氧化锌、钨酸锌、钨酸铅纳米材料的液相合成、表征和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机纳米材料和纳米结构的合成方法研究是纳米科学技术发展的热点领域,也是制备复杂超微器件的前提条件。由于液相合成方法的诸多优点使其成为对基本纳米粒子进行裁剪、组装的重要方法之一。目前液相合成纳米材料的方法虽然很多,各具优势,但也都存在一些缺陷,获得尺寸可控、粒度均匀的纳米材料仍然存在一定的困难。探索设备简单、操作方便、成本低、产率高的液相合成方法,以实现对纳米材料形貌、尺寸、结构的选择控制,仍然是化学家和材料学家长期以来关心的课题之一。
     本课题组长期以来从事液相中合成无机纳米材料,在溶剂热合成等方面有较深入研究。本论文在课题组前人工作的基础上,选择具有优异物理性质的半导体材料氧化锌、钨酸锌和钨酸铅作为研究对象,发挥化学液相合成技术在控制材料的微结构、形貌和尺寸等方面的优势,探索在化学液相中制备纳米材料的新方法和控制条件,期望得到形貌和尺寸可控的纳米结构,并获得一些纳米材料的制备和形貌控制等方面的规律。企望论文对纳米材料液相合成过程,对开展新型、特殊、复杂结构纳米材料的制备提供借鉴。具体内容如下:
     1.在室温条件下,利用简单的液相法成功制备了ZnO纳米花状聚集体,且所得产物产率高、结晶好,反应时间短。ZnO花状结构直径约为1.5μm,由均匀的厚度大约5 nm的氧化锌纳米片自组装而成。在花状氧化锌的生长过程中,柠檬酸钾起了重要作用:首先,柠檬酸根与Zn~(2+)络合,减缓了沉淀生成速度,有益于生成结晶性良好的产物;其次,柠檬酸根可被吸附在ZnO的(002)面上,降低了此晶面的生长速度,从而使氧化锌生长成片状形貌。根据时间调控实验分析,花状结构的生长过程为自组装过程,即首先生成ZnO纳米片,为了降低体系的表面能,继而纳米片开始聚集,并随着时间的延长自组装成花状结构。花状ZnO在357nm处有强的吸收峰,相对于ZnO块体材料有明显的蓝移,这是由于ZnO纳米片的厚度与氧化锌的波尔半径相近,吸收峰的蓝移是由于氧化锌纳米片的量子效应,这或许在光学器件方面有潜在的应用价值。
     2.通过水热合成方法,利用柠檬酸钾做形貌控制剂,成功制备了氧化锌微米花状结构。实验证明,体系pH值对氧化锌产物的形貌具有重要的影响,改变体系内NaOH的用量,可以在同一体系中得到多种形貌ZnO产物,如:实心圆球、六方块状、花状、花球状,以及纳米棒组成的聚集体。初步分析认为,产物形貌的不同源于不同pH值下Zn~(2+)与OH~-络合方式不同,导致前躯体不同。
     3.在水热体系中,在不添加模板或形貌控制剂的情况下,通过改变反应物的种类,成功制备了哑铃状与梭状两种不同形貌的ZnO空心微米结构。实验证实,产物形貌的不同源于前躯体的不同,即Zn(OH)_4~(2-)易生成哑铃状产物,而Zn(NH_3)_4~(2+)则生成梭状产物。对中空产物的生长过程的分析发现,“奥氏熟化”机理在中空的形成中起了重要作用,且两种形貌氧化锌的中间对称面起到了熟化过程活性中心的作用。对所得产物进行了荧光发射性质测试,两种产物几乎显示相同的发射光谱,均在可见光区400-500nm处显示较强的发射峰,明显强于其块体材料。
     4.通过水热合成方法,成功制备了钨酸锌纳米线/纳米带。通过添加表面活性剂聚乙烯吡咯烷酮(PVP),钨酸锌纳米线转变为纳米带,PVP选择性吸附在(020)面上,从而得到钨酸锌带状结构。对产物进行的催化罗丹明B实验证明,钨酸锌的形貌和结构对其光催化活性有重要影响,钨酸锌纳米带较纳米线有更优异的光催化性质。钨酸锌纳米带的高催化活性可能来自两方面原因:一是带状结构具有更高的比表面积,增加了催化剂与被催化分子的接触面积;二是纳米带拥有更多的裸露在外的沿[100]晶轴方向的晶面,即钨酸锌的催化活性面。而且,带状产物的荧光发光性质也强于线状钨酸锌。
     5.在180℃水热体系中,制备得到由钨酸锌纳米棒组成而成的空心球状聚集体,这是第一次在纯水体系中制备钨酸锌空心结构。此空心球直径约为400 nm,组成空心球的纳米棒直径约10 nm,长为50 nm左右。对所得产物进行了催化罗丹明B的实验,证实此钨酸锌空心球具有较强的光催化性质,源自空心结构高的比表面积。
     6.在水热体系中,通过添加柠檬酸钾做形貌控制剂,成功制备了由纳米颗粒组成的钨酸铅球状聚集体。柠檬酸钾对产物的形貌具有重要影响,改变柠檬酸钾的用量,可以得到钨酸铅八面体、球状聚集体、胶囊状聚集体等产物。引入注意的是,所得聚集体在440 nm处具有强的荧光发射峰,与报道的500 nm发射峰不同。产物的发光性质的改变是因其由无数纳米棒组成,具有较大的比表面积,从而拥有更多的量子点。我们相信,所得钨酸铅独特的发光性质使其在应用方面具有更高的潜在价值。
     7.在水热合成PbWO_4体系中引入Zn~(2+)作为添加剂,合成了多种未见报道的特殊形貌PbWO_4纳米材料,如棒状聚集体与花状聚集体。所得产物的荧光发射光谱显示,此类特殊形貌钨酸铅显示出了不同于块体材料的发光性质,在460nm与550nm处显示较强的发射峰,尚未见报道。
The study of synthesis methods of inorgnic nanomaterials and nanostructures is a hot area of nanoscience, and is also the prerequisite of preparation of complex advanced microdevices. Due to so many advantages of the liquid-phase syntheses, it will be one of the important methods to assemble the basal nanoparticles in the future. Up to now, it is still an important task in the field of material that how to develop new methods for preparing nanomaterials. Although there are many liquid-phase methods reported for preparing materials, it is still difficult to obtain materials with controllable morphologies and sizes. Therefore, it is attracting a great deal of attention of the chemists and materials researchers to explore new liquid-phase methods for obtaining low-cost mild reaction.
     Our group has rich experience in the technology of preparation of inorganic nanoparticles in liquid-phase system. On the base of our group's works in the past, this paper chooses ZnO, ZnWO_4, PbWO_4 as study objects, using liquid chemical synthesis technology's advantages in controlling the materials microstructures, morphologies and size. We explore new methods and control conditions for liquid chemical synthesis of nanomaterials, and find some rules in synthesis and morphology control in nanomaterials. This study both enriches the liquid-phase methods of nanomaterials, and also provides a new thought for preparing complex materials with special nano-structures. The detailed information of the dissertation is listed as follows.
     1. A singularity flower-like ZnO nanostructure was prepared on a large scale through a very simple solution method at room temperature and under ambient pressure in a very short time. The flower-like ZnO nanostructures had a diameter of about 1.5μm, and were self-assembled by thin and uniform nanosheets, with a thickness of around 5 nm. Citrate played an important roal in the growth of flower structure. Firstly, citrate could coordinate with Zn~(2+), so the sedimentation rate was slowed down, resulting in better crystalline. Secondly, citrate could also control the ZnO crystal as it absorbed to the (002) surface and forced the crystal to grow into plates. Based on the time-dependent experiment, the possible growth mechanism was discussed, and it was the self-assemble process. At first, ZnO nanosheets were formed, and then they self-assembled in flower-like structures in order to reduce their high surface energy. UV-vis spectra of the ZnO nanostructures showed a strong exciton peak at 357nm, which has a blue shift compared to that of bulk ZnO. This should be mainly due to the quantum confinement of the ZnO nanosheets, since the man thickness of the sheets is comparable to the Bohr radius of ZnO. Hence, the products had advanced absorption of ultraviolet radiation; this may have extensive applications in optics devices.
     2. ZnO flower-like micro-structures were sucsessfully synthesized through a simple hydrothermal route, using potassium citrate as shape modifier. Based on the experament result, the pH value of the system played an important role on the morphology of the products. By changing amount of NaOH introduced into the system, many different morphologies of ZnO were obtained, such as solid spheres, hexahedrons, flowers, flower-clusters and aggregates made up of nanorods. Preliminary view was that different complex ways betweent Zn~(2+) and OH~-, that is different precursors, resulted in different morphologies.
     3. We synthesized two kinds of hollow twinning ZnO microstructures through a simple hydrothermal method without templates. Dumbbell-like and shuttle-like ZnO microstructures with hollows were obtained by changing the materials source. Experment results showed that different precursors resulted in different morphologies. That is Zn(OH)_4~(2+) prefered dumbbell-like products, and Zn(NH3)_4~(2+) resulted in shuttle-like products. Based on the time-dependent experiments, we investigated the growth process of these two hollow twinning structures and found the "Ostwald-ripening process" played an important role. The interesting part of this growth process was that the interface of the two twinning structure performed as the activate center where the Ostwald-ripening process carried out. We also investigated the luminescent properties of the as-obtained products by photoluminescence (PL) spectroscopy, and found that these two hollow structures both showed strong visible emission in the 400-500 nm regions, which is much stronger than bulk ZnO.
     4. ZnWO_4 nanowires/nanobelts were synthesized through a hydrothermal method. ZnWO_4 nanobelts were synthesized through a poly (vinylpyrrolidone) (PVP) assisted hydrothermal process. PVP molecules absorbed on some surface of the ZnWO_4 crystals could significantly decrease their growth rates and lead to highly anisotropic growth, resulting in nanobelts. We investigated the growth process of the products and found that the "Ostwald-ripening process" played an important role. Photo-decomposition experiments indicated that the morphology and crystallinity of ZnWO_4 photocatalyst had a significant influence on the photocatalytic activity for aqueous Rhodamine B, and ZnWO_4 nanobelts showed a much higher photocatalytic activity than nanowires. There were reasons for ZnWO_4 nanobelts's high photocatalytic activity: firstly, nanobelts had higher surface, which provided large surface area for absorbing substrate; secondly, nanobelts had more bare planes containing W and O atoms, thus enhance the photocatalytic activity of nanobelts. Besides, ZnWO_4 nanobelts also exhibited a much stronger luminescence property than nanowires.
     5. ZnWO_4 hollow spheres made up of nanorods were successfully prepared through a tri-potassium citrate assisted hydrothermal process at 180℃. This is the first time that ZnWO_4 hollow structures are obtained in aqueous system. The hollow spheres' diameter was about 400nm, and these spheres were made up of nanorods with a diameter of about 10 nm and a length of about 50nm. Based on experiments, the growth of these hollow spheres followed an aggregation-Ostwald ripening process. The photocatalytic activities for aqueous Rhodamine B of samples were investigated, and it was amazing that ZnWO_4 hollow spheres exhibited a strong photocatalytic activity, which was caused by hollow spheres' high surface.
     6. Hierarchical PbWO_4 spheres assembled by nanoparticles were successfully synthesized through a tri-potassium citrate assisted hydrothermal process. It was found that citrate played a key role on the morphology of PbWO_4 products. By adjusting citrate's concentration, PbWO_4 octahedrons, hierarchical spheres, hierarchical ellipses could be obtained. Based on time-dependent experiments, we found the growth of the hierarchical spheres followed a self-assembly process. The most interesting part was that the hierarchical spheres/ellipses showed a blue emission peak at 440nm, which differs from the typical green one at 500nm as reported. We believed that the PbWO_4 aggregates made up of nanorods exhibit high light-collection efficiency and enhanced luminescence performance due to their large surface area. The greatly enhanced luminescence performance is exciting and may have significant technological applications in the inorganic scintillating field.
     7. By introducing Zn~(2+) as shape modifier into the synthesis of PbWO_4 nanostructures under hydrothermal route, a series of various PbWO_4 nanostructures were successfully prepared, including rod-like and flower-like aggregates, most of them had not been reported. It is interesting that the products showed emission peaks at 460nm and 550nm, which was different from that of bulk PbWO_4, and this had not been reported.
引文
[1] 张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001。
    [2] R. A. Webb, Observation of h/e Aharonov-Bohm Oscillations in Normal-Metal Rings [J], Phys. Rev. Lett. 1985, 54, 2696-2699.
    [3] H. W. Kroto, C60: Buckminsterfullerene [J], Nature 1985, 318, 162-163.
    [4] L. E. Brus, Electronic wave functions in semiconductor clusters: experiment and theory [J], J. Phys. Chem. 1986, 90, 2555-2560.
    [5] T. Nakanishi, B. Ohtani, K. Uosaki, Fabrication and Characterization of CdS-Nanoparticle Mono- and Multilayers on a Self-Assembled Monolayer of Alkanedithiols on Gold [J], J. Phys. Chem. B 1998,102, 1571-1577.
    [6] A. Hagfeidt, M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems [J], Chem. Rev. 1995, 95, 49-53.
    [7] P. E. Cavicchi, R. H. Silsbee, Coulomb Suppression of Tunneling Rate from Small Metal Particles [J], Phys. Rev. Let. 1984, 52, 1453-1456.
    [8] Q. Li, G. Zeng, S. Xi, 纳米粒子 [J], Chinese Chemical Bulletin 1985, 6, 129-134.
    [9] 杨柏,黄金满,郝恩才,沈家骢,半导体纳米微粒在聚合物基体中的复合与组装[J],高等学校化学学报,1997,7,1219-1226.
    [10] P. Ball, L. Garwin, Science in atomic Scale [J], Nature 1992, 355, 761-766.
    [11] D. L. Feldheim, C. D. Keating, Self-assembly of single electron transistors and related devices [J], Chem. Soc. Rev. 1998, 27, 1-12.
    [12] 傅英,须文兰,陆卫,半导体量子电子和光电子器件[J],物理学进展 2001,21,255-277.
    [13] T. Takagahara, Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J], Phys. Rev. B 1993, 47, 4569-4584.
    [14] S. C. Tsang, Y. K. Chen, P. J. Harris, A simple chemical method of opening and filling carbon nanotubes [J], Nature 1994, 372, 159-162.
    [15] 裘式纶,瞿庆洲,肖丰收,张宗涛,纳米材料研究进展Ⅱ:纳米材料的制备,表征与应用[J],化学研究与应用 1998,10,331-341.
    [16] A. P. Davis, Nanotechnology: Synthetic molecular motors [J], Nature 1999, 401, 120-121.
    [17] R. F. Service, Materials Science: Small Clusters Hit the Big Time [J], Science 1996,271,920-922.
    [18] M. Anpo, T. Shima, S. Kodama, Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates [J],J. Phys. Chem. 1987, 91, 4305-4310.
    [19] J. J. Pietron, R. M. Stroud, D. R. Rolison, Using Three Dimensions in Catalytic Mesoporous Nanoarchitectures [J], Nano Lett. 2002, 2, 545-549.
    [20] J. Q. Xiao, J. S. Jiang, C. L. Chien, Giant magnetoresistance in nonmultilayer magnetic systems [J], Phys. Rev. Lett. 1992, 68, 3749-3752.
    [21] C. Macilwain, Nanotech thinks big [J], Nature 2001, 405, 730-732.
    [22] 裘式纶,翟庆洲,肖丰收,张宗涛,纳米材料研究进展Ⅱ:纳米材料的制备,表征与应用[J],化学研究与应用,1998,10,331-341.
    [23] 张立德,纳米材料与纳米体系物理——面向21世纪的新领域[J],中国科学基金,1994,7,198-201.
    [24] L. Schultz, Formation of amorphous metals by mechanical alloying [J], Mater. Sci.Eng. 1998, 97, 15-18.
    [25] R. W. Siegles, Synthesis characterization and properties of nanophase TiO_2 [J], J. Mater. Res. 1998, 3, 1367-1370.
    [26] W. Chang, G. Skandan, Chemical vapor processing and applications for nanostructures ceramic powders and whiskers [J], Nano. Mater. 1994, 4, 507-520.
    [27] Y. Jiang, X. M. Meng, J. Liu, Hydrogen-Assisted Thermal Evaporation Synthesis of ZnS nanoribbons on a Large Scale [J], Adv. Mater. 2003, 15, 323-327.
    [28] N. Malikova, I. P. Santos, Layer-by-Layer Assembled Mixed Spherical and Plannar Gold Nanoparticles: Control of Interparticle Interactions [J], Langmuir 2002, 18,3694-3697.
    [29] Z. A. Peng, X. G. Peng, Mechanisms of the shape evolution of CdSe nanocrystals [J], J. Am. Chem. Soc. 2001, 123, 1389-1395.
    [30] X. Wang, Y. D. Li, Selected-Control Hydrothermal Synthesis of a-and β-MnO2 Single Crystal Nanowires [J], J. Am. Chem. Soc. 2002, 124, 2880-2881.
    [31] Q. Yang, K. B. Tang, C. R. Wang, Y. T. Qian, S. Y. Zhang, PVA-Assisted Synthesis and Characterization of CdSe and CdTe Nanowires [J], J. Phys. Chem.B 2002, 106,9227-9230.
    [32] H. Wang, M. Simmonds, Y. Huang, J. Rodenburg, Synthesis of Nanosize Powders and Thin Films of Yb-Doped YAG by Sol-Gel Methods [J], Chem. Mater. 2003, 15,3474-3480.
    [33] G. Wu, L. Zhang, B. Cheng, T. Xie, X. Yuan, Synthesis of Eu_2O_3 Nanotube Arrays through a Facile Sol-Gel Template Approach [J], J. Am. Chem. Soc. 2004, 126, 5976-5977.
    [34] M. Maillard, S. Giorgio, M. P. Pileni, Silver Nanodisks [J], Adv. Mater. 2002, 14, 1084-1086.
    [35] N. Pinna, M. Willinger, K. Weiss, J. Urban, R. Schl(?)gl, Local Structure of Nanoscopic Materials: V_2O_5 Nanorods and Nanowires [J], Nano Lett. 2003, 3, 1131-1134.
    [36] F. M. Davidson, III, R. Wiacek, B. A. Korgel, Supercritical Fluid-Liquid-Solid Synthesis of Gallium Phosphide Nanowires [J], Chem. Mater. 2005, 17, 230-233.
    [37] J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y Qian, Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles [J], J. Phys. Chem. B 2005, 109, 9463-9467.
    [38] M. S. Mo, D. Wang, X. Du, J. Ma, X. Qian, D. Chen, Y. Qian, Engineering of Nanotips in ZnO Submicrorods and Patterned Arrays [J], Crystal Growth & Design, 2009, 9, 797-802.
    [39] J. Wu, F. Duan, Y Zheng, Y. Xie, Synthesis of Bi_2WO_6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light-Induced Photocatalytic Activity [J], J. Phys. Chem. C, 2007, 111, 12866-12871.
    [40] S. Jeon and P. V. Braun, Hydrothermal Synthesis of Er-Doped Luminescent TiO_2 Nanoparticles [J], Chem. Mater., 2003, 15, 1256-1263.
    [41] H. Cheng, J. Ma, Z. Zhao and L. Qi, Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles [J], Chem. Mater., 1995, 7, 663-671.
    [42] H. Yin, Y. Wada, T. Kitamura, T. Sumida, Y. Hasegawa and S. Yanagida, Novel Synthesis of Phase-Pure Nano-Particulate Anatase and Rutile TiO_2 Using TiCl_4 Aqueous Solutions [J], J. Mater. Chem., 2002, 12, 378-383.
    [43] T. Masui, H. Hirai, R. Hamada, N. Imanaka, G. Adachi, T. Sakata and H. Mori, Synthesis and Characterization of Cerium Oxide Nanoparticles Coated with Turbostratic Boron Nitride [J], J. Mater. Chem., 2003, 13, 622-627.
    [44] S. Thimmaiah, M. Rajamathi, N. Singh, P. Bera, F. Chandrasekhar and R. Seshadri, A Solvothermal Route to Capped Nanoparticles of γ-Fe_2O_3 and CoFe_2O_4 [J], J. Mater. Chem. 2001, 11, 3215-3221.
    [1] D. R. Clarke, Varistor Ceramics [J], J. Am. Ceram. Soc. 1999, 82, 485-502.
    [2] G. Shen, Y. Bando, D. Chen, B. Liu, C. Zhi, D. Golberg, Morphology-Controlled Synthesis of ZnO Nanostructures by a Simple Round-to-Round Metal Vapor Deposition Route [J], J. Phys. Chem. B 2006, 110,3973-3978.
    [3] M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, I. Kumagai, T. Adschiri, Bioassisted Room-Temperature Immobilization and Mineralization of Zinc Oxide - The Structural Ordering of ZnO Nanoparticles into a Flower-Type Morphology [J], Adv. Mater. 2005, 2571-2575.
    [4] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions [J], Chem. Mater. 2005, 17, 1001-1006.
    [5] X. Y. Kong, Z. L. Wang, Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts [J], Nanolett. 2003, 3, 1625-1631.
    [6] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature [J], Solid State Commun. 1997, 103,459-463.
    [7] Joshy Jose, M. Abdul Khadar, Role of grain boundaries on the electrical conductivity of nanophase zinc oxide [J], Mat. Sci. Eng. A 2001, 304-306, 810-813.
    [8] (?)zg(?)r, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices [J], J. Appl. Phys. 2005, 98, 041301-041305.
    [9] M. Liu, A. H. Kitai, P. Mascher, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese [J], J. Lumin. 1992, 54, 35-42.
    [10] X. Wen, Y. Fang, Q. Pang, C. Yang, J. Wang, W. Ge, K.S. Wong, S. Yang, ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications [J], J. Phys. Chem. B 2005, 109, 15303-15308.
    [11] C. Hsu, S. Yang, Y Tseng, I. Chen, Y. Lin, S. Chang, S. Wu, A New and Simple Means for Self-Assembled Nanostructure: Facilitated by Buffer Layer [J], J. Phys. Chem. B 2004, 108, 18799-18803.
    [12] Y. Jin, J. Wang, B. Sun, J. C. Blakesley, N.C. Greenham, Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles [J], Nano Lett. 2008, 8, 1649-1653.
    [13] K. J. Hartlieb, C. L. Raston, M. Saunders, Controlled Scalable Synthesis of ZnO Nanoparticles [J], Chem. Mater. 2007, 19, 5453-5459.
    [14] C. Jin, X. Yuan, W. Ge, J. Hong, X. Xin, Synthesis of ZnO nanorods by solid state reaction at room temperature [J], Nanotechnology 2003, 14, 667-669.
    [15] H.J. Fan, R. Scholz, A. Dadgar, A. Krost, M. Zacharias, A low-temperature evaporation route for ZnO nanoneedles and nanosaws [J], Appl. Phys. A 2005, 80, 457-460.
    [16] P. X. Gao, Y Ding, Z. L. Wang, Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst [J], Nano Lett. 2003, 1315-1320.
    [17] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport [J],Adv. Mater. 2001, 13, 113-116.
    [18] Y Xiao, L. Li, Y. Li, M. Fang, L. Zhang, Synthesis of mesoporous ZnO nanowires through a simple in situ precipitation method [J], Nanotechnology 2005, 16,671-675.
    [19] S. Ahn, J. Lee, H. Kim, S. Kim, B. Kang, K. Kim, G. Kim, Photoresponse of sol-gel-synthesized ZnO nanorods [J],Appl. Phys. Lett. 2004, 84, 5022-5024.
    [20] J. P. Singh, D. L. Liu, D. X. Ye, R. C. Picu, T. M. Lu, G. C. Wang, Metal-coated Si springs: Nanoelectromechanical actuators [J], Appl. Phys. Lett. 2004, 84, 3657-3659.
    [21] J. Lao, J. Wen, Z. Ren, Hierarchical ZnO Nanostructures [J], Nano Lett. 2002, 2, 1287-1291.
    [22] W. L. Hughes, Z. L. Wang, Nanobelts as nanocantilevers [J], Appl. Phys. Lett. 2003, 82, 2886-2888
    [23] X. D. Bai, P. X. Gao, Z. L. Wang, E. G. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts [J], Appl. Phys. Lett. 2003, 82, 4806-4808.
    [24] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches [J],Adv. Mater. 2002, 14, 158-160.
    [25] J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles [J], J. Phys. Chem. 5 2005, 109,9463-9467.
    [26] J. P. Hsu, Y. H. Hsieh, Moving of a nonhomogeneous, porous floc normal to a rigid plate [J], J. Colloid Interface Sci. 2004, 277, 309-316.
    [27] Y. Lin, Y. Tseng, S. Yang, S. Wu, C. Hsu, S. Chang, Buffer-Facilitated Epitaxial Growth of ZnO Nanowire [J], Crystal Growth & Design, 2005, 5, 579-583.
    [28] T. Sun, J. Qiu, C. Liang, Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays [J], J. Phys. Chem. C 2008, 112, 715-721.
    [29] Y. Sun, D. J. Riley, M. N. R. Ashfold, Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates [J], J. Phys. Chem. B 2006, 110,15186-15192.
    [30] F. Wang, L. Cao, A. Pan, R. Liu, X. Wang, X. Zhu, S. Wang, B. Zou, Synthesis of Tower-like ZnO Structures and Visible Photoluminescence Origins of Varied-Shaped ZnO Nanostructures [J], J. Phys. Chem. C 2007, 111, 7655-7660.
    [31] Z. Wang, X. Qian, J. Yin, Z. Zhu, Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route [J], Langmuir, 2004, 20, 3441-3448.
    [1] Z. Zhong, Y. Yin, B. Gates, Y. Xia, Preparation of Mesoscale Hollow Spheres of TiO_2 and SnO_2 by Templating Against Crystalline Arrays of Polystyrene Beads [J], Adv. Mater. 2000, 12, 206-209.
    [2] Y. Yin, Y Lu, B. Gates, Y Xia, Synthesis and Characterization of Mesoscopic Hollow Spheres of Ceramic Materials with Functionalized Interior Surfaces [J], Chem. Mater. 2001, 13, 1146-1148.
    [3] Z. Yang, Z. Niu, Y. Lu, Z. Hu, C. Hart, Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles [J], Angew. Chem. Int. Ed. 2003, 42, 1943-1945.
    [4] Z. Niu, Z. Yang, Z. Hu, Y. Lu., C.C. Han, Polyaniline-Silica Composite Conductive Capsules and Hollow Spheres [J], Adv. Funct. Mater. 2003, 13, 949-954.
    [5] D. Wang, F. Caruso, Polyelectrolyte-Coated Colloid Spheres as Templates for Sol-Gel Reactions [J], Chem. Mater. 2002, 14, 1909-1913.
    [6] J. Yin, X. Qian, J. Yin, M. Shi, J. Zhang, G. Zhao, Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells [J], Inorg. Chem. Commun. 2003, 6, 942-945.
    [7] S. Chah, J. H. Fendler, J. J.Yi, Nanostructured Gold Hollow Microspheres Prepared on Dissolvable Ceramic Hollow Sphere Templates [J], J. Colloid Interface Sci. 2002, 250, 142-148.
    [8] H Shiho, N. Kawahashi, Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres [J], J. Colloid Interface Sci. 2000, 226, 91-97.
    [9] C. Yu, B. Tian, J. Fan, G. D. Stucky, D. Y. Zhao, Synthesis of Siliceous Hollow Spheres with Ultra Large Mesopore Wall Structures by Reverse Emulsion Templating [J], Chem. Lett. 2002, 1, 62-63.
    [10] W. Li, X. Sha, W. Dong, Z. Wang, Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion [J], Chem. Commun. 2002, 20, 2434-2435.
    [11] V. Bommel, H.J. Jung, S. Shinkai, Poly(L-lysine) Aggregates as Templates for the Formation of Hollow Silica Spheres [J], Adv. Mater. 2001, 13, 1472-1476.
    [12] C.A. Mckelvey, E.W. Kaler, J.A Zasadzinski, B. Coldren, H. T. Jung, Templating Hollow Polymeric Spheres from Catanionic Equilibrium Vesicles: Synthesis and Characterization [J], Langmuir 2000, 16, 8285-8290.
    [13] J. Holz, W. Meier, Vesicle-Templated Polymer Hollow Spheres [J], Langmuir 1998,14,1031-1036.
    [14] P. Bruinsma, A. Kim, J. Liu, S. Baskaran, Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres [J], Chem. Mater. 1997,9,2507-2512.
    [15] M. Iida, T. Sasaki, M. Watanabe, Titanium Dioxide Hollow Microspheres with an Extremely Thin Shell [J], Chem. Mater. 1998, 10, 3780-3782.
    [16] J.J. Zhu, S. Xu, H. Wang, J.M. Zhu, H. Y. Chen, Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route [J], Adv. Mater. 2003, 15, 156-159.
    [17] J. Huang, Y. Xie, B. Li, Y. Liu, Y. Qian, S. Zhang, In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres [J], Adv. Mater. 2000, 12, 808-811.
    [18] Y. Hu, J. Chen, W. Chen, X. Lin, X. Li, Synthesis of Novel Nickel Sulfide Submicrometer Hollow Spheres [J],Adv. Mater. 2003, 15, 726-729.
    [19] J. Bao, Y Liang, Z. Xu, L. Si, Facile Synthesis of Hollow Nickel Submicrometer Spheres [J], Adv. Mater. 2003, 15, 1832-1835.
    [20] D. Zhang, L. Qi, J. Ma, H. Cheng, Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions [J], Adv. Mater. 2002, 14, 1499-1502.
    [21] L. Qi, J. Li, J. Ma, Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers [J], Adv. Mater. 2002, 14,300-303.
    [22] E. Muthusamy, D. Walsh, S. Mann, Morphosynthesis of Organoclay Microspheres with Sponge-like or Hollow Interiors [J], Adv. Mater. 2002, 14, 969-972.
    [23] F. Caruso, H. Lichtenfeld, M. Giersig, H. Mohwald, Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles [J], J. Am. Chem. Soc. 1998, 120, 8523-8524.
    [24] F. Caruso, R. Caruso, H. M(?)hwald, Production of Hollow Microspheres from Nanostructured Composite Particles, Chem. Mater. 1999, 11, 3309-3314.
    [25] D. Gittins, F. Caruso, Tailoring the Polyelectrolyte Coating of Metal Nanoparticles [J], J. Phys. Chem. B 2001, 105, 6846-6852.
    [26] R. Caruso, A. Susha, F. Caruso, Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres [J], Chem. Mater. 2001, 13, 400-409.
    [27] S. Kim, M. Kim, W. Lee, T. Hyeon, Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J], J. Am. Chem. Soc. 2002, 124, 7642-7643.
    [28] S. Moya, G. B. Sukhorukov, M. Auch, E. Donath, H. M(?)hwald, Microencapsulation of Organic Solvents in Polyelectrolyte Multilayer Micrometer-Sized Shells [J],J. Colloid Interface Sci. 1999, 216, 297-302.
    [29] F. Caruso, D. Trau, H. M(?)hwald, R. Renneberg, Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules [J], Langmuir 2000, 16, 1485-1488.
    [30] Y Xia, B. Gates, Y. Yin, Y Lu, Monodispersed Colloidal Spheres: Old Materials with New Applications [J], Adv. Mater. 2000, 12, 693-713.
    [31] J. Huang, Y Xie, B. Li, Y Liu, Y Qian, S. Zhang, In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres [J], Adv. Mater. 2000, 12, 808-811.
    [32] J. Bao, Y. Liang, Z. Xu, L. Si, Facile Synthesis of Hollow Nickel Submicrometer Spheres [J],Adv. Matter. 2003, 15, 1832-1835.
    [33] P. Tartaj, T. Gonzalez-Carre(?)o, C. J. Serna, Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties [J], Adv. Mater. 2001, 13, 1620-1624.
    [34] E. Baumeister, S. Klaeger, Advanced New Lightweight Materials: Hollow-Sphere Composites (HSCs) for Mechanical Engineering Applications [J], Adv. Eng. Mater. 2003, 5, 673-677.
    [35] P. Schuetz, F. Caruso, Copper-Assisted Weak Polyelectrolyte Multilayer Formation on Microspheres and Subsequent Film Crosslinking [J], Adv. Funct. Mater. 2003, 13,929-937.
    [36] E. Baumeister, S. Klaeger, Advanced New Lightweight Materials: Hollow-Sphere Composites (HSCs) for Mechanical Engineering Applications [J], Adv. Eng. Mater. 2003, 5, 673-677.
    [37] Z. Jiang, Z. Xie, X. Zhang, S. Lin, T. Xu, S. Xie, R. Huang, L. Zheng, Synthesis of Single-Crystalline ZnO Polyhedral Submicrometer-Sized Hollow Beads Using Laser-Assisted Growth with Ethanol Droplets as Soft Templates [J], Adv. Mater. 2004,16,904-907.
    [38] M. Mo, J. C. Yu, L. Zhang, S.-K. A. Li, Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres [J], Adv Mater. 2005, 17,756-760.
    [39] M.C. Neves, T. Trindade, A.M.B. Timmons, J.D. Pedrosa de Jesus, Synthetic hollow zinc oxide microparticles [J],Mater. Res. Bull. 2001, 36, 1099-1108.
    [40] X. Wang, P. Hu, Y. Fangli, L. Yu, Preparation and Characterization of ZnO Hollow Spheres and ZnO-Carbon Composite Materials Using Colloidal Carbon Spheres as Templates [J], J. Phys. Chem. C 2007, 111, 6706-6712.
    [41] W. J. Li, E. W. Shi, W. Z. Zhong, Z. Yin, Growth mechanism and growth habit of oxide crystals [J], J. Cryst. Growth 1999, 203, 186-196.
    [42] S. Y Yu, H. J. Zhang, Z. P. Peng, L. N. Sun, W. D. Shi, Template-Free Fabrication of Hexagonal ZnO Microprism with an Interior Space [J], Jnorg. Chem. 2007,46, 8019-8023.
    [1]J. Lei, C. S. Liu, F. B. Li, X. M. Li, S. G. Zhou, T. X. Liu, M. G. Guang, Q. T. Wu, Photodegradation of orange I in the heterogeneous iron oxide-oxalate comples system under UVA irradiation [J], J. Hazard. Mate. B 2006, 137, 1016-1024.
    [2]李茵,染料废水处理技术的研究进展[J],化工时刊 2005,19,60-63.
    [3]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode [J], Nature 1972, 37, 238-245.
    [4]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用[M],化学工业出版社,2002.
    [5]A. L. Linsebigler, G Q. Lu, J. T. Yates, Photocatalysis on TiO_2 Surface: Principles, Mechanisms, and Selected Results [J], Chem. Rev. 1995, 95, 735-758.
    [6]张彭义,余刚,蒋展鹏,半导体光催化剂及其改性技术进展[J],环境科学进展,1997,5,1-10.
    [7]于向阳,梁文,程继健,提高二氧化钛催化性能的途径[J],硅酸盐通报,2000,1,53-57.
    [8]张金龙,陈峰,何斌,光催化[M],华东理工大学出版社,2004.
    [9]臧竞存,谢丽艳,李晓,张东香,冯宝华,钨酸锌晶体的受激拉曼散射和光致发光研究[J],物理学报,2007,56,2689-2694.
    [10]Y. Wu, S. C. Zhang, L. W. Zhang, Y. F. Zhu, Photocatalytic Activity of Nanosized ZnWO_4 Prepared by the Sol-gel Method [J], Chem. Res. Chinese U. 2007, 23, 465-468.
    [11]冯锡淇,袁晖,钨酸铅闪烁晶体研究进展[J],无机材料学报,1996,11,385-395.
    [12]S. J. Chen, J. H. Zhou, X. T. Chen, J. Li, L. H. Li, J. M. Hong, Z. L. Xue, X. Z. You, Fabrication of nanocrystalline ZnWO_4 with different morphologies and sizes via hydrothermal route [J], Chemical Physics Letters, 2003, 375, 185-190.
    [13]李铭华,徐玉恒,金婵,刘景和,杨奎盛,Bi:ZnWO_4晶体的生长及其闪烁 性能研究[J],人工晶体学报,1994,23,240-242.
    [14] Y. Cui, C. M. Liber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks [J], Science 2001,291, 851-853.
    [15] A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots [J], Science 1996, 271,933-937.
    [16] M. Charles, Lieber, One-dimensional nanostructures: Chemistry, physics & applications [J], Solid State Communications 1998, 107, 607-616.
    [17] S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J], Science 2000, 287, 1989-1992.
    [18] Y. N. Xia, P. D. Yang, Y. G. Sun, Y Y Wu, B. Gates, Y D. Yin, F. Kim, H. Q. Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications [J], Adv. Mater. 2003, 15, 353-389.
    [19] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, H. J. Choi, Controlled Growth of ZnO Nanowires and Their Optical Properties [J], Adv. Funct. Mater. 2002, 12, 323-331.
    [20] P. X. Gao, Y. Ding, W. J. Mai, W. L. Hugher, C. S. Lao, Z. L. Wang, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices [J], Science 2005,309,1700-1704.
    [21] Z. W. Pan, Z. R. Dai, Z. L. Wang, Lead oxide nanobelts and phase transformation induced by electron beam irradiation [J],Appl. Phys. Lett. 2002, 80, 309-311.
    [22] Z. R. Dai, Z. W. Pan, Z. L. Wang, Gallium Oxide Nanoribbons and Nanosheets [J], J. Phys. Chem. B 2002, 106, 902-904.
    [23] Y Jiang, X. M. Meng, J. Liu, Z. Y Xie, C. S. Lee, S. T. Lee, Hydrogen-Assisted Thermal Evaporation Synthesis of ZnS Nanoribbons on a Large Scale [J], Adv. Mater. 2003, 15, 323-327.
    [24] H. Liu, H. M. Cui, F. Han, X. Li, J. Y. Wang, R. I. Boughton, Growth of Bi2Se3 Nanobelts Synthesized through a Co-Reduction Method under Ultrasonic Irradiation at Room Temperature [J], Cryst. Growth Des. 2005, 5, 1711-1714.
    [25] M. S. Mo, J. H. Zeng, X. M. Liu, W. C. Yu, S. Y. Zhang, Y T. Qian, Controlled Hydrothermal Synthesis of Thin Single-Crystal Tellurium Nanobelts and Nanotubes [J],Adv. Mater. 2002, 14, 1658-1662.
    [26] S. L. Ran, L. Gao, Synthesis of Nanocrystalline ZnWO_4 via Molten Salt Route and Its Photoluminescence [J], Chem. Lett. 2006, 35, 1312-1313.
    [27] M. Bonanni, L. Spanhel, M. Lerch, E. F€uglein, G. M€uller, Conversion of Colloidal ZnO-WO_3 Heteroaggregates into Strongly Blue Luminescing ZnWO_4 Xerogels and Films [J], Chem. Mater. 1998, 10, 304-310.
    [28] S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach [J], Adv. Fuc. Mater. 2003, 13, 639-647.
    [29] S. M. Lee, S. N. Cho, J. Cheon, Anisotropic Shape Control of Colloidal Inorganic Nanocrystals [J], Adv. Mater. 2003, 15, 441-444.
    [30] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Uniform Silver Nanowires Synthesis by Reducing AgNO_3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J], Chem. Mater. 2002, 14, 4736-4745.
    [31] S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, General Synthesis of Single-Crystal Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach [J], Adv. Fuc. Mater. 2003, 13, 639-647.
    [32] S. J. Chen, J. H. Zhou, X. T. Chen, J. Li, L. H. Li, J. M. Hong, Fabrication of nanocrystalline ZnWO_4 with different morphologies and sizes via hydrothermal route [J], Chem. Phys. Lett. 2003, 375, 185-190.
    [33] Y. Xiong, Z. Li, X. Li, B. Hu, Y. Xie, Thermally Stable Hematite Hollow Nanowires [J], Inorg. Chem. 2004, 43, 6540-6542.
    [34] H. B. Fu, J. Lin, L. W. Zhang, Y F. Zhu, Photocatalytic activities of a novel ZnWO_ 4 catalyst prepared by a hydrothermal process [J],Appl. Catal, A 2006, 306, 58-67.
    [35] Z. D. Lou, J. H. Hao, M. Cocivera, Luminescence of ZnWO_4 and CdWO_4 thin films prepared by spray pyrolysis [J], J. Lumin. 2002, 99, 349-354.
    [36] W. Meier, Polymer nanocapsules [J], Chem. Soc. Rev. 2000, 29, 295-303.
    [37] F. Caruso, Nanoengineering of Particle Surfaces [J], Adv. Mater. 2001, 13, 11-22.
    [38] A. Yu, Y. Wang, E. Barlow, F. Caruso, Mesoporous Silica Particles as Templates for Preparing Enzyme-Loaded Biocompatible Microcapsules [J], Adv. Mater. 2005, 17, 1737-1741.
    [39] Z. Yang, Z. Niu, Y. Lu, Z. Hu, C. C. Han, Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size onto Core-Shell Gel Particles [J], Angew. Chem. Int. Ed. 2003, 42, 1943-1945.
    [40] Y. Q. Sun, P. J. Kooyman, J. G. Grossmann, P. H. H. Bomans, P. M. Frederik, P. C. M. M. Magusin, T. P. M. Beelen, R. A. V. Santen, N. A. J. M. Sommerdijk, The Formation of Well-Defmed Hollow Silica Spheres with Multilamellar Shell Structure [J], Adv. Mater. 2003, 15, 1097-1100.
    [41] H. G. Yang, H. C. Zeng, Self-Construction of Hollow SnO_2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites [J], Angew. Chem. Int. Ed. 2004, 43, 5930-5933.
    [42] Y Zhang, G. Li, Y Wu, Y Luo, L. Zhang, The Formation of Mesoporous TiO_2 Spheres via a Facile Chemical Process [J], J. Phys. Chem. B 2005, 109, 5478-5481.
    [43] Y. Wang, Q. Zhu, H. Zhang, Fabrication of β-Ni(OH)_2 and NiO hollow spheres by a facile template-free process [J], Chem. Commun. 2005, 41, 5231-5233.
    [44] J. H. Huang, L. Gao, One-Step Fabrication of ZnWO_4 Hollow Spheres by Nanoparticle Aggregation and Ripening in Alcohol Solution [J], J. Am. Ceram. Soc. 2006, 89, 3877-3880.
    [45] J. B. Liang, J. W. Liu, Q. Xie, S. Bai, W. C. Yu, Y. T. Qian, Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles [J], J. Phys. Chem. B 2005, 109, 9463-9467.
    [46] Z. S. Pillai, P. V. Kamat, What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method? [J], J. Phys. Chem. B 2004, 108,945-951.
    [47] J. P. Hsu, Y. H. Hsieh, Moving of a nonhomogeneous, porous floc normal to a rigid plate [J], J. Colloid Interface Sci. 2004, 277, 309-316.
    [48] H. G Yang, H. C. Zeng, Preparation of Hollow Anatase TiO_2 Nanospheres via Ostwald Ripening [J], J. Phys. Chem. B 2004, 108, 3492-3495.
    [49] B. Liu, H. C. Zeng, Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors [J], Small 2005, 1, 566-571.
    [50] L. Jing, H. C. Zeng, Hollowing Sn-Doped TiO_2 Nanospheres via Ostwald Ripening [J], J. Am. Chem. Soc. 2007, 129, 15839-15847.
    [1] A. A. Annenkov, M. V. Korzhik, P. Lecoq, Lead tungstate scintillation material [J], Nucl. Instrum. Methods Phys. Res. A 2002, 490, 30-50.
    [2] Y. Zhang, N. Holzwarth, R. Williams, Electronic band structures of the scheelite materials CaMoO_4, CaWO_4, PbMoO_4, and PbWO_4 [J], Phys. Rev. B 1998, 57, 12738-12750.
    [3] Y. Chen, C. Shi, G. Hu, Influence of Sb doping on the luminescent properties of PbWO_4 single crystals [J], J. Appl. Phys. 2000, 87, 1503-1506.
    [4] L. Huo, Y. Chu, Controlled synthesis of PbWO_4 crystals via microemulsion-based solvothermal method [J],Mater. Lett. 2006, 60, 2675-2681.
    [5] C. An, K. Tang, G. Shen, C. Wang, Y. Qian, Hydrothermal preparation of luminescent PbWO_4 nanocrystallites [J], Mater. Lett. 2002, 57, 565-568.
    [6] J. Yang, C. Lu, H. Su, J. Ma, H. Cheng, L. Qi, Morphological and structural modulation of PbWO_4 crystals directed by dextrans [J], Nanotechnology 2008, 18, 1194-1201.
    [7] G. Zhou, M. L(?), F. Gu, D. Xu, D. Yuan, Morphology-controlled synthesis, characterization and growth mechanism of PbWO_4 nano and macrocrystals [J], J. Crystal Growth 2005, 276, 577-582.
    [8] J. Geng, D. Lu, J. Zhu, H. Chen, Antimony(Ⅲ)-Doped PbWO_4 Crystals with Enhanced Photoluminescence via a Shape-Controlled Sonochemical Route [J], J. Phys. Chem. B 2006, 110, 13777-13785.
    [9] D. Chen, G. Shen, K. Tang, Z. Liang, H. Zheng, AOT-Microemulsions-Based Formation and Evolution of PbWO_ 4 Crystals [J], J. Phys. Chem. B 2004, 108, 11280-11284.
    [10] Jeong Ho Ryu, Jong-Won Yoon, Kwang Bo Shim, Blue luminescence of nanocrystalline PbWO_4 phosphor synthesized via a citrate complex route assisted by microwave irradiation [J], Solid State Comm. 2005, 133, 657-661.
    [11] X. Hu, Y. Zhu, Morphology Control of PbWO_4 Nano- and Microcrystals via a Simple, Seedless, and High-Yield Wet Chemical Route [J], Langmuir 2004, 20, 1521-1523.
    [12] A.B. Campos, A.Z. Simoes, E. Longo, J.A. Varela, V.M. Longo, AT. de Figueiredo, F.S. de Vicente, F.S. de Vicente, A.C. Hemandes, Mechanisms behind blue, green, and red photoluminescence emissions in CaWO_4 and CaMoO_4 powders [J],Appl. Phys. Lett. 2007, 91, 051923-051925.
    [13] L.S. Cavalcante, J.C.Sczancoski, R.L. Tranquilin, MR. Joya, P.S. Pizani, J.A. Varela, E. Longo, BaMoO_4 powders processed in domestic microwave-hydrothermal: Synthesis, characterization and photoluminescence at room temperature [J], J. Phys. Chem. Solid. 2008, 69, 2674-2680.
    [14] S. Ganesamoorthy, Indranil Bhaumik, A. K. Karnal, V. K. Wadhawan, Optical, thermal and defect studies on PbWO_4 single crystals grown by the Czochralski method [J], J. Crys. Growth. 2004, 264, 320-326.
    [15] M. Cao, C. Hu, G. Peng, Y. Qi, E. Wang, Selected-Control Synthesis of PbO_2 and Pb_3O_4 Single-Crystalline Nanorods [J], J. Am. Chem. Soc. 2003, 125, 4982-4983.
    [16] Y. Lua, W. J. J. Fillmore, L. Yang, M. V. Lee, P. B. Savage, M. C. Asplund, M. R. Linford, First Reaction of a Bare Silicon Surface with Acid Chlorides and a One-Step Preparation of Acid Chloride Terminated Monolayers on Scribed Silicon [J], Langmuir 2005, 21, 6093-6096.
    [17] V Subramanian, W. W. Burke, H. Zhu, B. Wei, Novel Microwave Synthesis of Nanocrystalline SnO_2 and Its Electrochemical Properties [J], J. Phys. Chem. C 2008, 112,4550-4556.
    [18] Y. Liu, Y. Chu, Y Zhuo, M. Li, L. Li, L. Dong, Anion-Controlled Construction of CuO Honeycombs and Flowerlike Assemblies on Copper Foils [J], Cryst. Growth Des. 2007, 7, 467-470.
    [19] A. J. Houtepen, R. Koole, D. Vanmaekelbergh, J. Meeldijk, S. G Hickey, The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis [J], J. Am. Chem. Soc. 2006, 128, 6792-6793.
    
    [20] T. Herricks, J. Chen, Y. Xia, Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate [J], Nano Lett. 2004, 4,2367-2371.