抗嗜水气单胞菌解淀粉芽孢杆菌的抗菌机理研究及其微胶囊制剂的安全性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素的滥用已经引起了嗜水气单胞菌日益严重的耐药性问题,导致嗜水气单胞菌引起的养殖鱼类疾病的有效防治难度加大,因而寻求抗生素的理想替代品迫在眉睫。芽孢杆菌广泛存在于自然界中,能够形成内生孢子,具有很强的抗逆性,不仅能够防病治病,促进动物生长,而且具有无副作用、无残留、无污染、不产生耐药性等特点,是替代抗生素的理想制剂,具有巨大的应用价值。鉴此,本研究筛选了一株抗嗜水气单胞菌解淀粉芽孢杆菌优良菌株G1,在确定了其对嗜水气单胞菌及其引起的草鱼细菌性败血症具有良好抗菌防病效果的基础上,通过比较蛋白质组学和抗菌相关基因检测探讨了其抗菌机制;优化了其微胶囊的实验室生产工艺,并进一步评价了微胶囊的耐酸、耐碱性能及其对水产养殖环境的安全性,为后续开发可替代抗生素的解淀粉芽孢杆菌微胶囊奠定了坚实的基础。本研究主要结果如下:
     1.抗嗜水气单胞菌解淀粉芽孢杆菌的分离及其对嗜水气单胞菌的拮抗效果
     从养殖池污泥中分离筛选了一株优良的抗嗜水气单胞菌芽孢杆菌G1,通过API50CH细菌鉴定系统以及16S rDNA序列分析法,菌株G1被鉴定为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),其16S rDNA序列(GenBank登录号: HM245965)与基因库中芽孢杆菌属菌株的16S rDNA序列有99%100%的同源性,而且与解淀粉芽孢杆菌Ba-74501的16S rDNA序列(GenBank登录号: DQ422953)的亲缘关系最近。菌株G1对病原性嗜水气单胞菌具有广谱拮抗活性,对嗜水气单胞菌的生长具有良好的抑制作用,对草鱼抗嗜水气单胞菌感染具有良好的效果。
     2.抗嗜水气单胞菌解淀粉芽孢杆菌的比较蛋白质组学分析
     以抗嗜水气单胞菌解淀粉芽孢杆菌G1的无抗菌活性突变株作为对照,利用双向凝胶电泳(2-DE)技术建立了解淀粉芽孢杆菌G1及其突变株菌体蛋白2-DE图谱,并进一步通过质谱检测和数据库检索鉴定了解淀粉芽孢杆菌G1的差异蛋白质。实验结果表明,解淀粉芽孢杆菌G1的2-DE图谱蛋白质点为1135个,匹配率为89.37%;以解淀粉芽孢杆菌G1突变株的菌体蛋白2-DE图谱作对照,解淀粉芽孢杆菌G1共有65个差异蛋白质点,其中36个高丰度的差异蛋白质经鉴定与蛋白质合成与修饰、能量代谢、菌体抗逆自我保护、耐药以及抗菌等生理功能有关,揭示解淀粉芽孢杆菌G1除了其产生的抗菌蛋白直接参与抗菌作用外,其对环境的抗逆能力、生长性能对其抗菌作用也具有重要的意义。
     3.抗嗜水气单胞菌解淀粉芽孢杆菌的抗菌素相关基因分析
     分别对抗嗜水气单胞菌的解淀粉芽孢杆菌G1的抗菌素相关基因进行了PCR扩增与测序,并对其编码产物的氨基酸序列、跨膜螺旋信号、结构域与二级结构等进行了预测与分析。实验结果表明,菌株G1仅含有伊枯草菌素合成必需基因,该基因与GenBank基因库中芽孢杆菌属其他细菌的伊枯草菌素A、杆菌抗霉素D、抗霉枯草菌素等伊枯草菌素家族基因自然聚类,与枯草芽孢杆菌MH25株和RB14株的伊枯草菌素A基因有98%的高度同源性,而且其编码产物的氨基酸序列与GenBank中芽孢杆菌属其他细菌的伊枯草菌素、伊枯草菌素A、脂肽类化合物bacillorin、芽孢菌素D等抗菌物质的氨基酸序列有高度同源性,与枯草芽孢杆菌MH25的伊枯草菌素A合成酶B(GenBank登录号:ABY89499)的亲缘关系最近。此外,菌株G1伊枯草菌素合成必需基因的编码产物不具有明显的跨膜结构,但其结构域中存在AMP结合位点和PP结合位点,二级结构中存在α螺旋、伸展链、β转角和无规卷曲。
     4.抗嗜水气单胞菌解淀粉芽孢杆菌微胶囊的制备工艺与特性
     以明胶为壁材,采用单因素法,考察了明胶浓度、进风温度、进料速度、空气流量等因素对抗嗜水气单胞菌解淀粉芽孢杆菌微胶囊有效含菌量的影响,并进一步通过正交试验设计优化了解淀粉芽孢杆菌微胶囊制剂的喷雾干燥工艺参数,观察了其微胶囊颗粒形态以及对人工模拟胃液和肠液的耐受力。实验结果表明,解淀粉芽孢杆菌微胶囊喷雾干燥的最佳制备工艺条件为:明胶浓度为3.0%,进风温度为155°C,进料速度为8ml/min,空气流量为700L/h,各因素对解淀粉芽孢杆菌微胶囊喷雾干燥工艺的影响程度为:明胶浓度>进料速度>空气流量>进风温度。此外,解淀粉芽孢杆菌微胶囊制剂的颗粒呈球形,表面有凹陷,但没有孔和裂纹,颗粒粒径分布基本均匀,平均大小为9.22μm,对人工模拟胃液和肠液具有较好的耐受力。
     5.抗嗜水气单胞菌解淀粉芽孢杆菌微胶囊的安全性评价
     参照《GB/T21805-2008化学品藻类生长抑制试验》、《GB/T13266-91水质物质对蚤类(大型蚤)急性毒性测定方法》、《GB/T13267-91水质物质对淡水鱼(斑马鱼)急性毒性测定方法》、《渔药临床试验技术规范》等国家标准及相关法规,观察了解淀粉芽孢杆菌微胶囊对小球藻生长抑制作用以及对大型蚤、斑马鱼和草鱼的急性毒性,分析了其对养殖水体主要理化因子的影响,实验结果表明,解淀粉芽孢杆菌微胶囊在终浓度为0.2mg/L~2000mg/L时对小球藻生长具有促进作用,对小球藻的半数抑制浓度大于2000mg/L,而且其对大型蚤、斑马鱼和草鱼的半数致死浓度也大于2000mg/L(或mg/Kg体重)。此外,在养殖水体中加入解淀粉芽孢杆菌微胶囊至终浓度为0.2mg/L~2000mg/L后14天内,各浓度组的氨氮含量、硫化物和pH值均缓慢下降,仅亚硝酸盐氮含量稍微升高后逐渐缓慢降低,但这些理化因子的变化与解淀粉芽孢杆菌微胶囊的加入量呈负相关关系。因此,解淀粉芽孢杆菌微胶囊实际无毒,对养殖水中氨氮、亚硝酸盐氮、硫化物和pH等理化因子的影响均控制在虾虎鱼仔鱼、黄颡鱼、白斑狗鱼、克氏原螯虾等水产养殖动物的安全浓度范围内,为其在水产养殖中的安全应用提供了重要的科学依据。
     综上所述,本研究证实了解淀粉芽孢杆菌在嗜水气单胞菌引起的草鱼细菌性败血症防控中的潜在价值,丰富了解淀粉芽孢杆菌的抗菌机理研究,弥补了水产用解淀粉芽孢杆菌新型制剂创制及其应用安全性评价研究的不足,对我国水产微生态制剂的研发与安全应用体系的建立具有重要的借鉴意义。
The wide use of antibiotics has caused the serious drug resistance of Aeromonashydrophila, which in turn makes it difficult to effectively control fish aeromonasis. Thus,it is extremely urgent to develop the substitutes to antibiotics. Bacillus species arewidely distributed in nature and have high stress tolerance as a result of their endosporeproduction. They are reported to exhibit the ability to control fish diseases, promote fishgrowth, and have the merits of no side effects, no residues, no drug resistance and freeof pollution. Therefore, they are considered to be ideal substitutes for antimicrobials andhave tremendous applicable value. In this study, a potential strain G1of B.amyloliquefaciens against A. hydrophila was isolated, its inhibitory effect on A.hydrophila, as well as control efficacy on grass carp (Ctenopharyngodon idellus)aeromonasis, was determined. On this basis, its antibacterial mechanism was exploredusing comparative proteomics and antibiotics-related genes’ analysis. In addition, thelaboratory production process technique of its microcapsules was optimized, itsmicrocapsules’ acid resistance, alkali tolerance and safety to the aquacultureenvironment were further evaluated. The results of this study laid the solid foundationfor the future development of B. amyloliquefaciens microcapsules as a potentialsubstitute for antibiotic additives. The main results are as follows:
     1. Isolation of B. amyloliquefaciens against A. hydrophila and its antagonisticefficacy on A. hydrophila
     A potential Bacillus strain G1against A. hydrophila was isolated from pondsediments, and identified as a Bacillus amyloliquefaciens isolate using API50CHidentification system and16S rDNA sequence analysis. Its16S rDNA sequence wassubmitted to the GenBank with an accession number of HM245965, and found to havethe high homology of99%100%with those of Bacillus species in GenBank, and exhibited most closely related to B. amyloliquefaciens strain Ba-74501(GenBankaccession no.: DQ422953). In addition, the G1isolate showed broad-spectrumantagonism against A. hydrophila pathogens, displayed good inhibitory effects on A.hydrophila, and exhibited good efficacy on the diseased grass carps infected with A.hydrophila.
     2. Comparative proteomic analysis of B. amyloliquefaciens against A. hydrophila
     Based on the successful screening of the non-antagonistic mutant of B.amyloliquefaciens strain G1, two-dimensional gel electrophoresis (2-DE) maps of strainG1and its mutant were imaged by the2-DE technique, and the differentially expressedproteins were further identified using the mass spectrometry and database searching.The experimental results showed that the total protein spots in the G1isolate’s2-DEmap were1135with the matching scores of89.37%. In comparison with the2-DE mapof the G1isolate’s mutant,65different protein spots were detected, and36of them werehighly expressed and successfully identified to participate in physiological functionssuch as protein synthesis and modification, energy metabolism, stress responsetolerance, drug resistance, antibiosis. This revealed that besides the antimicrobialproteins, its self-protection in adverse environments and good growth performanceplayed important roles in the antibacterial action.
     3. Antibiotics-related gene analysis of B. amyloliquefaciens against A. hydrophila
     The antibiotics-related genes from B. amyloliquefaciens strain G1against A.hydrophila were amplified by PCR and sequenced, the amino acid sequence,transmembrane heices, domain and secondary structure of their coding products werealso analyzed. The experimental results showed that only iturin synthetase essentialgene was present in the G1isolate, naturally clustered with genes of iturin family fromBacillus sp. in GenBank, including iturin A, bacillomycin D, mycosubtilin, and showed98%similarity to the iturin A gene of B. subtilis strain MH25and strain RB14. Theamino acid sequence of its coding product exhibited high similarity to those of iturin,iturin A, bacillorin and bacillomycin D, and was close relative to the iturin A synthetaseB of B. subtilis strain MH25(GenBank accession no.: ABY89499). In addition, noobvious transmembrane structure was present in the coding product of iturin synthetaseessential gene of the G1strain. However, AMP-binding site, PP-binding site werepresent in its domain, and alpha helix, beta turn, random coil, extended strand were alsopresent in its secondary structure.
     4. Production process technique and characteristics of microcapsules of B.amyloliquefaciens against A. hydrophila
     On the basis of gelatin as the wall materials, the influences of gelatin concentration,inlet temperature, feeding speed and air flow on the viable cells in the microcapsules ofB. amyloliquefaciens strain G1were assayed using single factor method, the spraydrying processing parameters of its microcapsules were optimized through orthogonalexperimental design, and the morphology and tolerance to artificial gastric and intestinaljuices were further examined. The experimental results showed that the optimum spraydrying processing parameters to prepare B. amyloliquefaciens microcapsules weregelatin concentration of3.0%, inlet temperature of155°C, feeding speed of8ml/minand air flow of700L/h, and the most leading influence factor on the production of B.amyloliquefaciens microcapsules was the gelatin concentration, followed by feedingspeed, air flow and inlet temperature. In addition, B. amyloliquefaciens microcapsuleswere spherical, featured dimpled surface without holes and cracks,uniformly-distributed with an average size of9.22μm. They were also found to havegood tolerance to artificial gastric and intestinal juices.
     5. Safety evaluation of the microcapsules of B. amyloliquefaciens against A.hydrophila
     According to Chemicals—Alga growth inhibition test (GB/T21805-2008), Waterquality—Determination of the acute toxicity of substance to Daphnia (Daphnia magnastraus)(GB/T13266-91), Water quality—Determination of the acute toxicity ofsubstance to freshwater fish (Brachydanio rerio Hamilton-Buchanan)(GB/T13267-91)and Clinical experiment technical practice for fishery drugs, the growth inhibition ofthe B. amyloliquefaciens microcapsule on Chlorella sp. and its acute toxicity toDaphnia, zebra fish and grass carps were observed, and its influence on mainphysicochemical factors of aquaculture water was also assayed. The experimentalresults showed that the growth of Chlorella sp. was promoted with B. amyloliquefaciensmicrocapsules at the final concentrations of0.2mg/L~2000mg/L, its IC50to Chlorellasp. was2000mg/L, and its LD50to Daphnia, zebra fish and grass carps were all>2000mg/L (or mg/Kg body weight). In addition, in the period of14days after the input of theB. amyloliquefaciens microcapsule into the farming water at0.2mg/L~2000mg/L, thecontents of the ammonia and sulfide as well as the pH values were gradually reduced,only the nitrite nitrogen concentration first rose slightly and followed by a slow decrease, and the changes of the physiochemical factors related negatively to theconcentration of the B. amyloliquefaciens microcapsules. Thus, the B.amyloliquefaciens microcapsule was actually nontoxic, its effects on the ammonia,nitrite nitrogen, sulfide and pH in the fish faming water were under the control of theirsafe concentrations to aquatic animals, such as the goby fry, Pelteobagrus fulvidraco,Esox lucius, Procambarus clarkia. The present study provided important scientific basison the safe use of B. amyloliquefaciens microcapsules in aquaculture.
     In conclusion, this study confirmed B. amyloliquefaciens as potential probiotics inthe fish aeromonas control, enriched its antibacterial mechanism, and made up for thedeficiency in the new preparation and application safety evaluation of B.amyloliquefaciens probiotics, and played important significance in the development ofaquatic probiotics and establishment of their safe use systems in aquaculture.
引文
[1] Boyd CE, Massaut L. Risks associated with the use of chemicals in pondaquaculture. Aquacultural Engineering,1999,20:113~132.
    [2]俞勇,李会荣,李筠,等.益生菌制剂在水产养殖中的应用.中国水产科学,2001,8(2):92~96.
    [3]于明超,李卓佳,文国樑.芽孢杆菌在水产养殖应用中的研究进展.广东农业科学,2007,11:78~81.
    [4] Kozasa M. Toyocerin Bacillus toyoi as growth promoter for animal feeding.Microbiologia Aliments Nutrition,1986,4:121~135.
    [5] Avella MA, Gioacchini G, Decamp O, et al. Application of multi-species of Bacillusin sea bream larviculture. Aquaculture,2010,305,12~19.
    [6] Kesarcodi-Watson A, Kaspar H, Lategan M, et al. Probiotics in aquaculture: Theneed, principles and mechanisms of action and screening processes. Aquaculture,2008,274:1~14.
    [7] Aly SM, Ahmed YA, Ghareeb AA, et al. Studies on Bacillus subtilis andLactobacillus acidophilus, as potential probiotics, on the immune response andresistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish&Shellfish Immunology,2008,25:128~136.
    [8] Sun Y, Yang H, Ma R, et al. Probiotic application of two dominant gut Bacillusstrains with antagonistic activity improved the growth performance and immuneresponse of grouper Epinephelus coioides. Fish&Shellfish Immunology,2010,29:803~809.
    [9] Liu K, Chiu C, Shiu Y, et al. Effects of the probiotic, Bacillus subtilis E20, on thesurvival, development, stress tolerance, and immune status of white shrimp,Litopenaeus vannamei larvae. Fish&Shellfish Immunology,2010,28:837~844.
    [10]杨欣,陈丽仙,吴雅琨,等.动物微生态制剂的发展现状及应用前景.安徽农业科学,2011,39(7):4030~4031.
    [11]丁丽,周维仁,章世元,等.益生菌在水产上的应用及其对鱼类肠道菌群的影响.饲料工业,2009,30(20):27~30.
    [12]黄剑飞,李健,刘淇,等.一株芽孢杆菌的分离、鉴定及其抗菌效果研究.安徽农业科学,2008,36(6):2321~2322,2326.
    [13]沈智华,沈锦玉,尹文林,等.枯草芽孢杆菌B115优化培养及其对气单胞菌的抗菌效果的研究.微生物学通报,2005,4:79~84.
    [14]黄汝添,谢海平,陆勇军,等.枯草芽孢杆菌Bs-1拮抗溶藻弧菌的特性.热带海洋学报,2006,25(4):51~55.
    [15]罗璋,贾文平,白晓慧,等.枯草芽孢杆菌对三种水产动物病原菌体外拮抗作用的研究.中国饲料,2010,14:18~19.
    [16]樊瑞锋,王印庚,梁友,等.一株广温性大菱鲆肠道益生菌的筛选与鉴定.渔业科学进展,2011,32(1):40~46.
    [17]贺中华,陈昌福,高宇,等.黄鳝肠道益生菌HY-136的鉴定与系统发育分析.华中农业大学学报,2009,28(6):715~718.
    [18]郝向举,李义,孙汉,等.蟹源益生芽孢杆菌的筛选.中国饲料,2009,22:11~14.
    [19]傅松哲,宋奔奔,刘鹰,等.弧菌拮抗菌的筛选及其对凡纳滨对虾的抑菌防病作用.中国环境科学,2009,29(8):867~872.
    [20]马如龙,杨红玲,孙云章,等.2株鱼源芽孢杆菌的生物学特性研究.水产科学,2010,29(9):505~509.
    [21]Li J, Tan B, Mai K. Dietary probiotic Bacillus OJ and isomaltooligosaccharidesinfluence the intestine microbial populations, immune responses and resistance towhite spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture,2009,291:35~40.
    [22]曾东,王益平,倪雪勤,等.鲤益生菌筛选及部分菌株对鲤前肠黏液的体外黏附作用.中国水产科学,2009,16(3):427~433.
    [23]徐长安,罗秀针,张怡评,等.一株海洋芽孢杆菌B09的筛选及其发酵条件优化研究.海洋通报,2009,28(5):74~78.
    [24]吕利群,刘丽玲,刘浩,等.一株芽孢杆菌用作水霉病防治的研究.渔业现代化,2010,4:31~34.
    [25]赵朋超,王建华,权春善,等.枯草芽孢杆菌抗菌肽生物合成的研究进展.中国生物工程杂志,2010,30(10):108~113.
    [26]申吉泓,杨宇如,唐孝达.抗菌肽作用机制研究现状.国外医学肿瘤学分册,2003,30(5):347~350.
    [27]李雄彪,马庆英,崔云龙.凝结芽孢杆菌抗菌作用机制.中国微生态学杂志,2006,18(1):78~79.
    [28]侯红漫,靳艳,金美芳,等.环酯肽类生物表面活性剂结构、功能及生物合成.微生物学通报,2006,33(5):122~128.
    [29]杨丽莉,吕凤霞,别小妹,等.枯草芽孢杆菌抗菌脂肽对嗜水气单胞菌抑菌效果.食品科学,2011,32(1):193~198.
    [30]王丽芳,满达虎.2株地衣芽孢杆菌抗逆性及益生性的研究.饲料研究,2009,4:18~21.
    [31]王妹,陈有光,段平,等.枯草芽孢杆菌培养基配方优化的研究.渔业现代化,2008,35(6):44~47.
    [32]卢耀俊,周世水,朱明军.一株水产用益生枯草芽孢杆菌液体发酵初步研究.内陆水产,2007,12:30~32.
    [33]贡汉生,孟祥晨.益生菌的安全性评价.现代食品科技,2005,21(4):76~79.
    [34]丁雷,赵德炳.光合细菌在水产养殖上的应用研究与进展.水利渔业,2001,1:23~25.
    [35]尹文林,潘晓义,曹铮,等.枯草芽孢杆菌B115株的毒性研究.中国水产,2006,11:84~86.
    [36]袁丰华,林着,李卓佳,等.凝结芽孢杆菌对尖吻鲈的生长、消化酶及非特异性免疫酶的影响.上海海洋大学学报,2010,19(6):792~797.
    [37]殷海成,赵红月.苏云金芽孢杆菌对黄河鲤血液免疫效果研究.水产科学,2009,28(11):648~652.
    [38]Wang GX, Liu YT, Li FY, et al. Immunostimulatory activities of Bacillus simplexDR-834to carp (Cyprinus carpio). Fish&Shellfish Immunology,2010,29:378~387.
    [39]王玲,张春晓,孙鸣,等.饲料中添加枯草芽孢杆菌(CGMCC No.3755)对凡纳滨对虾生长性能和非特异性免疫力的影响.饲料工业,2011,32(4):47~52.
    [40]Tseng DY, Ho PL, Huang SY, et al. Enhancement of immunity and diseaseresistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillussubtilis E20. Fish&Shellfish Immunology,2009,26:339~344.
    [41]郝向举,李义.蟹源地衣芽孢杆菌ESB3对中华绒螯蟹生长及部分免疫指标的影响研究.饲料工业,2011,32(2):23~27.
    [42]吕红线,郭利美.工业微生物菌种的保藏方法.山东轻工业学院学报,2007,21(1):52~55.
    [43]邓璐,杨先乐,李圆圆,等.噬菌蛭弧菌BDF-H16长期简易保藏方法研究.上海水产大学学报,2008,6:714~720.
    [44]任杰,林炜铁,罗小春,等.硝化菌保藏特性及衰减动力学研究.中国生物工程杂志,2007,12:61~65.
    [45]马俊孝,孔健,季明杰.利用PCR-DGGE技术分析微生态制剂在传代过程中的菌群变化.山东大学学报:理学版,2008,43(7):56~60.
    [46]Sugita H, Hirose Y, Matsuo N, et al. Production of the antibacterial substance byBacillus sp. strain NM12, an intestinal bacterium of Japanese coastal fish.Aquaculture,1998,165:269~280.
    [47]Bhaskar N, Sudeepa ES, Rashmi HN, et al. Partial purification and characterizationof protease of Bacillus proteolyticus CFR3001isolated from fish processing wasteand its antibacterial activities. Bioresource Technology,2007,98:2758~2764.
    [48]Anthony T, Rajesh T, Kayalvizhi N, et al. Influence of medium components andfermentation conditions on the production of bacteriocin(s) by Bacilluslicheniformis AnBa9. Bioresource Technology,2009,100:872~877.
    [49]骆艺文,郝志凯,王印庚,等.一株引起刺参“腐皮综合征”的蜡样芽孢杆菌.水产科技情报,2009,2:60~63.
    [50]Cho H, He S, Liu K, et al. Phenotypic characterization and phylogenetic analysisof a virulent Bacillus cereus strain from the Tiger frog, Hoplobatrachusrugulosus Wiegmann. African Journal of Microbiology Research,2010,4(24):2780~2786.
    [51]陈玉梅,程茜.益生菌的安全性.中国微生物学杂志,2010,22(9):851~853.
    [52]解傲,袁杰利.食品用乳酸菌安全性评价方法研究进展.中国微生态学杂志,2010,22(8):754~756.
    [53]郭晓奎,袁杰利.益生菌安全性的现状与对策.中国微生态学杂志,2009,21(6):56~57.
    [54]王晓丽,朱小翠,王永山,等.八株芽孢杆菌的分离鉴定及其抗逆性比较.中国兽医科学,2010,40(10):1017~1022.
    [55]Cao H, He S, Lu L, et al. Characterization and phylogenetic analysis of abitrichous pathogenic Aeromonas hydrophila isolated from the diseased Siberiansturgeon (Acipenser baerii). Israeli Journal of Aquaculture-Bamidgeh,2010,62(3):182~189.
    [56]Lategan MJ, Torpy FR, Gibson LF. Control of saprolegniosis in the eel Anguillaaustralis Richardson, by Aeromonas media strain A199. Aquaculture,2006,240:19~27.
    [57]唐建中,戴求仲,周旺平.两种益生芽孢杆菌体外抑菌活性及其耐药性研究.兽药与饲料添加剂,2009,14(5):8~10.
    [58]李增社,卢秀云,马平,等.防治棉花黄萎病的生防细菌NCD2的田间效果评价及其鉴定.植物病理学报,2005,35(5):451~455.
    [59]曹海鹏,杨先乐,李圆圆.鲟源致病性豚鼠气单胞菌的分离及其生长特性.动物学杂志,2007,42(6):1~6.
    [60]Schadich E, Cole ALJ. Pathogenicity of Aeromonas hydrophila, Klebsiellapneuoniae, and Proteus mirabilis to brown tree frogs (Litoria ewingii).Comparative Medicine,2010,60(2):114~117.
    [61]Bucke D. Histology. in: Austin B, Austin DA (Eds). Methods for themicrobiological examination of fish and shellfish. John Wiley&Sons, New York,USA,1989. pp.69-97.
    [62]王娟,封永辉,蔡立胜,等.来自大黄鱼(Pseudosciaena crocea)肠道的弧菌拮抗菌的筛选与鉴定.海洋与湖沼,2010,41(5):707~713.
    [63]莫照兰,俞勇,李会荣,等.弧菌拮抗菌的筛选.青岛海洋大学学报,2001,31(2):225~231.
    [64]宋铁英,郑伟文.嗜水气单胞菌的拮抗菌及其拮抗物质测定.福建农业科技,1999,5:14~15.
    [65]李联泰,安贤惠.拮抗嗜水气单胞菌菌株的筛选及生长条件的优化研究.淮海工学院学报:自然科学版,2007,16(4):54~57.
    [66]李琳,李瑾年,余为一.细菌分类鉴定方法的研究概况.安徽农业科学,2004,32(3):549~551.
    [67]权春善,王军华,徐洪涛,等.一株抗真菌解淀粉芽孢杆菌的分离鉴定及其发酵条件的初步研究.微生物学报,2006,46(1):7~12.
    [68]周素明,李安兴,马跃,等.养殖鱼类链球菌病病原的分离鉴定及其16S rDNA分析.中山大学学报:自然科学版,2007,46(2):68~71.
    [69]杨胜远,韦锦,李云,等.一株产抗菌活性物质解淀粉芽孢杆菌的筛选及鉴定.食品科学,2010,31(21):208~212.
    [70]朱丽梅,吴小芹,徐旭凌.具杀松材线虫活性的解淀粉芽孢杆菌JK JS3的培养条件.南京林业大学学报:自然科学版,2010,34(5):55~58.
    [71]Müllner S, Neumann T, Lottspeich F. Proteomics--a new way for drug targetdiscovery. Arzneimittelforschung,1998,48(1):93~95.
    [72]Brass C, Volkmann CM, Philpott DE, et al. Spontaneous mutant of Blastomycesdermatitidis attenuated in virulence in mice. Medical Mycology,1982,20(2):145~158.
    [73]Kan B, Habibi H, Schmid M, et al. Proteome comparison of V. cholerae cultured inaerobic and anaerobic conditions. Proteomics,2004,4(10):3061~3067.
    [74]贺福初.蛋白质组学研究——后基因组时代的生力军.科学通报,1999,44(2):113~122.
    [75]何大澄,肖雪媛.差异蛋白质组学及其应用.北京师范大学学报:自然科学版,2002,38(4):58~62.
    [76]Seo G, Kim S, Kim J, et al. Targeting of Bacillus anthracis interaction factors forhuman macrophages using two-dimensional gel electrophoresis. Biochemical andBiophysical Research Communications,2004,322:854~859.
    [77]Lippolis R, Gnoni A, Abbrescia A, et al. Comparative proteomic analysis of fourBacillus clausii strains: Proteomic expression signature distinguishes protein profileof the strains. Journal of Proteomics,2011,74:2486~2855.
    [78]Sinchaikul S, Sookkheo B, Topanuruk S, et al. Bioinformatics, functional genomics,and proteomics study of Bacillus sp.. Journal of Chromatography B,2002,771(1-2):261~287.
    [79]Roepstorf P. Mass spectrometry in protein studies from genome to function. CurrentOpinion in Biotechnology,1997,8(1):6~13.
    [80]Shevchenko A, Loboda A, Skevchenko A, et al. MALDI quadrupole time of flightmass spectrometry: a powerful tool for proteomic research. Analytical Chemistry,2000,72:2132~2141.
    [81]庞欢瑛,李岩,鲁义善,等.溶藻弧菌全菌可溶性蛋白二维图谱的建立及部分蛋白分子的鉴定.中国水产科学,2010,17(3):404~413.
    [82]Bayyareddy K, Andacht TM, Abdullah MA, Adang MJ. Proteomic identification ofBacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgutmembranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae.Insect Biochemistry and Molecular Biology,2009,39:279~286.
    [83]Gidden J, Denson J, Liyanage R, et al. Lipid compositions in Escherichia coli andBacillus subtilis during growth as determined by MALDI-TOF and TOF/TOF massspectrometry. International Journal of Mass Spectrometry,2009,283:178~184.
    [84]王延蛟,陈创夫,张金波,等.磷酸甘露糖异构酶基因的克隆与表达载体的构建.石河子大学学报:自然科学版,2006,24(2):173~176.
    [85]王宏炜,袁琳.弧菌几丁质降解代谢及调控机理的研究进展.微生物学通报,2007,34(5):982-985.
    [86]刘伟,燕永亮,杨剑,等.斯氏假单胞菌A1501物质代谢及能量生成相关基因的分析.生物技术通报,2008,4:175~180.
    [87]Naima Ould Ali, Joelle Bignon, Georges Rapoport, and Michel Debarbouille.Regulation of the acetoin catabolic pathway is controlled by sigmal in Bacillussubtilis. Journal of Bacteriology,2001,183(8):2497~2504
    [88]Goldman DS, Wagner MJ. Enzyme systems in the mycobacteria. XIII. Glycinedehydrogenase and the glyoxylic acid cycle. Biochimica et Biophysica Acta,1962,65(2):297~306.
    [89]周德庆.微生物学教程(第二版).北京:高等教育出版社,2002:64-72.
    [90]Osborn MJ, Rothfield L. Cell shape determination in Escherichia coli. CurrentOpinion in Microbiology,2007,10(6):606~610.
    [91]李喜燕,王加启,卜登攀,等.多不饱和脂肪酸对细胞膜功能影响的研究进展.生物技术通报,2009,12:22~26.
    [92]金黎明,刘鹏,田文杰.细菌脂肪酸合成酶-抗菌药物的筛选靶点.沈阳药科大学学报,2006,23(12):814~818.
    [93]Driks A. Maximum shields: the assembly and function of the bacterial spore coat.Trends in Microbiology,2002,10(60):251~254.
    [94]Ricca E, Isticato R, Baccigalupi L, et al. Bacillus subtilis spore coat components,their assembly and use for surface display of heterologous antigens.2007,131(2):63~63.
    [95]Mauriello EM, Cangiano G, Maurano F, et al. Germination-independent inductionof cellular immune response by Bacillus subtilis spores displaying the C fragmentof the tetanus toxin. Vaccine,2004,25:788~793.
    [96]Aronson AI, Ekanayake L, Fitz-James PC,. Protein filaments may initiate theassembly of the Bacillus subtilis spore coat. Biochimie,1992,74(7-8):661~667.
    [97]乌日娜.益生菌Lactobacillus casei Zhang蛋白质组学研究.内蒙古农业大学博士论文.2008:40-82.
    [98]Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span byoverexpression of catalase targeted to mitochondria. Science,2005,308(5730):1909~1911.
    [99]Rehan M, Younus H. Effect of organic solvents on the conformation and interactionof catalase and anticatalase antibodies. International Journal of BiologicalMacromolecules,2006,38:289~295.
    [100] Halliwell B. Phagocyte-derived reactive species: salvation or suicide?. Trendsin Biochemical Science,2006,31:509~515.
    [101] Chen XH, Scholz R, Borriss M, et al. Difficidin and bacilysin produced byplant-associated Bacillus amyloliquefaciens are efficient in controlling fire blightdisease. Journal of Biotechnology,2009,140:38~44.
    [102] Yu GY, Sinclair JB, Hartman GL, et al. Production of iturin A by Bacillusamyloliquefaciens suppressing Rhizoctonia solani. Soil Biology&Biochemistry,2002,34:955~963.
    [103] Chen LL, Wang N, Wang X, et al. Characterization of two anti-fungallipopeptides produced by Bacillus amyloliquefaciens SH-B10. BioresourceTechnology,2010,101:8822~8827.
    [104] Ramos HJ, Souza EM, Soares-Ramos JR, et al. Antibiosis by Bacillusamyloliquefaciens ribonuclease barnase expressed in Escherichia coli againstsymbiotic and endophytic nitrogen-fixing bacteria. Journal of Biotechnology,2006,126(3):291~294
    [105] Strongin AY, Lzotova LS, Abramov ZT, et al. On the appearance of Bacillussubtilis intracellular serine protease in the cell membrane and culture medium.Archives of Microbiology,1978,119:287~293.
    [106]李春娟,单世华,谢婷婷,等.几丁质酶和β-1,3-葡聚糖酶基因研究进展.生物技术通报,2004,15(5):502~505.
    [107]倪腾凤,陶文文,梁兵,等.植物激素对平菇菌丝生长及酶活性的影响.资源开发与市场,2011,27(10):871~873.
    [108]尚柯,郭小飞,王艳萍,等.5-氨基乙酰丙酸脱水酶缺失对大肠杆菌生长的影响.现代食品科技,2011,27(7):742~746.
    [109]李玥,陈志龙.四吡咯化合物光动力抗类风湿关节炎作用研究.中南药学,2005,3(6):323~327.
    [110] McKeegan KS, Borges-Walmsley MI, Walmsley AR. Microbial and viral drugresistance mechanisms. Trends in Microbiology,2002,10(10): s8~s14.
    [111]韩云宾,周文瑜,胡媛,等.头孢菌素C去乙酰基酶产生菌的筛选、酶学性质及产酶条件优化.工业微生物,2011,41(2):1~6.
    [112] Sakai Y, Abe T, Aoki M, et al. Purification and properties of cephalosporin-Cdeacetylase from the Yeast, Rhodotorula glutinis38B1, useful for bioconversion of7-aminocephalosporanic acid derivatives. Journal of Fermentation andBioengineering,1998,85(1):53~57.
    [113]姜浩,江骥,胡蓓.二氢嘧啶脱氢酶和腺嘧啶核苷激酶的研究进展.中国临床药理学杂志,2002,18(4):317~320.
    [114]梁镇和,汤锦炎,于大文,等.核苷-磷酸在RNA连接酶酶促反应中的受体作用.中国科学B辑,1982,8:701~706.
    [115] Jayakrishnan Nandakumar, Stewart Shuman and Christopher D. Lima. RNALigase Structures Reveal the Basis for RNA Specificity and ConformationalChanges that Drive Ligation Forward. Cell,2006,127:71~84.
    [116] Stark H, Rodnina MV, Wieden HJ, Zemlin F, Wintermeyer W, Van Heel M..Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in thecodon-recognition complex. Nat Struct Biol,2002,9:849~854.
    [117] Caldas TD, Yaagoubi AE, Richarme G. Chaperone properties of bacterialelongation factor EF-Tu. J Biol Chem,1998,273:11478~11482.
    [118] oldák G, Sedlák E, Valu ová E, et al. Irreversible thermal denaturation ofelongation factor Ts from Thermus thermophilus effect of the residual structure andintermonomer disulfide bond. Biochimica et Biophysica Acta2006,1764:1277~1285
    [119]宋林晨,马淑涛.肽脱甲酰基酶及其抑制剂的研究进展.中国抗生素杂志,2009,34(1):1~6,29.
    [120] West AH, Stock AM. Histidine kinases and response regulator proteins intwo-component signaling systems. Trends in Biochemical Sciences,2001,26(6):369~376.
    [121]钱家伟,蒋彩英,陈建,等.家蚕核苷二磷酸激酶基因的克隆和原核表达.蚕业科学,2007,33(3):477~481.
    [122] Lubec G, Afjehi-Saat L, Yang JW, et al. Searching for hypothetical proteins:Theory and practice based upon original data and literature. Process inNeurobiology,2005,77:90~127.
    [123]张天宇,王玲燕,姜蓉,等.链霉菌来源的UDP-葡萄糖-4-差向异构酶基因的克隆表达及酶性质研究.微生物学报,2005,45(6):881~884.
    [124] Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the completegenome sequence of the plant growth-promoting bacterium Bacillusamyloliquefaciens FZB42. Nature Biotechnology,2007,25(9),1007~1014.
    [125] Yoshida S, Hiradate S, Tsukamoto T, et al. Antimicrobial activity of culturefiltrate of Bacillus amyloliquefaciens RC-2isolated from mulberry leaves[J].Biological Control,2001,91(2):181~187.
    [126]李超,吴为中,吴伟龙,等.解淀粉芽孢杆菌对鱼腥藻的抑藻效果分析与机理探讨.环境科学学报,2011,31(8):1602~1608.
    [127]陈成,崔堂兵,于平儒.一株抗真菌的解淀粉芽孢杆菌的鉴定及其抗菌性研究.现代食品科技,2011,27(1):36~39.
    [128]车晓曦,李校堃.解淀粉芽孢杆菌(Bacillus amyloliquefaciens)的研究进展.北京农业,2010,1:7~10.
    [129]曹海鹏,何珊,刘丽玲,等.鲟源病原性嗜水气单胞菌拮抗芽孢杆菌的鉴定及其生物学特性.微生物学通报,2011,38(9):1377~1384.
    [130] Kluge B, Vater J, Salnikow J, et al. Studies on the biosynthesis of surfactin, alipopeptide antibiotic from Bacillus subtilis ATCC21332. FEBS Letters,1988,231:107~110.
    [131] Tsuge K, Akayama T, Shoda M. Cloning, sequencing and characterization ofthe iturin a operon. Journal of Bacteriology,2001,183(21):6265~6273.
    [132] Serrano M, Zilhǎo R, Ricca E, et al. A Bacillus subtilis secreted protein with arole in endospore coat assembly and function. Bacteriology,1999,181(12):3632~3643.
    [133]连玲丽,谢荔岩,林奇英,等.芽孢杆菌三种抗菌素基因的杂交检测.激光生物学报,2008,17(1):81~85.
    [134] Ramarathnam R, Fernando WGD.对油菜病原真菌具有拮抗性的芽孢杆菌(Bacillus spp.)产生脂肽类抗生素及生化检测(英文).第十二届国际油菜大会论文集.2007:36-42.
    [135]杜志兵,丁延芹,姚良同,等.枯草芽孢杆菌MH25Iturin A操纵子的克隆与分析.生物技术通报,2008,3:128~132.
    [136]米薇,应万涛,蔡耘,等.细胞质膜蛋白质组学研究技术进展.生物技术通讯,2008,19(6):900~902.
    [137]张勤奋,陈森雄,蒋廉华,等.登革病毒GD01/98结构蛋白基因序列及蛋白二级结构初步分析.中山大学学报:自然科学版,2002,41(2):72~75.
    [138]刘华梅,陈振民,李青,等.高含量芽孢杆菌益生菌的制造技术.饲料工业,2010,31(14):32~33.
    [139]韩士群,刘海琴,周建农,等.有益微生物饲料添加剂对水体生态和鱼生长的影响.江苏农业科学,2005,2:91~94.
    [140]辛娜,刁其玉,张乃峰.芽孢杆菌在动物营养与饲料中的应用.中国饲料,2010,14(2):26~29.
    [141]安健,曹海鹏,陈百尧,等.解淀粉芽胞杆菌的安全性分析.动物医学进展,2013,34(1):16~18.
    [142] Guo X, Li D, Lu W, et al. Screening of Bacillus strains as potential probioticsand subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139in pigs. Antonie van Leeuwenhoek,2006,90:139~146.
    [143] Zhang Y, Lin P, Wen X, et al. Effect of salinity on microbial densities of soil inthe dilution plate technique applied in mangrove areas. Acta Ecologica Sinica,2008,28(3):1287~1295.
    [144] Wang C, Zhao Y, Wang J, et al. Orthogonal study on direct melt polymerizationof polylactic acid. China Synthetic Fiber Industry,2003,26(1):33~34.
    [145]曲微,范俊华,霍贵成.益生菌喷雾干燥技术的研究进展.中国乳业,2008,4:36~38.
    [146]谭文乐,肖更生,吴继军,等.醋酸菌喷雾干燥工艺的研究.现代食品科技,2010,26(3):272-276.
    [147]程艳薇,刘春梅,谭书明,等.嗜酸乳杆菌菌粉的加工技术研究.食品科技,2010,35(9):46~50.
    [148]戚薇,陈莹,王建玲,等.高浓度凝结芽孢杆菌粉剂的制备及特性研究.天津科技大学学报,2003,18(2):1~5.
    [149]黄崇军.明胶在脂类微胶囊化中的应用.明胶科学与技术,2007,27(2):84~88.
    [150]程艳薇,谭书明.乳酸菌抗热保护剂的优化组合.中国调味品,2010,7:55~59.
    [151]李宁,田洪涛,吴蕊,等.双歧杆菌微胶囊喷雾干燥工艺的影响因素研究.食品与发酵工业,2007,33(8):89~91.
    [152]刘广文.喷雾干燥实用技术大全.北京:中国轻工业出版社,2001:6~10.
    [153]罗佳琦,于晓晨,于才渊.嗜酸乳杆菌干燥技术的研究.干燥技术与设备,2008,6(6):273~278.
    [154]区伟佳,王荣,李华兴,等.高浓度大豆生防芽孢杆菌粉剂喷雾干燥微胶囊工艺研究.大豆科技,2010,3:3~6.
    [155]张玉华,凌沛学,籍保平,等.双歧杆菌和嗜酸乳杆菌二联活菌微胶囊的研制.食品与药品,2009,11(7):11~16.
    [156]刘永霞,于才渊,王晓光.油田堵漏剂微胶囊技术的研究.高校化学工程学报,2003,17(3):344~348.
    [157] Irianto A, Audtin B. Probiotics in aquaculture. Journal of Fish Diseases,2002,25:633~642.
    [158] Verschuere L, Ronbout G, Sorgeloos P, et al. Probiotic bacteria as biologicalcontrol agents in aquaculture. Microbiology and Molecular Biology Reviews,2000,64(4):655~671.
    [159] Cao HP, He S, Wei RP, et al. Bacillus amyloliquefaciens G1, a potentialantagonistic bacterium against eel-pathogenic Aeromonas hydrophila.Evidence-Based Complementary and Alternative Medicine,2011,8:1~7.
    [160]周红,菅小东,马馨,等.GB/T21805-2008化学品藻类生长抑制试验.北京:中国标准出版社,2008:2~8.
    [161]谢凤君,乔佩文,向琍云,等.GB/T13266-91水质物质对蚤类(大型蚤)急性毒性测定方法.北京:中国标准出版社,1992:1~4.
    [162]谢凤君,陈惠志,赵幼一.GB/T13267-91水质物质对淡水鱼(斑马鱼)急性毒性测定方法.北京:中国标准出版社,1992:9~14.
    [163]农业部畜牧兽医局.农业部发布《渔药临床试验技术规范》.中国兽药杂志,2003,37(1):11~14.
    [164]叶济宇.关于叶绿素含量测定中的Amon计算公式.植物生理学通讯,1985,6:69~69.
    [165]沈阳环境监测中心站.HJ535-2009水质氨氮的测定纳氏试剂分光光度法.北京:中国环境科学出版社,2010:2~6.
    [166]邵晴,余晓斌.好氧反硝化细菌的筛选及反硝化特性研究.生物技术,2008,18(3):63~65.
    [167]文志明,申开莲,林大泉.GB/T16489-1996水质硫化物的测定亚甲基蓝分光光度法.北京:中国标准出版社,1997:2~6.
    [168]刘君,宋晓玲,陈志鑫.益生菌对水产养殖动物的作用研究进展.动物医学进展,2009,30(9):78~81.
    [169]尹文林,沈锦玉,潘晓艺,等.复合硝化菌制剂的安全性研究.水产养殖,2010,31(5):39~41.
    [170] Kobraei ME, White DS. Effects of2,4-dichlorohenoxyacetic acid on Kentuckyaglae: simultaneous laboratory and field toxicity testings. Archives EnvironmentalContamination Toxicology,1996,31:571~580.
    [171]闫震,徐春霞,闫海,等.沼泽红假单胞菌与小球藻USTB-01的共培养研究.现代化工,2009,29(2):172~175.
    [172]周文礼,肖慧,乔秀亭,等.Z-QS01菌株对小球藻的生态学效应及对UV-B辐射的响应.北京理工大学学报,2011,31(1):109~112.
    [173]闫海,周洁,何宏胜,等.小球藻的筛选和异养培养.北京科技大学学报,2005,27(4):408~412.
    [174]刘征涛,周风帆,于红霞,等.有机毒物对水蚤的急性毒性.环境化学,1994,13(3):263~265.
    [175]刘淇,李鹏飞,李健,等.常用渔用消毒剂对大型蚤和卤虫无节幼体的毒性.水利渔业,2007,27(2):101~103.
    [176]黎艳霞,杨俭美.4种杀虫剂对大型蚤(Daphnia magna)的毒性和酶活性影响的比较.北京大学学报:自然科学版,1997,33(2):197~202.
    [177]国家环境保护总局. HJ/T154-2004新化学物质危害评估导则.北京:中国环境科学出版社,2004:6~7.
    [178]李贵生,何建国,李桂峰,等.水体理化因子对斑节对虾生长影响的研究.中山大学学报:自然科学版,2000,39(增刊):107~114.
    [179]陈陲.pH对养殖生境的影响及其调控.水产科技,2010,2:22~24.
    [180]林忠婷,李建军,陈琳,等.非离子氨和亚硝酸氮对虾虎鱼仔鱼的急性毒性及安全浓度评价.中国比较医学杂志,2011,21(9):45~48.
    [181]李波,樊启学,张磊,等.不同溶氧水平下氨氮和亚硝酸盐对黄颡鱼的急性毒性研究.淡水渔业,2009,39(3):31~35.
    [182]於叶兵,陆伟,黄金田,等.亚硝酸盐和硫化物对克氏原螯虾幼虾的毒性效应研究.水生态学杂志,2011,32(1):112~115.
    [183]王甜,杜劲松,高攀,等.氨氮对白斑狗鱼幼鱼的急性毒性研究.水产学杂志,2010,23(3):37~39.
    [184]吕云茹,张书汁.渔业生长中pH值的作用及调节.河南农业,2010,18:44~44.