非小细胞肺癌细胞凋亡过程中DR5表达调控的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非小细胞肺癌是一种非常恶性的癌症,五年存活率只有15%。治疗方式现在主要包括手术治疗,放射治疗,化学治疗等,其中,化学治疗是一种主要的治疗方式。我们利用非小细胞肺癌细胞为模型,研究小分子药物pemetrexed(培美曲塞)和salermide诱导细胞凋亡的分子机制。
     细胞凋亡信号通路主要包括线粒体介导的内源性凋亡通路以及死亡受体介导的外源性凋亡通路。促凋亡蛋白Bid可以介导外源性和内源性凋亡信号通路之间的联系。DR5(Death Receptor5,死亡受体5)是一个非常重要的TRAIL受体蛋白,可以激活外源性凋亡信号介导的凋亡通路。DR5通过与衔接蛋白FADD结合,招募下游蛋白pro-caspase-8,形成凋亡诱导信号复合体(Death-inducing signaling complex)并导致caspase-8的活化。一方面caspase-8可以激活下游效应蛋白caspase-3,-6,-7,诱导细胞凋亡。另一方面,在某些细胞中,caspase-8可以剪切活化Bid(形成tBid),活化的Bid从细胞质转移到线粒体并且活化线粒体介导的细胞凋亡信号转导途径。
     一些肿瘤治疗的药物可以特异性诱导肿瘤细胞中DR5的表达。异常表达的DR5在肿瘤凋亡方面起着重要的作用。细胞受到外界胁迫时,DR5可以在没有配体存在的条件下活化,激活细胞凋亡信号通路,导致细胞凋亡。此外,一些转录因子可以调控DR5表达,比如Spl, AP1, p53, NFkB, YYl以及CHOP。其中,CHOP可以结合到DR5启动子区域,诱导DR5表达。此外,CHOP在内质网应激(Endoplasmic Reticulum (ER) stress)信号转导通路中发挥了重要作用,CHOP在内质网应激信号通路中持续异常表达可以导致细胞周期阻滞和细胞凋亡。
     内质网应激是细胞对外界刺激作出的一种反应。静息状态下,内质网内的分子伴侣蛋白(Bip)与内质网膜上的感受器蛋白(IRE1α,PERK, ATF6)结合,保持内质网的稳态。当细胞持续受到外界胁迫时,大量的错误折叠蛋白产生并且会在内质网中累积,Bip与这些错误折叠蛋白结合并且释放内质网膜上的感受器蛋白,解离后的IRE1α,PERK以及ATF6活化以后可以介导内质网应激下游信号通路。
     首先,PERK与Bip解离以后可以通过二聚化以及磷酸化修饰激活,进而通过eIF2α (translation-initiation factor eIF2a)特异性增加ATF4的转录,ATF4可以调控下游基因的表达,比如ATF3, CHOP。ATF3(活化转录因子3)和ATF4(活化转录因子4)属于ATF/CREB家族成员(activating transcription factor/cyclic AMP response element binding protein (ATF/CREB) family),具有亮氨酸拉链结构域,可以调控内质网应激信号通路介导的细胞凋亡。
     除了PERK, IREl α和ATF6也是重要的存在于内质网膜上的内质网应激感受器蛋白。IREl α与Bip解离后二聚化并具有内切核糖核酸酶的活性。它可以移除XBP1mRNA中26个碱基内含子,活化的XBP1转移至细胞核并诱导下游基因的表达。另外,ATF6与Bip解离后从内质网上释放以后,通过高尔基体以及蛋白酶体SIP和S2P的修饰,变成具有活性形式的ATF6并移至细胞核,诱导下游靶向基因的表达。
     持续内质网信号通路的激活可以导致细胞凋亡。caspases的激活是细胞凋亡过程中的一个重要过程。正常状态下,caspases一般处于非活化状态。c-FLIP (cellular FLICE-inhibitory protein)是一个非常重要的凋亡抑制蛋白。死亡受体可以通过FADD(Fas associated death domain)招募caspase-8形成DISC(Death inducing signaling complex凋亡诱导信号复合体)。c-FLIP可以竞争性与FADD结合抑制caspase-8的活性。与此一致,下调c-FLIP表达可以增加死亡受体诱导细胞凋亡的概率。
     培美曲塞(pemetrexed)是一种抗叶酸代谢的化合物,临床上常与顺铂(cisplatin)联合作用治疗恶性间皮细胞瘤和晚期非小细胞肺癌。培美曲塞抑制嘌呤嘧啶代谢中所需要三种酶的活力,分别是胸苷酸合酶、二氢叶酸还原酶以及甘氨酰胺核苷酸甲酰转移酶。抑制DNA的合成,破坏细胞的生长。但是培美曲塞抑制细胞生长,促进细胞凋亡的具体分子机制还没有被明确阐述。本文的目标之一是阐述培美曲塞诱导非小细胞肺癌细胞凋亡的分子机制。
     我们研究发现培美曲塞可以上调死亡受体5(DR5)的表达,重组肿瘤坏子因子相关凋亡诱导配体(TRAIL)蛋白与培美曲塞具有协同作用,使用两种药物同时处理非小细胞肺癌细胞可以明显增加细胞凋亡的百分率。使用siRNA抑制DR5表达可以减弱培美曲塞诱导的细胞凋亡。这也进一步验证了DR5在其中的作用。此外,我们发现抑制C/EBP同源蛋白(CHOP)可以减少DR5表达。FLICE抑制蛋白(c-FLIP)是凋亡相关蛋白caspase-8的抑制剂,过表达c-FLIP降低培美曲塞诱导的细胞凋亡百分率。通过以上实验结果我们认为DR5和C-FLIP蛋白在培美曲塞诱导非小细胞肺癌细胞凋亡的过程中发挥了重要作用。
     利用非小细胞肺癌细胞作为模型,我们研究了另外一种小分子化合物对细胞凋亡的影响。Salermide是一种新合成的特异性抑制sirtuinl (sirtl)和sirtuin2(sirt2)的小分子化合物,虽然研究表明salermide可以诱导细胞凋亡,但是具体的分子机制仍然并不清楚。我们以中国高发的非小细胞肺癌(NSCLC)作为研究模型,发现salermide可以诱导死亡受体5(Death Receptor5)的表达上调,进而激活凋亡前体蛋白pro-caspase-8, pro-caspase-9以及凋亡效应蛋白caspase-3,导致多聚ADP核糖多聚糖(PARP)活性降低。进一步研究发现,内质网应激信号通路的激活在salermide诱导的NSCLC细胞凋亡中起到了重要作用。内质网应激蛋白IRE1-α, Bip, ATF3(活化转录因子3),ATF4(活化转录因子4),CHOP受salermide刺激表达上调,抑制Sirtl1和sirt2的表达也可以得到相同的结果。并且使用基因沉默方法分别抑制ATF3,ATF4和CHOP的表达后,salermide诱导非小细胞肺癌细胞的凋亡减弱。通过以上实验,我们认为salermide激活内质网应激信号通路,诱导ATF4, ATF3以及CHOP的表达,导致DR5水平上调,最终导致非小细胞肺癌细胞的凋亡。这项研究不但进一步验证了内质网应激信号通路以及DR5活性对于非小细胞肺癌细胞的凋亡起着重要的调控作用,为以DR5以及内质网应激信号通路蛋白作为分子靶标治疗非小细胞肺癌提供理论上的依据,并且发现同时抑制sirtuinl和sirtuin2可以诱导非小细胞肺癌细胞的凋亡。
     除了非小细胞肺癌,我们对卡波西肉瘤的发生机制进行了研究。卡波西肉瘤(Kaposi sarcoma)是一种恶性肿瘤,在非洲的一些国家,艾滋病患者以及免疫系统较弱的人群中发病率较高,并且有很高的致死率。卡波西肉瘤常发病于皮肤,粘膜以及淋巴结等部位。卡波西肉瘤疱疹病毒(Kaposi sarcoma-associated herpesvirus, KSHV, HHV-8)是引发卡波西肉瘤原因,卡波西肉瘤一般起源于内皮淋巴细胞。在免疫系统正常的人群中,卡波西肉瘤疱疹病毒感染不会引发疾病。在美国和欧洲的一些发达国家,高效抗逆转录病毒疗法(Highly active antiretroviral therapy (HAART))(?)能够有效治疗艾滋病人群中卡波西肉瘤患者,但是在非洲一些不发达的国家依旧有非常高的发病率和致死率。
     截止到目前,KSHV的致癌机制并不是非常清楚。KSHV编码的基因中,病毒G蛋白偶联受体(viral G-protein-coupled receptor (vGPCR))具有强烈的致癌性。它可以诱导内皮细胞的恶性转化。一些转基因老鼠模型,比如TIE2-tva内皮特异性vGPCR转基因老鼠,表明过表达vGPCR可以诱发KS样肿瘤。vGPCR是一种可以持续活化的非配体依赖性的七次跨膜蛋白。但是一些配体,比如CXCL1(chemokine (C-X-C motif) ligand1)以及CXCL3(chemokine (C-X-C motif) ligand3)可以增强vGPCR活性。
     vGPCR可以诱导内皮细胞的恶性转化。很多信号通路可以被vGPCR激活。比如vGPCR可以激活PI3K γ的活性并诱导肿瘤生成,NFkB在vGPCR诱导的肿瘤生成过程中也发挥了重要作用。此外,vGPCR可以诱导VEGF(vascular endothelial growth factor)的表达和分泌,促进血管生成。AKT, ERK, p38以及IKK β可以导致TSC/mTOR的活化以及HIF表达上调,激活VEGF。此外,小G蛋白在vGPCR信号转导过程中发挥了重要作用,比如Racl,抑制Racl活性可以阻止vGPCR诱导的NFkB, AP-1以及NFAT的活化,抑制肿瘤生成。异常表达Racl可以诱导KS样肿瘤生成。此外,在动物模型中,内皮特异性敲除Racl影响内皮细胞的功能和血管的发育。
     Hippo肿瘤抑制信号通路是一条重要的控制器官大小的信号通路。Hippo信号通路的失调会导致细胞增殖,肿瘤发生。Hippo信号通路的主要蛋白包括MST1/2, Latsl/2,以及YAP/TAZ. MST1/2活化Latsl/2后,磷酸化的Latsl/2可以抑制YAP/TAZ的活性,促进蛋白酶体依赖性的蛋白降解。相反,去磷酸化的YAP/TAZ定位在细胞核并且与TEAD家族转录因子结合,控制下游基因的表达,促进细胞存活和增殖。许多研究表明YAP/TAZ在癌症发生发展过程中起着非常重要的作用。稳定转基因过表达YAP的老鼠可以导致组织增生以及肿瘤发生。
     在很多种恶性肿瘤中发现YAP/TAZ异常表达并且定位于细胞核。因此,YAP/TAZ在肿瘤发生发展中发挥了重要作用。但是,调控YAP/TAZ的上游信号转导机制尚不清楚。我们研究发现在卡波西肉瘤中YAP/TAZ高度异常表达活化。KSHV编码的vGPCR通过调控Hippo信号通路导致肿瘤发生。抑制YAP/TAZ表达可以明显抑制vGPCR诱导的肿瘤形成。
     总之,我们的研究一方面阐述了小分子化合物诱导肿瘤细胞凋亡的分子机制,激活内质网应激信号通路在小分子诱导NSCLC细胞凋亡过程中起到重要作用,具体的分子机制需要进一步研究。另一方面通过对卡波西肉瘤研究,我们发现YAP/TAZ被卡波西肉瘤疱疹病毒激活并且在卡波西肉瘤的发生发展过程中起到重要作用。
Non-small cell lung carcinoma (NSCLC) is the most common cancer in the United States (>200,000cases/year), and carries a dismal5years15%survival. Surgery is available for a limited number of patients, and chemotherapy remains the mainstay of therapy for this disease. One part of this thesis is tried to figure out the mechanism of apoptosis in NSCLC cells induced by small molecular drugs, such as pemetrexed and salermide.
     There are two major apoptosis signalling pathways:the intrinsic mitochondria-mediated pathway and the extrinsic death receptor-induced pathway. The truncated form of the pro-apoptotic protein Bid serves as the cross-talk between these two pathways. Death Receptor5(DR5) is an important mediator of the extrinsic apoptotic signalling pathway. Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) binds DR5and preferentially induces apoptosis in transformed cells while sparing normal cells, in contradistinction to other mediators of programmed cell death such as TNF and FasL. DR5expression is inducible by cancer therapeutic and preventive agents, and up-regulation of DR5often explains induction of programmed cell death or augmentation of TRAIL-induced apoptosis. The trimeric activated DR5will recruit the adaptor molecule (FADD) and Pro-caspase-8to form death-inducing signaling complex (DISC). Caspase-8will be activated and lead to the activation of executioner caspases (caspase-3,-6, and-7) in type I cells. In type II cells, Bid was cleaved by the activated caspase-8and translocated from the cytoplasm to the mitochondria, leading to the apoptosis induced by mitochondria.
     In times of cellular stress, DR5expression can be induced without ligand-receptor interactions, resulting in a ligand-independent activation of the death receptor-mediated apoptotic signalling pathway. Some of the most powerful inducers of DR5transcription that circumvent TRAIL-DR5 interactions include high local concentrations of Sp1, AP1, p53, NFkB, YY1and C/EBP homologous protein (CHOP, also known as growth arrest and DNA damage gene153(GADD153)). CHOP is one of the most potent inducer of DR5and downstream apoptosis, and CHOP is frequently released during the endoplasmic reticulum (ER) stress response. CHOP is typically undetectable in physiological conditions; however, it is dramatically increased during periods of ER stress, resulting in cell cycle arrest and ultimately apoptosis.
     ER stress is one kind of signaling pathway in response to the stress. In non-stressed cells, Bip (the ER chaperone) binds to the luminal domains of the IRE1a, PERK and ATF6, which are the ER-stress sensors, remaining these proteins in an inactive state. When ER stress is induced by the accumulation of unfolded or misfolded proteins, Bip will combine with the proteins instead of binding with IRE1a, PERK and ATF6, which are major proteins of ER stress. The release of Bip leads to the activation of PERK by homodimerization and trans-autophosphorylation, which phosphorylates the translation-initiation factor elF2α and enhances the transcription of the ATF4mRNA. Some target genes, such as ATF3and CHOP, were induced by the activated ATF4.
     Both activating transcription factor3(ATF3) and activating transcription factor4(ATF4) belong to the activating transcription factor/cyclic AMP response element binding protein (ATF/CREB) family of basic region-leucine zipper (bZip) transcription factors. ATF3is an adaptive-response gene that participates in cellular processes by activating or repressing specific gene expression. Whereas previous studies have revealed that ATF4plays an important role in regulating CHOP, it is still unclear weather ATF3also plays an important role in CHOP, thereafter DR5regulation.
     Besides PERK, IRE1α and ATF6are also major effector proteins involved in ER stress. IRE1α dissociates with Bip and dimerization to induce the activity.26-base intron of XBP1mRNA will be removed by IRE1α and the active XBP1encodes the expression of ER stress target genes. In addition, the release of Bip allows ATF6to translocate to the Golgi apparatus and cleaved by the proteases S1P and S2P, resulting in the active ATF6fragment (ATF6p50), which will translocate to the nucleus and activate the transcription of ER stress target genes.
     A central step in the execution of apoptosis is the activation of caspases, which are widely present as inactive forms. Cellular FLICE-inhibitory protein (c-FLIP) is the pivotal protein that negatively modulates the caspase cascade. Specifically, caspase-8is activated by death receptors through Fas associated death domain (FADD) binding of the death inducing signalling complex (DISC). Thus, the primary role of c-FLIP is a specific inhibitor of death receptor-mediated apoptosis. Accordingly, down-regulation of c-FLIP confers sensitivity to death receptor-induced apoptosis. Although multiple splicing isoforms of c-FLIP mRNA have been reported, c-FLIPL and c-FLIPs, are major splicing variants detectable at the protein level and have been extensively characterised.
     Pemetrexed is a clinically available anti-folate therapeutic agent used in combination with cisplatin for the management of patients with malignant pleural mesothelioma and advanced non-small cell lung cancer. Pemetrexed inhibits three enzymes in purine and pyrimidine synthesis necessary for precursor DNA nucleotides which in turn disrupts growth and survival of normal and cancer cells. The mechanism by which pemetrexed induces apoptosis remains largely uncharacterised. In the current study, we examined the downstream effect of pemetrexed in inducing apoptosis in lung cancer cells. We showed that pemetrexed induced apoptosis via up-regulation of Death Receptor5(DR5), an important death receptor for tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL). In addition, we discovered a synergistic effect of combination pemetrexed and recombinant TRAIL in inducing apoptosis. Modulating DR5induction by small interfering RNA abrogated the ability of pemetrexed to induce apoptosis. In addition, silencing of C/EBP homologous protein (CHOP) expression reduced DR5expression, demonstrating that the transcriptional factor CHOP has a pivotal role on DR5 up-regulation following pemetrexed treatment. In addition, enforced expression of cellular FLICE-inhibitory protein (c-FLIP), a known inhibitor of caspase8, protected neoplastic cells from apoptosis despite pemetrexed and/or TRAIL therapy. This work demonstrates the efficacy and mechanistic underpinnings of pemetrexed-induced apoptosis, and they suggest pemetrexed may have clinical utility when used in combination with TRAIL for the management of patients with lung cancer.
     Another chemical we use is salermide, a reverse amide compound, which inhibits Sirtuin1(Sirt1) and Sirtuin2(Sirt2), has been shown to induce apoptosis in human cancer cells. The mechanism underlying cellular apoptotic signalling by salermide remains unclear. In this study, we show that salermide up-regulates the expression of death receptor5(DR5) in human non-small cell lung cancer (NSCLC) cells. Blocking DR5expression by gene silencing technology results in a decrease in activated forms of several pro-apoptotic proteins (caspase-8, caspase-9, caspase-3, PARP). Increasing DR5protein expression correlates with salermide-induced apoptosis in human NSCLC cells. We discovered that IRE-1a, Bip, activating transcription factor3(ATF3), activating transcription factor4(ATF4) and C/EBP homologous protein (CHOP) are induced by salermide, which suggests that DR5-dependent apoptosis is induced by endoplasmic reticulum stress. Moreover, knockdown of Sirt1and Sirt2expression resulted in up-regulation of ATF4, CHOP and DR5. Transfected NSCLC cells with ATF4, ATF3or CHOP siRNA results in a decline in proapoptotic proteins (such as caspase-8, caspase-9, caspase-3and PARP) despite salermide treatment. We demonstrate that salermide induces expression of ATF4, and ATF4up-regulates ATF3and subsequently modulates CHOP. This suggests that DR5is modulated by the ATF4-ATF3-CHOP axis in NSCLC after Sirt112inhibition or salermide treatment, indicating the importance of DR5up-regulation in apoptosis induced by Sirt1/2inhibition and elucidates the underlying mechanism in human NSCLC cells.
     Another research focus in my thesis is about the development of Kaposi sarcoma (KS), which occurs frequently in people living in Equatorial Africa. It is also a common cancer diagnosed in human immunodeficiency virus (HIV) carriers or patients under immunosuppression. KS is typically found on the skin, mouth, gastrointestinal tract, and lymph node. Growth rates and size of the tumor vary among patients, and can be life-threatening. Kaposi sarcoma-associated herpesvirus (KSHV, also referred to as HHV-8) has been identified as the infectious agent responsible for KS. The incidence of KS in HIV-infected individuals in the United States has been decreasing due to effective highly active antiretroviral therapy (HAART). However, it remains high morbidity and mortality in AIDS patients and some sub-Saharan African countries.
     KSHV encodes a viral G-protein-coupled receptor (vGPCR) that has been shown to be sufficient to induce neoplastic transformation of endothelial cells. vGPCR has high basal signaling activity, which can be further enhanced via ligands like CXCL1(chemokine (C-X-C motif) ligand1) and CXCL3(chemokine (C-X-C motif) ligand3). Mouse models, such as transgenic mice expressing vGPCR and endothelial-specific vGPCR gene transduction (TIE2-tva transgenic mice), have revealed that the vGPCR-induced tumors are remarkably similar to KS, suggesting vGPCR initiates KS. However, the precise molecular mechanism involved in KSHV-induced Kaposi sarcoma is still unclear.
     A complicated signaling network is mediated by vGPCR, which contributes to the oncogenic transform of endothelial cells. For example, Pl3Ky is activated by vGPCR and has an important role in vGPCR-induced sarcomagenesis, while NFkB plays a role in vGPCR-induced paracrine neoplasia. In addition, vGPCR dramatical amplification of VEGF secretion by avtivation of AKT, ERK, p38and IKKp, results in the TSC/mTOR activation and HIF upregulation. Furthermore, Heterotrimeric G-proteins are required to relay GPCR signals to downstream effectors. It has been reported small G protein Rac1is activated by vGPCR. Repressing Rac1expression blocks the induction of the NFκB, AP-1, and NFAT activity and inhibits vGPCR sarcomagenesis in vivo. Moreover, expression of Rac1is sufficient to generate KS-like tumors in mouse. Furthermore, the endothelial cell-specific animal model reveals that deletion of Rac1disrupts the endothelial cell function and vascular development.
     The Hippo tumor-suppressor pathway is fundamental in regulating organ size, and dysregulation promotes cell proliferation and tumorigenesis. Within the Hippo pathway, MST1/2kinases phosphorylate and activate the Lats1/2kinases, which in turn phosphorylate and inhibit the transcription co-activators YAP/TAZ. YAP and TAZ are transcription co-activators with oncogenic potential and their inhibition represents the major functional output of the Hippo pathway. Lats dependent phosphorylation inhibits YAP/TAZ by inducing nuclear exclusion and proteasome dependent degradation. On the contrary, dephosphorylated YAP/TAZ localize to the cell nucleus associating with TEAD family transcriptional factors (TEAD1-4) to stimulate gene expression, particularly genes involved in cell survival and proliferation. Extensive studies have demonstrated that YAP/TAZ play important roles in cancer development. For example, transgenic YAP expression in mice induces tissue overgrowth and tumorigenesis.
     Increased YAP/TAZ expression and/or nuclear localization are frequently observed in multiple human cancers. However, the mechanisms leading to YAP/TAZ activation in human cancers are largely unknown. In this report, we demonstrate that YAP and TAZ expression is highly elevated in Kaposi sarcoma. KSHV-encoded vGPCR signals through the Hippo pathway to induce oncogenic transformation. Also, downregulation of YAP/TAZ suppresses vGPCR-induced tumorigenesis, indicating a pivotal role of the Hippo pathway in the KS development.
     In summary, the thesis clarifies the molecular mechanism of apoptosis in NSCLC cells induced by small molecular drugs. Endoplasmic reticulum stress may be critical in this process. In Kaposi sarcoma, we find YAP/TAZ are activated by KSHV and contribute to KSHV-induced tumorigenesis.
引文
1. Cancer statistics. JAMA 2013; 310 (9):982.
    2. Ward E, Desantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics,2014. CA Cancer J Clin 2014.
    3. Beland MD, Wasser EJ, Mayo-Smith WW, Dupuy DE. Primary non-small cell lung cancer:review of frequency, location, and time of recurrence after radiofrequency ablation. Radiology 2010; 254 (1):301-307.
    4. Singhal S, Vachani A, Antin-Ozerkis D, Kaiser LR, Albelda SM. Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non-small cell lung cancer:a review. Clin Cancer Res 2005; 11 (11):3974-3986.
    5. Peto R, Darby S, Deo H et al.. Smoking, smoking cessation, and lung cancer in the UK since 1950:combination of national statistics with two case-control studies. BMJ 2000; 321 (7257):323-329.
    6. Morabia A, Szklo M. Re:Smoking and lung cancer:recent evidence and a discussion of some questions. Int J Epidemiol 2010; 39 (6):1676.
    7. Cornfield J, Haenszel W, Hammond EC et al.. Smoking and lung cancer:recent evidence and a discussion of some questions.1959. Int J Epidemiol 2009; 38 (5):1175-1191.
    8. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 1999; 91 (14):1194-1210.
    9. Adlkofer F. Lung cancer due to passive smoking--a review. Int Arch Occup Environ Health 2001; 74 (4):231-241.
    10. Ashkenazi A, Dixit VM. Death receptors:signaling and modulation. Science 1998; 281 (5381):1305-1308.
    11. Weber A, Kirejczyk Z, Besch R et al.. Proapoptotic signalling through Toll-like receptor-3 involves TRIF-dependent activation of caspase-8 and is under the control of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ 2010; 17 (6):942-951.
    12. Merino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy:present and future challenges. Expert Opin Ther Targets 2007; 11 (10):1299-1314.
    13. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003; 22 (56):9030-9040.
    14. Nigro JM, Baker SJ, Preisinger AC et al.. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342 (6250):705-708.
    15. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene:clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54 (18):4855-4878.
    16. Micheau O, Tschopp J. Induction of TNF receptor l-mediated apoptosis via two sequential signaling complexes. Cell 2003; 114 (2):181-190.
    17. Haas TL, Emmerich CH, Gerlach B et al.. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 2009; 36 (5):831-844.
    18. Ruegg C, Yilmaz A, Bieler G et al.. Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 1998; 4 (4):408-414.
    19. van der Veen AH, de Wilt JH, Eggermont AM et al.. TNF-alpha augments intratumoural concentrations of doxorubicin in TNF-alpha-based isolated limb perfusion in rat sarcoma models and enhances anti-tumour effects. Br J Cancer 2000; 82 (4):973-980.
    20. Deroose JP, van Geel AN, Burger JW, Eggermont AM, Verhoef C. Isolated limb perfusion with TNF-alpha and melphalan for distal parts of the limb in soft tissue sarcoma patients. J Surg Oncol 2012; 105 (6):563-569.
    21. Rossi CR, Pasquali S, Mocellin S et al.. Long-term results of melphalan-based isolated limb perfusion with or without low-dose TNF for in-transit melanoma metastases. Ann Surg Oncol 2010; 17 (11):3000-3007.
    22. Ogasawara J, Watanabe-Fukunaga R, Adachi M et al.. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364 (6440):806-809.
    23. Costelli P, Aoki P, Zingaro B et al.. Mice lacking TNFalpha receptors 1 and 2 are resistant to death and fulminant liver injury induced by agonistic anti-Fas antibody. Cell Death Differ 2003; 10 (9):997-1004.
    24. Schneider P, Holler N, Bodmer JL et al.. Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 1998; 187(8):1205-1213.
    25. Berg D, Lehne M, Muller N et al.. Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ 2007; 14 (12):2021-2034.
    26. Holler N, Tardivel A, Kovacsovics-Bankowski M et al.. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 2003; 23 (4):1428-1440.
    27. Eisele G, Roth P, Hasenbach K et al.. APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo. Neuro Oncol 2011; 13 (2):155-164.
    28. Verbrugge I, Wissink EH, Rooswinkel RW et al.. Combining radiotherapy with APO010 in cancer treatment. Clin Cancer Res 2009; 15 (6):2031-2038.
    29. Wiley SR, Schooley K, Smolak PJ et al.. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3 (6):673-682.
    30. Walczak H, Miller RE, Ariail K et al.. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5 (2):157-163.
    31. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2002; 2 (6):420-430.
    32. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003; 10 (1):66-75.
    33. Kischkel FC, Lawrence DA, Chuntharapai A et al.. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000; 12 (6):611-620.
    34. Merino D, Lalaoui N, Morizot A et al.. Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 2006; 26 (19):7046-7055.
    35. Ashkenazi A, Pai RC, Fong S et al.. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104 (2):155-162.
    36. Nieminen Al, Partanen Jl, Hau A, Klefstrom J. c-Myc primed mitochondria determine cellular sensitivity to TRAIL-induced apoptosis. Embo J 2007; 26 (4):1055-1067.
    37. Nesterov A, Nikrad M, Johnson T, Kraft AS. Oncogenic Ras sensitizes normal human cells to tumor necrosis factor-alpha-related apoptosis-inducing ligand-induced apoptosis. Cancer Res 2004; 64 (11):3922-3927.
    38. Lawrence D, Shahrokh Z, Marsters S et al.. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001; 7 (4):383-385.
    39. Hymowitz SG, Christinger HW, Fuh G et al.. Triggering cell death:the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999;4(4):563-571.
    40. Hymowitz SG, O'Connell MP, Ultsch MH et al.. A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry-Us 2000; 39 (4):633-640.
    41. Bodmer JL, Meier P, Tschopp J, Schneider P. Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem 2000; 275 (27):20632-20637.
    42. Jo M, Kim TH, Seol DW et al.. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 2000; 6 (5):564-567.
    43. Pan Y, Xu R, Peach M et al.. Evaluation of pharmacodynamic biomarkers in a Phase 1a trial of dulanermin (rhApo2L/TRAIL) in patients with advanced tumours. Br J Cancer 2011; 105 (12):1830-1838.
    44. Herbst RS, Eckhardt SG, Kurzrock R et al.. Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 2010; 28 (17):2839-2846.
    45. Bagnoli M, Canevari S, Mezzanzanica D. Cellular FLICE-inhibitory protein (c-FLIP) signalling:a key regulator of receptor-mediated apoptosis in physiologic context and in cancer. Int J Biochem Cell Biol 2010; 42 (2):210-213.
    46. Micheau O. Cellular FLICE-inhibitory protein:an attractive therapeutic target? Expert Opin Ther Targets 2003; 7 (4):559-573.
    47. Safa AR, Pollok KE. Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy. Cancers (Basel) 2011; 3 (2):1639-1671.
    48. Safa AR, Day TW, Wu CH. Cellular FLICE-like inhibitory protein (C-FLIP):a novel target for cancer therapy. Curr Cancer Drug Targets 2008; 8 (1):37-46.
    49. Ueffing N, Singh KK, Christians A et al.. A single nucleotide polymorphism determines protein isoform production of the human c-FLIP protein. Blood 2009; 114 (3):572-579.
    50. Su L, Liu G, Hao X et al.. Death receptor 5 and cellular FLICE-inhibitory protein regulate pemetrexed-induced apoptosis in human lung cancer cells. EurJ Cancer 2011; 47 (16):2471-2478.
    51. Haag C, Stadel D, Zhou S et al.. Identification of c-FLIP(L) and c-FLIP(S) as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut 2011; 60 (2):225-237.
    52. McCourt C, Maxwell P, Mazzucchelli R et al.. Elevation of c-FLIP in castrate-resistant prostate cancer antagonizes therapeutic response to androgen receptor-targeted therapy. Clin Cancer Res 2012; 18 (14):3822-3833.
    53. Yang JK. FLIP as an anti-cancer therapeutic target. Yonsei Med J 2008; 49(1):19-27.
    54. Budd RC, Yeh WC, Tschopp J. cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol 2006; 6 (3):196-204.
    55. Panner A, Murray JC, Berger MS, Pieper RO. Heat shock protein 90alpha recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res 2007; 67 (19):9482-9489.
    56. Abedini MR, Muller EJ, Bergeron R, Gray DA, Tsang BK. Akt promotes chemoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependent ubiquitination of FLICE-like inhibitory protein. Oncogene 2010; 29(1):11-25.
    57. Abedini MR, Muller EJ, Brun J et al.. Cisplatin induces p53-dependent FLICE-like inhibitory protein ubiquitination in ovarian cancer cells. Cancer Res 2008; 68 (12):4511-4517.
    58. Gonen N, Assaraf YG. Antifolates in cancer therapy:structure, activity and mechanisms of drug resistance. Drug Resist Updat 2012; 15 (4):183-210.
    59. Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed:biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther 2007;6(2):404-417.
    60. Genova C, Rijavec E, Truini A et al.. Pemetrexed for the treatment of non-small cell lung cancer. Expert Opin Pharmacother 2013; 14 (11):1545-1558.
    61. Ceppi P, Volante M, Saviozzi S et al.. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 2006; 107 (7):1589-1596.
    62. Manegold C, Gatzemeier U, von Pawel J et al.. Front-line treatment of advanced non-small-cell lung cancer with MTA (LY231514, pemetrexed disodium, ALIMTA) and cisplatin:a multicenter phase II trial. Ann Oncol 2000; 11 (4):435-440.
    63. Shepherd FA, Dancey J, Arnold A et al.. Phase Ⅱ study of pemetrexed disodium, a multitargeted antifolate, and cisplatin as first-line therapy in patients with advanced nonsmall cell lung carcinoma:a study of the National Cancer Institute of Canada Clinical Trials Group. Cancer 2001; 92 (3):595-600.
    64. Zinner RG, Fossella FV, Gladish GW et al.. Phase II study of pemetrexed in combination with carboplatin in the first-line treatment of advanced nonsmall cell lung cancer. Cancer 2005; 104 (11):2449-2456.
    65. Hanauske AR, Chen V, Paoletti P, Niyikiza C. Pemetrexed disodium:a novel antifolate clinically active against multiple solid tumors. Oncologist 2001;6(4):363-373.
    66. Teicher BA, Chen V, Shih C et al.. Treatment regimens including the multitargeted antifolate LY231514 in human tumor xenografts. Clin Cancer Res 2000; 6 (3):1016-1023.
    67. Fisher TC, Milner AE, Gregory CD et al.. bcl-2 modulation of apoptosis induced by anticancer drugs:resistance to thymidylate stress is independent of classical resistance pathways. Cancer Res 1993; 53 (14):3321-3326.
    68. Ramirez JM, Ocio EM, San MJ, Pandiella A. Pemetrexed acts as an antimyeloma agent by provoking cell cycle blockade and apoptosis. Leukemia 2007; 21 (4):797-804.
    69. Lu X, Errington J, Curtin NJ, Lunec J, Newell DR. The impact of p53 status on cellular sensitivity to antifolate drugs. Clin Cancer Res 2001; 7 (7):2114-2123.
    70. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6 (1):38-51.
    71. Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007; 26 (37):5541-5552.
    72. Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene 2007; 26 (37):5420-5432.
    73. Marks PA. Discovery and development of SAHA as an anticancer agent. Oncogene 2007; 26 (9):1351-1356.
    74. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell 2006; 126 (2):257-268.
    75. Vaquero A, Scher M, Lee D et al.. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16 (1):93-105.
    76. Pruitt K, Zinn RL, Ohm JE et al.. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet 2006; 2 (3):e40.
    77. Fraga MF, Esteller M. Epigenetics and aging:the targets and the marks. Trends Genet 2007; 23 (8):413-418.
    78. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11 (2):437-444.
    79. Vaquero A, Scher MB, Lee DH et al.. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 2006; 20 (10):1256-1261.
    80. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 2002; 277 (47):45099-45107.
    81. Avalos JL, Bever KM, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide:altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 2005; 17 (6):855-868.
    82. Lara E, Mai A, Calvanese V et al.. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 2009; 28 (6):781-791.
    83. Wen KW, Damania B. Kaposi sarcoma-associated herpesvirus (KSHV):molecular biology and oncogenesis. Cancer Lett 2010; 289 (2):140-150.
    84. Flore O, Rafii S, Ely S et al.. Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 1998; 394 (6693):588-592.
    85. Mesri EA, Cesarman E, Boshoff C. Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 2010; 10 (10);707-719.
    86. Lanternier F, Lebbe C, Schartz N et al.. Kaposi's sarcoma in HIV-negative men having sex with men. Aids 2008; 22 (10):1163-1168.
    87. Lodi S, Guiguet M, Costagliola D et al.. Kaposi sarcoma incidence and survival among HIV-infected homosexual men after HIV seroconversion. J Natl Cancer Inst 2010; 102 (11):784-792.
    88. Chang Y, Cesarman E, Pessin MS et al.. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 1994; 266 (5192):1865-1869.
    89. Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 2003; 67 (2):175-212.
    90. Moore PS, Chang Y. Molecular virology of Kaposi's sarcoma-associated herpesvirus. Philos Trans R Soc Lond B Biol Sci 2001; 356(1408):499-516.
    91. Cesarman E. The role of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in lymphoproliferative diseases. Recent Results Cancer Res 2002; 159:27-37.
    92. Ganem D. KSHV-induced oncogenesis.2007.
    93. Hong YK, Foreman K, Shin JW et al.. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 2004; 36 (7):683-685.
    94. Wang HW, Trotter MW, Lagos D et al.. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 2004; 36 (7):687-693.
    95. Kaaya EE, Parravicini C, Ordonez C et al.. Heterogeneity of spindle cells in Kaposi's sarcoma:comparison of cells in lesions and in culture. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 10 (3):295-305.
    96. Sturzl M, Brandstetter H, Zietz C et al.. Identification of interleukin-1 and platelet-derived growth factor-B as major mitogens for the spindle cells of Kaposi's sarcoma:a combined in vitro and in vivo analysis. Oncogene 1995; 10(10):2007-2016.
    97. Weich HA, Salahuddin SZ, Gill P et al.. AIDS-associated Kaposi's sarcoma-derived cells in long-term culture express and synthesize smooth muscle alpha-actin. Am J Pathol 1991; 139 (6):1251-1258.
    98. Harrison AC, Kahn LB. Myogenic cells in Kaposi's sarcoma:an ultrastructural study. J Pathol 1978; 124 (3):157-160.
    99. Ciufo DM, Cannon JS, Poole LJ et al.. Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus:formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J Virol 2001; 75 (12):5614-5626.
    100. Qian LW, Greene W, Ye F, Gao SJ. Kaposi's sarcoma-associated herpesvirus disrupts adherens junctions and increases endothelial permeability by inducing degradation of VE-cadherin. J Virol 2008; 82 (23):11902-11912.
    101. Tomescu C, Law WK, Kedes DH. Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi's sarcoma-associated herpesvirus. J Virol 2003; 77 (17):9669-9684.
    102. Mansouri M, Douglas J, Rose PP et al.. Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells. Blood 2006; 108 (6):1932-1940.
    103. Mansouri M, Rose PP, Moses AV, Fruh K. Remodeling of endothelial adherens junctions by Kaposi's sarcoma-associated herpesvirus. J Virol 2008; 82 (19):9615-9628.
    104. Grossmann C, Podgrabinska S, Skobe M, Ganem D. Activation of NF-kappaB by the latent vFLIP gene of Kaposi's sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J Virol 2006; 80 (14):7179-7185.
    105. Thurau M, Marquardt G, Gonin-Laurent N et al.. Viral inhibitor of apoptosis vFLIP/K13 protects endothelial cells against superoxide-induced cell death. J Virol 2009; 83 (2):598-611.
    106. Alkharsah KR, Singh VV, Bosco R et al.. Deletion of Kaposi's sarcoma-associated herpesvirus FLICE inhibitory protein, vFLIP, from the viral genome compromises the activation of STAT1-responsive cellular genes and spindle cell formation in endothelial cells. J Virol 2011; 85 (19):10375-10388.
    107. Carroll PA, Brazeau E, Lagunoff M. Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology 2004; 328 (1):7-18.
    108. Wagner DD, Olmsted JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 1982;95(1):355-360.
    109. Feng H, Sun Z, Farzan MR, Feng P. Sulfotyrosines of the Kaposi's sarcoma-associated herpesvirus G protein-co up led receptor promote tumorigenesis through autocrine activation. J Virol 2010; 84 (7):3351-3361.
    110. Rosenkilde MM, Waldhoer M, Luttichau HR, Schwartz TW. Virally encoded 7TM receptors. Oncogene 2001; 20 (13):1582-1593.
    111. Sodhi A, Montaner S, Gutkind JS. Does dysregulated expression of a deregulated viral GPCR trigger Kaposi's sarcomagenesis? Faseb J 2004; 18 (3):422-427.
    112. Montaner S, Sodhi A, Molinolo A et al.. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 2003;3(1):23-36.
    113. Jensen KK, Manfra DJ, Grisotto MG et al.. The human herpes virus 8-encoded chemokine receptor is required for angioproliferation in a murine model of Kaposi's sarcoma. J Immunol 2005; 174 (6):3686-3694.
    114. Mutlu AD, Cavallin LE, Vincent L et al.. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV:a cell and animal model of virally induced Kaposi's sarcoma. Cancer Cell 2007; 11 (3):245-258.
    115. Guo HG, Sadowska M, Reid W et al.. Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 2003; 77 (4):2631-2639.
    116. Yang TY, Chen SC, Leach MW et al.. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 2000; 191 (3):445-454.
    117. Polson AG, Wang D, DeRisi J, Ganem D. Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus. Cancer Res 2002; 62 (15):4525-4530.
    118. Cannon M, Philpott NJ, Cesarman E. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 2003; 77 (1):57-67.
    119. Cannon ML, Cesarman E. The KSHV G protein-coupled receptor signals via multiple pathways to induce transcription factor activation in primary effusion lymphoma cells. Oncogene 2004; 23 (2):514-523.
    120. Pati S, Foulke JJ, Barabitskaya O et al.. Human herpesvirus
    8-encoded vGPCR activates nuclear factor of activated T cells and collaborates with human immunodeficiency virus type 1 Tat. J Virol 2003; 77 (10):5759-5773.
    121. Baan R, Grosse Y, Straif K et al.. A review of human carcinogens--Part F:chemical agents and related occupations. Lancet Oncol 2009; 10 (12):1143-1144.
    122. de Martel C, Ferlay J, Franceschi S et al.. Global burden of cancers attributable to infections in 2008:a review and synthetic analysis. Lancet Oncol 2012; 13(6):607-615.
    123. Zur HH. The search for infectious causes of human cancers:where and why (Nobel lecture). Angew Chem Int Ed Engl 2009; 48 (32):5798-5808.
    124. Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 1995; 9 (5):534-546.
    125. Xu T, Wang W, Zhang S, Stewart RA, Yu W. Identifying tumor suppressors in genetic mosaics:the Drosophila lats gene encodes a putative protein kinase. Development 1995; 121 (4):1053-1063.
    126. Kango-Singh M, Nolo R, Tao C et al.. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 2002; 129 (24):5719-5730.
    127. Tapon N, Harvey KF, Bell DW et al.. Salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 2002; 110 (4):467-478.
    128. Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 2003; 114(4):457-467.
    129. Jia J, Zhang W, Wang B, Trinko R, Jiang J. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev 2003; 17 (20):2514-2519.
    130. Pantalacci S, Tapon N, Leopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 2003; 5 (10):921-927.
    131. Udan RS, Kango-Singh M, Nolo R, Tao C, Halder G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 2003;5(10):914-920.
    132. Wu S, Huang J, Dong J, Pan D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and warts. Cell 2003; 114 (4):445-456.
    133. Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005; 122 (3):421-434.
    134. Lai ZC, Wei X, Shimizu T et al.. Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 2005; 120 (5):675-685.
    135. Goulev Y, Fauny JD, Gonzalez-Marti B et al.. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 2008; 18 (6):435-441.
    136. Wu S, Liu Y, Zheng Y, Dong J, Pan D. The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 2008; 14 (3):388-398.
    137. Zhang L, Ren F, Zhang Q et al.. The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 2008; 14 (3):377-387.
    138. Zhao B, Ye X, Yu J et al.. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 2008; 22 (14):1962-1971.
    139. Pan D. The hippo signaling pathway in development and cancer. Dev Cell 2010; 19 (4):491-505.
    140. Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis:an updated version. Genes Dev 2010; 24 (9):862-874.
    141. Alarcon C, Zaromytidou Al, Xi Q et al.. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 2009; 139(4):757-769.
    142. Varelas X, Sakuma R, Samavarchi-Tehrani P et al.. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol 2008; 10 (7):837-848.
    143. Ferrigno O, Lallemand F, Verrecchia F et al.. Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 2002; 21 (32):4879-4884.
    144. Murakami M, Nakagawa M, Olson EN, Nakagawa O. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci U S A 2005; 102 (50):18034-18039.
    145. Rosenbluh J, Nijhawan D, Cox AG et al.. beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 2012; 151 (7):1457-1473.
    146. Yagi R, Chen LF, Shigesada K, Murakami Y, Ito Y. A WW domain-containing yes-associated protein (YAP) is a novel transcriptional co-activator. Embo J 1999; 18 (9):2551-2562.
    147. Strano S, Munarriz E, Rossi M et al.. Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 2001; 276 (18):15164-15173.
    148. Kanai F, Marignani PA, Sarbassova D et al.. TAZ:a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. Embo J 2000; 19 (24):6778-6791.
    149. Dong J, Feldmann G, Huang J et al.. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130 (6):1120-1133.
    150. Zhao B, Wei X, Li W et al.. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev2007; 21 (21):2747-2761.
    151. Lei QY, Zhang H, Zhao B et al.. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 2008; 28 (7):2426-2436.
    152. Liu CY, Zha ZY, Zhou X et al.. The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 2010; 285 (48):37159-37169.
    153. Koontz LM, Liu-Chittenden Y, Yin F et al.. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 2013; 25 (4):388-401.
    154. Guo T, Lu Y, Li P et al.. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 2013; 23 (10):1201-1214.
    155. Johnson R, Halder G. The two faces of Hippo:targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2014; 13(1):63-79.
    156. Halder G, Johnson RL. Hippo signaling:growth control and beyond. Development 2011; 138(1):9-22.
    157. Staley BK, Irvine KD. Hippo signaling in Drosophila:recent advances and insights. Dev Dyn 2012; 241 (1):3-15.
    158. Genevet A, Tapon N. The Hippo pathway and apico-basal cell polarity. Biochem J 2011; 436 (2):213-224.
    159. Ramos A, Camargo FD. The Hippo signaling pathway and stem cell biology. Trends Cell Biol 2012; 22 (7):339-346.
    160. Yu FX, Guan KL. The Hippo pathway:regulators and regulations. Genes Dev 2013; 27 (4):355-371.
    161. Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer 2013; 13 (4):246-257.
    162. Camargo FD, Gokhale S, Johnnidis JB et al.. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 2007; 17 (23):2054-2060.
    163. Overholtzer M, Zhang J, Smolen GA et al.. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 2006; 103 (33):12405-12410.
    164. Zender L, Spector MS, Xue W et al.. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 2006; 125 (7):1253-1267.
    165. Steinhardt AA, Gayyed MF, Klein AP et al.. Expression of Yes-associated protein in common solid tumors. Hum Pathol 2008; 39 (11):1582-1589.
    166. Chan SW, Lim CJ, Guo K et al.. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res 2008; 68 (8):2592-2598.
    167. Fernandez-L A, Northcott PA, Dalton J et al.. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev 2009; 23 (23):2729-2741.
    168. Xu MZ, Yao TJ, Lee NP et al.. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 2009; 115 (19):4576-4585.
    169. Cai J, Zhang N, Zheng Y et al.. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 2010;24(21):2383-2388.
    170. Grusche FA, Degoutin JL, Richardson HE, Harvey KF. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 2011; 350 (2):255-266.
    171. Staley BK, Irvine KD. Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 2010; 20 (17):1580-1587.
    172. Shaw RL, Kohlmaier A, Polesello C et al.. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 2010; 137 (24):4147-4158.
    173. Karpowicz P, Perez J, Perrimon N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 2010; 137 (24):4135-4145.
    174. Ren F, Wang B, Yue T et al.. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 2010; 107 (49):21064-21069.
    175. Xin M, Kim Y, Sutherland LB et al.. Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 2013; 110 (34):13839-13844.
    176. Heallen T, Morikawa Y, Leach J et al.. Hippo signaling impedes adult heart regeneration. Development 2013; 140 (23):4683-4690.
    177. Sun G, Irvine KD. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev Biol 2011; 350 (1):139-151.
    178. Schroeder MC, Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin Cell Dev Biol 2012; 23 (7):803-811.
    179. Varelas X, Samavarchi-Tehrani P, Narimatsu M et al.. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev Cell 2010; 19 (6):831-844.
    180. Chen CL, Gajewski KM, Hamaratoglu F et al.. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc Natl Acad Sci U S A 2010; 107 (36):15810-15815.
    181. Robinson BS, Huang J, Hong Y, Moberg KH. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein Expanded. Curr Biol 2010; 20 (7):582-590.
    182. Grzeschik NA, Parsons LM, Allott ML, Harvey KF, Richardson HE. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr Biol 2010; 20 (7):573-581.
    183. Ling C, Zheng Y, Yin F et al.. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc Natl Acad Sci U S A 2010; 107 (23):10532-10537.
    184. Chan SW, Lim CJ, Chong YF et al.. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem 2011; 286 (9):7018-7026.
    185. Hirate Y, Hirahara S, Inoue K et al.. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 2013; 23 (13):1181-1194.
    186. Zhao B, Li L, Lu Q et al.. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 2011; 25 (1):51-63.
    187. Wang W, Huang J, Chen J. Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem 2011; 286 (6):4364-4370.
    188. Paramasivam M, Sarkeshik A, Yates JR, Fernandes MJ, McCollum D. Angiomotin family proteins are novel activators of the LATS2 kinase tumor suppressor. Mol Biol Cell 2011; 22 (19):3725-3733.
    189. Yi C, Troutman S, Fera D et al.. A tight junction-associated Merlin-angiomotin complex mediates Merlin's regulation of mitogenic signaling and tumor suppressive functions.Cancer Cell 2011; 19 (4):527-540.
    190. Yi C, Shen Z, Stemmer-Rachamimov A et al.. The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Sci Signal 2013; 6 (291):a77.
    191. Boggiano JC, Vanderzalm PJ, Fehon RG. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell 2011; 21 (5):888-895.
    192. Poon CL, Lin Jl, Zhang X, Harvey KF. The sterile 20-like kinase Tao-1 controls tissue growth by regulating the Salvador-Warts-Hippo pathway. Dev Cell 2011; 21 (5):896-906.
    193. Huang HL, Wang S, Yin MX et al.. Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-salvador association. PLoS Biol 2013; 11 (8):e1001620.
    194. Genevet A, Wehr MC, Brain R, Thompson BJ, Tapon N. Kibra is a regulator of the Salvador/Warts/Hippo signaling network. Dev Cell 2010; 18 (2):300-308.
    195. Yu J, Zheng Y, Dong J et al.. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 2010; 18 (2):288-299.
    196. Baumgartner R, Poernbacher Ⅰ, Buser N, Hafen E, Stocker H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell 2010; 18 (2):309-316.
    197. Hamaratoglu F, Willecke M, Kango-Singh M et al.. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 2006; 8 (1):27-36.
    198. Sansores-Garcia L, Bossuyt W, Wada K et al.. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. Embo J 2011;30(12):2325-2335.
    199. Fernandez BG, Gaspar P, Bras-Pereira C et al.. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 2011; 138 (11):2337-2346.
    200. Dupont S, Morsut L, Aragona M et al.. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474 (7350):179-183.
    201. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development 2011; 138 (18):3907-3914.
    202. Zhao B, Li L, Wang L et al.. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 2012; 26(1):54-68.
    203. Mo JS, Yu FX, Gong R, Brown JH, Guan KL. Regulation of the Hippo-YAP pathway by protease-activated receptors (PARs). Genes Dev 2012; 26(19):2138-2143.
    204. Yu FX, Zhao B, Panupinthu N et al.. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 2012; 150 (4):780-791.
    205. Miller E, Yang J, DeRan M et al.. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem Biol 2012;19(8):955-962.
    206. Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A 2011; 108 (29):11930-11935.
    207. Schlegelmilch K, Mohseni M, Kirak O et al.. Yap1 acts downstream of alpha-catenin to control epidermal proliferation. Cell 2011; 144 (5):782-795.
    208. Silvis MR, Kreger BT, Lien WH et al.. alpha-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 2011; 4 (174):a33.
    209. Das TM, Feng Y, Jagannathan R et al.. Ajuba LIM proteins are negative regulators of the Hippo signaling pathway. Curr Biol 2010; 20 (7):657-662.
    210. Rauskolb C, Pan G, Reddy BV, Oh H, Irvine KD. Zyxin links fat signaling to the hippo pathway. PLoS Biol 2011; 9 (6):e1000624.
    211. Cordenonsi M, Zanconato F, Azzolin L et al.. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147 (4):759-772.
    212. Imanaka Y, Tsuchiya S, Sato F et al.. MicroRNA-141 confers resistance to cisplatin-induced apoptosis by targeting YAP1 in human esophageal squamous cell carcinoma. J Hum Genet 2011; 56 (4):270-276.
    213. Kawahara M, Hori T, Chonabayashi K et al.. Kpm/Lats2 is linked to chemosensitivity of leukemic cells through the stabilization of p73. Blood 2008; 112 (9):3856-3866.
    214. Lai D, Ho KC, Hao Y, Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Res 2011; 71 (7):2728-2738.
    215. Urtasun R, Latasa MU, Demartis Ml et al.. Connective tissue growth factor autocriny in human hepatocellular carcinoma:oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology 2011; 54 (6):2149-2158.
    216. Juric V, Chen CC, Lau LF. Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Biol 2009; 29(12):3266-3279.
    217. Yin F, Yu J, Zheng Y et al.. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell 2013; 154 (6):1342-1355.
    218. Zhang N, Bai H, David KK et al.. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010; 19 (1):27-38.
    219. Asthagiri AR, Parry DM, Butman JA et al.. Neurofibromatosis type 2. Lancet 2009; 373 (9679):1974-1986.
    220. Hanemann CO. Magic but treatable? Tumours due to loss of merlin. Brain 2008; 131 (Pt 3):606-615.
    221. Murakami H, Mizuno T, Taniguchi T et al.. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 2011; 71 (3):873-883.
    222. Liu-Chittenden Y, Huang B, Shim JS et al.. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 2012; 26 (12):1300-1305.
    223. Zhou D, Zhang Y, Wu H et al.. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci U S A 2011; 108(49):E1312-E1320.
    224. Zhang T, Zhang J, You X et al.. Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatology 2012; 56 (6):2051-2059.
    225. Diep CH, Zucker KM, Hostetter G et al.. Down-regulation of Yes Associated Protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells. PLoS One 2012; 7 (3):e32783.
    226. Lamar JM, Stern P, Liu H et al.. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci USA 2012; 109 (37):E2441-E2450.
    227. Zhou Z, Zhu JS, Xu ZP, Zhang Q. Lentiviral vector-mediated siRNA knockdown of the YAP gene inhibits growth and induces apoptosis in the SGC7901 gastric cancer cell line. Mol Med Rep 2011; 4 (6):1075-1082.
    228. Wang X, Su L, Ou Q. Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. Eur J Cancer 2012; 48 (8):1227-1234.
    229. Huang JM, Nagatomo I, Suzuki E et al.. YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 2013; 32 (17):2220-2229.
    230. Chen D, Sun Y, Wei Y et al.. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 2012; 18 (10):1511-1517.
    231. Xu MZ, Chan SW, Liu AM et al.. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 2011; 30 (10):1229-1240.
    232. Neesse A, Frese KK, Bapiro TE et al.. CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proc Natl Acad Sci U S A 2013; 110 (30):12325-12330.
    233. Zhang J, Ji JY, Yu M et al.. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol 2009; 11 (12):1444-1450.
    234. Yang N, Morrison CD, Liu P et al.. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle 2012; 11 (15):2922-2930.
    235. Liu AM, Xu MZ, Chen J, Poon RT, Luk JM. Targeting YAP and Hippo signaling pathway in liver cancer. Expert Opin Ther Targets 2010; 14 (8):855-868.
    236. Cohen P. Protein kinases--the major drug targets of the twenty-first century? Nat Rev Drug Discov 2002; 1 (4):309-315.
    237. Anand R, Maksimoska J, Pagano N et al.. Toward the development of a potent and selective organoruthenium mammalian sterile 20 kinase inhibitor. J Med Chem 2009; 52 (6):1602-1611.
    238. Ghose AK, Herbertz T, Pippin DA, Salvino JM, Mallamo JP. Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J Med Chem 2008; 51 (17):5149-5171.
    239. Norman RA, Toader D, Ferguson AD. Structural approaches to obtain kinase selectivity. Trends Pharmacol Sci 2012; 33 (5):273-278.
    240. Ota M, Sasaki H. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 2008; 135 (24):4059-4069.
    241. Chen L, Chan SW, Zhang X et al.. Structural basis of YAP recognition by TEAD4 in the hippo pathway. Genes Dev 2010; 24 (3):290-300.
    242. Li Z, Zhao B, Wang P et al.. Structural insights into the YAP and TEAD complex. Genes Dev 2010; 24 (3):235-240.
    243. Tian W, Yu J, Tomchick DR, Pan D, Luo X. Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci U S A 2010; 107 (16):7293-7298.
    244. Zhang X, Milton CC, Poon CL, Hong W, Harvey KF. Wbp2 cooperates with Yorkie to drive tissue growth downstream of the Salvador-Warts-Hippo pathway. Cell Death Differ 2011; 18 (8):1346-1355.
    245. Chan SW, Lim CJ, Huang C et al. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene 2011; 30(5):600-610.
    246. Sidor CM, Brain R, Thompson BJ. Mask proteins are cofactors of Yorkie/YAP in the Hippo pathway. Curr Biol 2013; 23 (3):223-228.
    247. Sansores-Garcia L, Atkins M, Moya IM et al.. Mask is required for the activity of the Hippo pathway effector Yki/YAP. Curr Biol 2013; 23 (3):229-235.
    248. Fan R, Kim NG, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci U S A 2013; 110 (7):2569-2574.
    249. Strassburger K, Tiebe M, Pinna F, Breuhahn K, Teleman AA. Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Dev Biol 2012; 367 (2):187-196.
    250. Bao Y, Nakagawa K, Yang Z et al.. A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem 2011; 150 (2):199-208.
    251. Oh YT, Liu X, Yue P et al.. ERK/ribosomal S6 kinase (RSK) signaling positively regulates death receptor 5 expression through co-activation of CHOP and Elk1. J Biol Chem 2010; 285 (53):41310-41319.
    252. Sun SY. Chemopreventive agent-induced modulation of death receptors. Apoptosis 2005; 10 (6):1203-1210.
    253. Elrod HA, Sun SY. Modulation of death receptors by cancer therapeutic agents. Cancer Biol Ther 2008; 7 (2):163-173.
    254. Takimoto R, El-Deiry WS. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 2000; 19 (14):1735-1743.
    255. Wu GS, Burns TF, McDonald ER et al.. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997; 17 (2):141-143.
    256. Shetty S, Graham BA, Brown JG et al.. Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 2005; 25 (13):5404-5416.
    257. Higuchi H, Grambihler A, Canbay A, Bronk SF, Gores GJ. Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1. J Biol Chem 2004; 279 (1):51-60.
    258. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 2004; 279 (44):45495-45502.
    259. Liu X, Yue P, Schonthal AH, Khuri FR, Sun SY. Cellular FLICE-inhibitory protein down-regulation contributes to celecoxib-induced apoptosis in human lung cancer cells. Cancer Res 2006; 66 (23):11115-11119.
    260. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. Embo Rep 2006; 7 (9):880-885.
    261. Zou W, Yue P, Khuri FR, Sun SY. Coupling of endoplasmic reticulum stress to CDDO-Me-induced up-regulation of death receptor 5 via a CHOP-dependent mechanism involving JNK activation. Cancer Res 2008; 68 (18):7484-7492.
    262. Sun SY, Liu X, Zou W ef al.. The farnesyltransferase inhibitor lonafarnib induces CCAAT/enhancer-binding protein homologous protein-dependent expression of death receptor 5, leading to induction of apoptosis in human cancer cells. J Biol Chem 2007; 282 (26):18800-18809.
    263. Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 2004; 11 (4):381-389.
    264. Averous J, Bruhat A, Jousse C et al.. Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 2004; 279 (7):5288-5297.
    265. Chen BP, Wolfgang CD, Hai T. Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 1996; 16 (3):1157-1168.
    266. Syed V, Mukherjee K, Lyons-Weiler J ef al.. Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene 2005; 24 (10):1774-1787.
    267. Mashima T, Udagawa S, Tsuruo T. Involvement of transcriptional repressor ATF3 in acceleration of caspase protease activation during DNA damaging agent-induced apoptosis. J Cell Physiol 2001; 188 (3):352-358.
    268. Wang Q, Mora-Jensen H, Weniger MA et al.. ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci U S A 2009; 106 (7):2200-2205.
    269. Feng H, Dong X, Negaard A, Feng P. Kaposi's sarcoma-associated herpesvirus K7 induces viral G protein-coupled receptor degradation and reduces its tumorigenicity. PLoS Pathog 2008; 4 (9):e1000157.
    270. Chiou CJ, Poole LJ, Kim PS et al.. Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J Virol 2002; 76 (7):3421-3439.
    271. Parravicini C, Chandran B, Corbellino M et al.. Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am J Pathol 2000; 156 (3):743-749.
    272. Kaplan LD. Human herpesvirus-8:Kaposi sarcoma, multicentric Castleman disease, and primary effusion lymphoma. Hematology Am Soc Hematol Educ Program 2013; 2013:103-108.
    273. Montaner S, Kufareva I, Abagyan R, Gutkind JS. Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 2013; 53:331-354.
    274. Paulsen SJ, Rosenkilde MM, Eugen-Olsen J, Kledal TN. Epstein-Barr virus-encoded BILF1 is a constitutively active G protein-coupled receptor. J Virol 2005; 79 (1):536-546.
    275. Martin D, Galisteo R, Molinolo AA et al.. Pl3Kgamma mediates kaposi's sarcoma-associated herpesvirus vGPCR-induced sarcomagenesis. Cancer Cell 2011; 19 (6):805-813.
    276. Martin D, Galisteo R, Ji Y, Montaner S, Gutkind JS. An NF-kappaB gene expression signature contributes to Kaposi's sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 2008; 27 (13):1844-1852.
    277. Taylor JF, Templeton AC, Vogel CL, Ziegler JL, Kyalwazi SK. Kaposi's sarcoma in Uganda:a clinico-pathological study. Int J Cancer 1971; 8 (1):122-135.
    278. Templeton AC, Bhana D. Prognosis in Kaposi's sarcoma. J Natl Cancer Inst 1975; 55 (6):1301-1304.