):42-44
    [22]兰贵枝.孟加拉国巴矿建井期间降温措施的探讨[J].煤炭科技,2001,4:13-15
    [23]胡宗平,傅圣英,浅谈矿井降温技术工作[J].矿业安全与环保,2004,31(6):75-77
    [24]袁非亮,董呈杰,蒋良富.浅析双层空气层隔热风筒[J].南方金属,2005,147(12):24-26
    [25]史永德,黄明秀,苏广福等.热风压影响矿井通风系统的调整[J].煤炭技术,2005,24(2):70-71
    [26]侯世松,热害矿井风流热力参数测算程序设计及应用[J].煤炭技术,2005,24(12):
    [27]孙兆东,郭海泉,于志飞等.三河尖高温矿井风流热力参数测定及变化规律分析[J].江苏煤炭,1995,4:41-44
    [28]金双林,杨思光.三河尖煤矿高温高湿环境的治理技术[J].煤矿安全.2005,36(2):20-21
    [29]于宝海,杨胜强,王义江等.深部高温矿井区域可控循环通风系统及应用[J].煤矿安全.2005,36(9):8-11
    [30]朱孔盛.深部开采热环境研究及其治理对策分析[J].煤矿现代化,2006,74(5):84-85
    [31]舒孝国,肖福坤.深部矿井内热源分析[J].煤炭技术,2006,25(7):105-107
    [32]郭文兵,涂兴子,姚 荣等.深井煤矿巷道隔热材料研究[J].煤炭科学技术,2003,31(12):25-29
    [33]胡汉华.深井高温矿山通风与降温技术研究动态[J].金属矿山,1999(7):62-65
    [34]郭建伟.深热综采工作面制冷降温技术的研究与实施[J].矿业安全与环保,2006,33(1):37-39
    [35]张朝昌,厉彦忠,苏 林等.透平膨胀制冷在高温矿井降温中的应用[J].2003,23(4):437-440
    [36]宋桂梅,张朝昌.高温矿井独头掘进面降温技术研究与方案对比[J].矿业安全与环保,2006,33(1):43-45
    [37]Lowndes I S,Yang Z Y,Jobling S.A parametric analysis of a tunnel climatic prediction and planning model[J].Tunneling and Underground Space Technology
    [38]Lowndes I S,Crossley A J,Yang Z Y.The ventilation and climate modeling of rapid development tunnel drivages[J].Tunneling Underground Space Technol.2004,19,139-150.
    [39]Lowndes I S,Yang Z Y,Jobling S,et al.The improved mapping and analysis of mine climate within UK deep coal mines[A].Proceedings of the 8th International Mine Ventilation Congress[C],Brisbane,Aus IMM,pp.471-479.
    [40]Ross A J,Tuck M A,Stokes M R,et al.Computer simulation of climatic conditions in rapid development drivages[A].Ramani R V.Proceedings of the 6th International Mine Ventilation Congress[C].SME,Littleton,CO,1997,283-288.
    [41]Bazarraa M S,Shetty C M.Nonlinear Programming theory and Algorithm[M].New York,John Wiley & Sons,1979
    [42]Wang,Y.J.Mine Ventilation and Air Conditioning[M].New York,John Wiley and Sons,1982.483-516
    [43]Environmental Engineering in South African Mines[M],Mine Ventilation Society of South Africa,1982
    [44]Bluhm S J,Bottomley P,Von Glehn F H.Evaluation of heat flow from rock in deep mines[J].Journal of the Mine Ventilation Society of South Africa,1989,3:45-53
    [45]Bluhm S J,et.al.The measurement of heat loads in a deep level stope in the Klerksdorp goldfield[J].Journal of the Mine Ventilation Society of South Africa,1986,10
    [46]Matthews M K,Mccreadie H N,March T C.The measurement of heat flow in a backfilled stope[J].Journal of the Mine Ventilation Society of South Africa,1987,11
    [47]Vieira F,Diering D,Durrhiem R.Methods to mine the ultra-deep tabular gold bearing reefs of the Witwatersrand basin,South Africa[A].Techniques in underground mining[C].Bullock R.SME,2001
    [48]Vutukuri V S.Study of variable in auxiliary ventilation[J].Mining Industry Institution of Mining and Metallurgy Transactions Section A,1984,10-16.
    [49]Longson I,Tuck M A.The computer simulation of mine climate on a longwall coal face.Proceedings of 2nd U.S.Mine Ventilation Symposium[C].A.A.Balkema,Rotterdam,1985,439-448.
    [50]McPherson M J.The analysis and simulation of heat flow into underground airways,Int.J.Min.Geol.Eng.1986,4:165-196.
    [51]McPherson M J.Subsurface ventilation and environmental engineering[M].Chapman and Hall,London,1993
    [52]王从陆.吴超著。矿井通风及其系统可靠性[M]。北京:化学工业出版社,2007
    [53]王从陆。非火变时期金属矿复杂矿井通风系统稳定性及数值模拟研究[D]。长沙:中南大学博士学位论文,2007
    [54]罗善明.综放工作面采支速度比的可靠性分析[J].湘潭矿业学院学报,2001,3:40-42
    [55]Zhou Lihua,Zhou Rongyi,Li Shuqing.Calculation of System Availability for Mine Ventilation Network based on Boolean Manipulation and Minimization Algorithm in Independence Minimal Path Sets[P].In..Wang Yajun,Huang Ping,Li Shengcai,eds.Progress in Safety Science and Technology.Beijing/New York:Science Press,2004.1141-1146
    [56]徐瑞龙.通风网络的可靠度确定[J].阜新矿业学院学报,1985,3:56-59
    [57]赵永生.用逐步线性回归分析法确定矿井通风网路风流稳定性的主要影响风路[J].山西煤炭,1987,4:37-40
    [58]王海桥.矿井通风网络的通风有效度分析[J].煤炭工程师,1990,21-23
    [59]马云东.矿井广义可靠性理论[M].北京:煤炭工业出版社,1995
    [60]王洪德,马云东.基于冷储备可修模型的矿井主要通风机系统可靠性分析[J].煤矿安全,2003,34(6):1-3
    [61]王洪德,马云东.基于故障统计模型的可修通风系统可靠性指标体系研究[J].煤炭学报,2003,28(6):617-622
    [62]王洪德,马云东.基于单元特性的通风系统可靠性分配方法研究[J].中国安全科学学报,2004,14(3):11-15
    [63]程远国,王德明.矿井通风系统可靠性研究[J].太原理工大学学报,1998.29(4):442-437
    [64]王洪德,马云东.采用模糊综合评价法判定矿井通风系统的可靠性[J].煤矿开采,2002.7(2):55-57
    [65]张甫仁,景国勋,顾志凡.矿井通风系统安全可靠性的灰色多层次综合评判[J].煤炭技术.2001,20(6):41-45
    [66]王洪德,马云东,陈长华.基于粗糙集理论通风系统可靠性神经网络仿真[J].辽宁工程技术大学学报,2003,22(4):445-447
    [67]崔岗,陈开岩.矿井通风系统安全可靠性综合评价方法探讨[J].煤炭科学技术,1999,27(12):40-43
    [68]Jing Guoxun,Zhang Furen,Pan Qidong et al.The Grey Multiple Comprehensive Assessment of Safe Reliability of Mine Ventilate System[P].Proceedings in Mining Science and Safety Technology,2002:335-340
    [69]陈开岩,傅清国,刘样来.矿井通风系统安全可靠性评价软件设计及应用[J].中国矿业大学学报,2003,32(4):393-398
    [70]马云东,宋志,孙宝铮.矿井通风系统可靠性分析理论研究[J].阜新矿业学院学报(自然科学版),1995,14(3):5-11
    [71]薛河,龚晓燕.矿井局都通风系统可靠性定额的确定[J].煤炭工程师,1996,5:25-28
    [72]吴向前.矿井通风系统稳定性的研究[D].济南:山东科技大学,2002
    [73]谢本贤.铜绿山铜铁矿矿井通风系统优化改造设计研究[D].长沙:中南大学,2002
    [74]谢贤平,赵梓成.矿井风流的稳定性分析[J].有色矿山,1992,5:22-27
    [75]熊兴联,马心核.自然风压对矿井通风系统稳定性的影响[J].煤炭工程师,1997,5:29-30
    [76]张仁松,唐继东.矿井瓦斯对风流稳定性影响的探讨[J].煤炭工程师,1997,5:31-33
    [77]李湖生.矿井通风系统的敏感性和风流稳定性[J].淮南矿业学院学报.1997,17(3):32-37
    [78]韦道景.简单角联通风网络风流的稳定性分析及其应用[J].煤矿安全,2001,32(12): 31-33
    [79]马恒,于凤伟.复杂网络中风流的稳定性[J].辽宁工程技术大学学报自然科学版,2001,20(1):14-16
    [80]贾进章,马恒.基于灵敏度的通风系统稳定性分析[J].辽宁工程技术大学学报自然科学版.2002,21(4):428-429
    [81]贾进章.刘剑.通风系统稳定性数值分析[J].矿业安全与环保,2003,30(6):10-11
    [82]陈长华.风网稳定性的定量分析[J].辽宁工程技术大学学报自然科学版,2003,22(3):292-294
    [83]魏引尚,常心坦.复杂通风系统的稳定性分析[J].西安科技学院学报,2003,23(2):119-122
    [84]赵厚春.冯建文.矿井通风网路中风流稳定性分析[J].煤矿现代化,2004.(4):40-41
    [85]陆秋琴.黄光球.确定影响矿井风流稳定性主要风路的神经网络方法[J].化工矿物与加工,2004,33(7):21-23
    [86]Yunan Hu,Olga I,Koroleva.Nonlinear Control of Mine Ventilation Networks[J].Systems and Control Letters,2003,49(4):239-254
    [87]刘剑,贾进章,刘新.用独立通路法确定矿井通风网络的极值流[J].辽宁工程技术大学学报,2003,22(4):433-435
    [88]魏建平,何学秋,王恩元.矿井通风网络非稳定流动数值解收敛性分析[J].中国矿业大学学报,2004,33(3):295-297
    [89]吴超,王从陆.复杂矿井通风网络分析的参数调节度数字实验[J].煤炭学报.2003.28(5):477-181
    [90]黄光球,陆秋琴.郑彦全.通风系统风流稳定性分析的新方法[J].矿冶工程,2005,25(4):8-11
    [91]王从陆,吴超.耗散结构理论在矿井通风系统优化中的应用[J].安全与环境学报,2003,3(3):62-64
    [92]沈斐敏.矿井通风微机程序设计与应用[J].北京:煤炭工业出版社,1995.213-224,289-291
    [93]Chao Wu.Mine Ventilation Network and Pollution Simulation[M].Lulea University of Technology,1987
    [94]谢贤平,严春风.矿井通风自动监控系统数学模型的研究与实现[J].金属矿山,1995,5:24-28
    [95]戚宜欣,王省身.矿井火灾时期风流流动及通风系统变化的动态模拟[J].中国矿业大学学报.1995,24(3):19-23
    [96]蒋军成,陈全.计算机在矿井风网优化调节计算中的应用[J].东北煤炭技术,1995,(1):57-61
    [97]阳昌明.矿井通风网路的风流状态与控制[M].北京:煤炭工业出版社,1982.1-82
    [98]蒋金泉.巷道围岩结构稳定性与控制设计[M].煤炭工业出版社,1998.179-182
    [99]陆璇.应用统计[M].北京:清华大学出版社,1999.234-247
    [100]吴超.国家“十五”科技攻关计划专题项目.深井通风优化及控制技术[M].中南大学,2003
    [101]王拓,王志扬,罗辉.自然风压在矿井通风中应用[J].山东煤炭科技,2004,5:26-27
    [102]刘振明,闫广祥.自然风压对矿井通风的影响分析山西焦煤科技[J].2003,B06:1-2
    [103]程志荣,宋伟.矿井自然风压计算方法探讨[J].陕西煤炭,2001,3:20-24
    [104]蒋增京.自然风压对矿井通风系统的影响[J].河北煤炭,2003,5:3-4
    [105]傅海亭,石绍海.矿山自然风压利用与探讨[J].山东冶金2000,22(3):13-15
    [106]Richard M Aynsley.Resistance Approach to Analysis of Natural Ventilation Airflow Networks[J].Journal of Wind Engineering and Industrial Aerodynamics,1997,68:711-719
    [107]王英敏.矿井通风与防尘[M].北京:冶金工业出版社,1993.160-171,212-254
    [108]王海宁。矿用空气幕理论及其应用研究[D]。长沙:中南大学博士学位论文,2005
    [109]王海宁著。矿井通风流动与控制[M]。北京:冶金工业出版社,2007
    [110]中南矿冶学院等.空气幕生产试验报告[C].中国金属学会全国金属矿山通风防尘专题学术会议论文,1956
    [111]易丽军,王英敏.矿用引射式射流风机[J].黄金,1994,15(9):19-22
    [112]赵梓成,谢贤平.矿井通风理论与技术进展评述[J].云南冶金,2002,31(3):23-31,37
    [113]刘启觉,王继焕.射流空气幕诱导空气量的计算[J].通风除尘,1993,12(4):33-35,32
    [114]谢贤平,李怀宇.受控循环通风方法的研究与应用[J].有色矿冶,1995,11(1):36-41
    [115]王英敏著。矿内空气动力学与矿井通风系统[M].北京:冶金工业出版社,1994
    [116]王英敏.矿山通风与安全技术经验100例[M].北京冶金工业部安全环保研究院,1992
    [117]徐竹云,王英敏.动压通风与K系列节能风机的应用[J].工业安全与防尘,1989,(2):1-4
    [118]董振民.无风墙机站设计参数的确定[J].冶金矿山设计与建设,1998,30(1):20-23
    [119]董振民,蔡顺朔.多级机站通风系统中无风墙机站的应用实践[J].黑色金属矿山通讯,1991,(3):17-19
    [120]董振民,蔡顺朔.井下无风墙机站通风工业试验[J].金属矿山,1993,(7):30-35
    [121]孙英.近十年我国金属矿山通风系统的技术改造[J].金属矿山,1994,(5):25-29
    [122]徐竹云,王英敏.无风墙辅扇通风过程的分析[J].东北工学院学报,1989,10(5):519-526
    [123]程厉生,董振民.井下无密闭辅扇通风计算理论及引射器最优出口断面的确定[J].金属矿山,1981,(10):20-24,33
    [124]徐竹云.矿山空气幕作用原理及应用研究[D].东北工学院,1984
    [125]徐竹云,陈荣策.矿山空气幕的有效压力平衡原理及其应用[J].黄金,1988,9(1):4-9
    [126]徐竹云,陈荣策.矿用宽口大风量空气幕的设计计算[J].黄金,1989,10(1):27-31,39
    [127]徐竹云,周焕明.用WMI矿用空气幕在运输道上隔断风流[J].金属矿山,1990,(2):10-12
    [128]郭斯旭,张玉利,庞(?)宏等.矿用空气幕在矿井阻风中的应用[J].矿山环保,2003, 47(4):12-14
    [129]Learmonth.R.A.The use of air curtains[J].1970,(9):115-116
    [130]Grassmuck G.Applicability or air stopping and flow regulators in mine ventilastion[J].C.I.M.M.Bulletin,1969,62:1175-1185
    [131]Guyonnaud.L,Solliec.C,Dufresne de Virel.M,Rey.C.Design of air curtains used for area continement in tunnels[J].Experiments in Fluids,2000(28):377-384
    [132]刘荣华,王海桥,施式亮等.用空气幕阻止粉尘向采煤机司机工作区扩散的模拟实验研究[J].湘潭矿业学院学报,2000,15(3):17-21
    [133]王海桥,刘荣华.综采工作面隔尘空气幕模拟实验及应用研究[J].矿业安全与环保,2000,27(2):13-15
    [134]王海桥,施式亮,刘荣华等.综采工作面空气幕隔尘研究及应用[J].湘潭矿业学院学报,1999,14(1):11-15
    [135]刘荣华,王海桥.机掘工作面旋转射流通风理论探讨[J].中国安全科学学报,2002.12(2):76-79
    [136]刘荣华,王海桥.用空气幕阻止粉尘向采煤机司机工作区扩散的模拟实验研究[J].湘潭矿业学院学报,2000,15(3):17-21
    [137]吴超.化学抑尘[M].长沙:中南大学出版社.2003.
    [138]陈沅江,吴超等.一种就地固土抑尘用复合外渗剂的研究[J].上海环境科学.2000,19(8):375-378.
    [139]李锦,柳建龙.改良MPS型抑尘剂在枓堆防尘中的实验研究[J].工业安全与防尘,2000,1:13-15.
    [140]柳建龙.周希坚.MPS型抑尘剂及其应用[J].工业卫生与职业病.2000,26(2):84.
    [141]王海宁.渣油乳状液添加糊化淀粉的抑尘性能研究[J].江西有色金属,2000,14(1):4-6.
    [142]覃立香,朱瑞红.CH抑尘剂的性能与应用[J].中国职业安全卫生管理体系认证,2001(6):44-46.
    [143]吴超.古德生.Na_2SO_4改善阴离子表面活性剂湿润煤尘性能的研究[J].安全与环境学报.2001,1(2):45-48.
    [144]彭兴文,柳建设.高效抑尘剂系列产品[P].中国科技成果.2001(10):39-39.
    [145]那琼.尾矿序干滩防尘抑尘剂的试验研究[J].金属矿山,2002(6):45-46.
    [146]罗萌.一种新型抑尘剂及其配制工艺[P].化工科技市场.2002(9):71.
    [147]韩放.朱吉茂.新型防冻抑尘剂性能研究[J].安全与环境工程,2003,10(4):31-33.
    [148]徐淑芹,任守国等.喷油抑尘杀虫剂的研究[J].粮食储藏.2003(2):22-25.
    [149]沈镇平.控制扬尘“抑尘剂”[P].中国建材.2003(6):83.
    [150]无.抑尘剂[P].广州化工新发明[P].2003,31(1):21.
    [151]金龙哲,朱吉茂.露天矿公路防冻抑尘剂的研究[J].北京科技大学学报.2004,26(1):4.
    [152]杜翠凤,蒋仲安.干燥气候条件下采场路面抑尘技术的试验研究[J].有色金属:矿山部.2004,56(3):41-43.
    [153]超细微粉尘的防尘技术[P].美国专利.81.04.10US2527N.
    [154]粉尘抑止剂-----包含保水剂[P],成膜剂和吸湿剂.日本专利.1981.07J5803686.
    [155]矿山专用防尘剂[P].日本专利.1982.08JP135139.
    [156]路面高效抑尘剂[P].德国专利.1987.DE1382263.
    [157]湿润型粉尘控制剂[P].澳大利亚专利1985.02AU038695.
    [158]张华俊,刘菲.路面抑尘剂综述[J].劳动保护科学技术,2000,20(6):40-42.
    [159]粉尘抑尘剂.新产品简介[J].世界采矿快报1992.4(10)
    [160]WU Chao,Chugh Y.P.A Review of Chemical Dust Suppressants in the World in the Recent 15 Years.Proceedings of 2000's International Symposium on Safety Science and Technology,Beijing,2000:101-113
    [161]WU Chao,GU Desheng.Fault Tree Analysis of Dust Suppression Mechanism in a Spray System by Wetting Agents and Relevant Issues.J.of Central South University of Technology,2000,7(3):311-318.
    [162]WU Chao,GU Desheng.High Efficient Dust Scrubbers for Continuous Miner in Underground.J.of Central South University of Technology,2000,7(4):415-423.
    [163]WU Chao,ZHOU Bo.Tests of the Effects of Three Surfactants on the Penetration Ability of Calcium Chloride and Water Solutions in Dust.J.of Environmental Science,1998,10(4):445-451.
    [164]MENG Tingrang,WU Chao.A New Technique for Roadway Dust Control.J.of Central South University of Technology,1994,1(1):84-86
    [165]陆国荣.国外露天矿汽车运输路面扬尘防治技术(一)[J].国外金属矿山,1991(11):69-78.
    [166]吴超,陈军良.丁二酸钠对氯化钙和水玻璃溶液的渗透性影响试验研究[J].环境工程,1998,16(4):35-37.
    [167]吴超,陈军良.十二烷基苯磺酸钠对氯化钙和水玻璃溶液的渗透性影响[J].中南工业大学学报,1998,29(3):216-220.
    [168]吴超,陈军良.十二烷基磺酸钠对氯化钙和水玻璃溶液的渗透性影响[J].有色金属,1998,50(1):102-103.
    [169]吴超.陈军良.化学湿润剂的湿润能力试验[J].上海环境科学,1998,17(7):34-36
    [170]吴超,周勃等.固体卤化物添加CaO,MgO的固土抑尘性能[J].中南工业大学学报,1996,27(5):520-524.
    [171]吴超,周勃.卤化物与水玻璃复合物的抑尘性能[J].中南工业大学学报,1997,28(6):519-521.
    [172]吴超.周勃.固体卤化物的抑尘性能[J].中南工业大学学报,1996.27(1):13-17.
    [173]吴超,孟廷让等.渣油-水乳化液作为路面抑尘剂的研究[J].环境科学,1996,17(6):50-53.
    [174]王坪龙,吴超等.低浓度渣油-水系乳化液的抑尘性能现场试验研究[J].环境工程,1997,15(4):37-40
    [175]王坪龙,吴超.聚丙烯酸钠溶胶的抑尘性能研究[J].中南工业大学学报,1997,28(4):319-321.
    [176]王海宁,吴超.一种用于路面抑尘树脂的研制[J].中南工业大学学报,1995,26(3):319-323.
    [177]吴超,潘长良,陈沅江.矿山运输道路就地固土抑尘复合外渗剂的试验研究[J].中 国矿业,2001,10(3):61-65.
    [178]陈沅江,潘长良,吴超.稳定土技术在土路扬尘治理中的应用及展望[J].环境保护科学,2000,26(6):1-4.
    [179]陈沅江,吴超.水玻璃在矿山稳定土中的应用及其展望[J].中国有色金属学报,1997,7(2):138-141.
    [180]陈沅江,吴超.潘长良.一种就地固土抑尘复合外渗剂的研究[J].上海环境科学,2000,18(8):375-378.
    [181]吴超,周勃.固体卤化物添加CaO,Mgo的固土抑尘性能[J].中南工业大学学报,1996,27(5):520-524.
    [182]吴超,周勃.固体卤化物的抑尘性能[J].中南工业大学学报,1996,27(1);13-17
    [183]吴超,周勃.卤化物与水玻璃复合物的抑尘性能[J].中南工业大学学报,1997,28(6):519-521
    [184]WU Chao.Development of an Insitu Soil Binding Agent.Waste Management,Elsevier Science Ltd.2000,17(6),56-64.
    [185]吴大敏.新桥露天矿运输公路粉尘治理探讨[J].金属矿山,2001(11):48-50.
    [186]林德玉,许桦.首钢原料处大型料场使用覆盖剂的实验及研究[J].冶金环境保护,2001(1):41-42.
    [187]李明才.湿润剂除尘技术在狮子山铜矿的应用研究[J].江西有色金属.1998,12(2):11-13.