小分子抗菌肽的虚拟组合设计、筛选与效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素因抗菌效果显著得以在临床上广泛应用乃至滥用,致使大量细菌对其产生耐药性。抗生素本身是细菌为保护其免受病原菌攻击而产生的一类化学物质,因而病原菌也能通过产生水解酶或药泵、基因突变、改变细胞膜性质等方式形成耐药。目前,耐药菌已遍布全球,严重威胁人类健康。尽管科学家针对耐药菌不断改进抗生素,但细菌总能以更聪明的方式形成耐药,使得抗生素的开发难度与日俱增。抗菌肽(AMP)是生物体为抵御外源性病原菌入侵而产生的一类多肽物质,也是自然免疫的重要组成部分。由于抗菌肽的作用机制与传统抗生素存在显著区别,因而具有抗菌谱广、杀菌快速、耐药性低等传统抗生素无法比拟的优点,有望开发成为一类高效、低毒的新型抗菌药物。
     鉴于抗菌肽的固有特点及其广阔的应用前景,研究人员基于抗菌肽的阳离子性和两亲性结构特征,通过序列模板法和组合肽库法设计并筛选获得了多个具有较好活性的抗菌肽。然而,规模化生产成本高、耐酶稳定性差、潜在溶血毒性是制约抗菌肽进入实际应用的瓶颈。小分子抗菌拟肽及其类似物的研究使其向实际应用迈进了一大步,然而天然抗菌肽与其类似物仍存在抗菌活性不理想及潜在溶血毒性等问题。目前,由于没有可靠的理论模型用于抗菌活性与溶血毒性的准确预测,因而难以从理论上指导抗菌肽的设计与筛选,极大增加了抗菌肽的理论设计与应用开发难度。因而,通过建立理论预测模型指导抗菌肽的合理设计与虚拟筛选,有望发现抗菌活性好、耐酶解能力强、溶血活性低的小分子抗菌肽,可为低耐药性抗菌药物的应用开发奠定理论与物质基础。综上所述,本文基于定量构效关系(QSAR)研究建立抗菌肽的理论预测模型,指导基于天然氨基酸的抗菌五肽及抗菌四肽的组合设计与虚拟筛选,最后通过抗菌活性与溶血毒性实验验证理论模型的可靠性,取得了如下研究结果:
     1.本文使用来自数据库的89种氨基酸物理化学性质用于抗菌肽的结构表征,并使用逐步回归(STR)与多元线性回归(MLR)相结合的方法(STR-MLR)成功建立了系列合成抗菌肽(R2=0.793,Q2=0.751)、novispirin抗菌肽(R2=0.970,Q2=0.872)和表面粘附抗菌肽(R2=0.686,Q2=0.639)的QSAR模型。本文所建QSAR模型的稳定性与预测能力与文献相当甚至更优。STR-MLR模型的标准化系数不仅可用于分析抗菌肽的优势位点,而且能用于计算氨基酸贡献值以发现优势氨基酸,进而指导抗菌肽的理论设计或结构改造。STR-MLR模型具有稳定性好、预测能力强、物理化学意义明确、操作简便、易于实现等优点,可有效用于抗菌肽的虚拟设计与高效筛选。
     2.本文使用STR-MLR方法分别建立了六肽和五肽对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)抗菌活性的QASR模型,通过模型标准化系数并结合保守残基分析,发现了抗菌六肽和五肽的优势位点与优势氨基酸。同时,使用比较分子力场分析(CoMFA)与比较相似性指数分析(CoMSIA)方法分别建立了该系列抗菌肽基于N-端和C-端公共骨架叠合的三维构效关系(3D-QSAR)模型。CoMFA与CoMSIA对E. coli和S. aureus抗菌活性所建模型的交互检验复相关系数均高于0.400,表明所建模型具有较好的稳定性与预测能力;而且,CoMFA与CoMSIA等值面图可为抗菌肽的合理设计及结构改造提供可视化信息。本文基于小分子抗菌肽的STR-MLR模型及3D-QSAR研究结果,以牛乳铁素片段LfcinB6(RRWQWR)为模板,结合抗菌肽的阳离子性、两亲性、优势位点、优势氨基酸等信息,确定抗菌肽的虚拟组合设计方案,并据此虚拟设计540条理论抗菌五肽。首先根据阳离子性与两亲性的结构特征初步筛选121条抗菌肽,然后使用STR-MLR、 CoMFA、CoMSIA模型预测并筛选出4条理论抗菌肽,最后通过抗菌活性与溶血毒性实验验证抗菌肽理论设计与筛选方法的可靠性。此外,为了探索序列更短的多肽是否仍具有抗菌活性,本文基于LfcinB6、结合保守残基分析与QSAR研究,定向设计一条抗菌四肽进行实验研究。
     3.本研究分别使用使用固相合成方法合成、反相高效液相色谱(RP-HPLC)纯化及质谱(MS)鉴定已筛选的抗菌五肽,高效液相色谱(HPLC)分析结果显示,固相合成抗菌肽的纯度达到95%以上,质谱测定与理论计算分子质量完全相符,达到抗菌活性与溶血毒性实验研究的要求。
     4.本文为验证已筛选抗菌肽的抗菌效果,首先通过琼脂平板法测定抗菌肽对大肠杆菌、金黄色葡萄球菌、枯草芽孢杆菌、铜绿假单胞菌的生长抑制作用,然后使用微量稀释法定量测定抗菌肽的最小抑菌浓度(MIC)。琼脂平板实验结果表明除"RWQWR"外,其他抗菌肽均具有较模板肽(LfcinB6)优异的抗菌活性,而且抑菌斑在7天内不缩小,表明抗菌肽的抗菌效果较为持久。抗菌肽对比实验显示,设计抗菌肽的最佳抗菌活性仅为庆大霉素的50%左右,因而还有待进一步提高抗菌活性。抗菌活性定量测定结果表明,设计抗菌肽对4种细菌的MIC在16-128μg·ml-1之间,与文献报道小分子抗菌肽的抗菌活性基本相当,有必要在此基础上通过结构修饰等方法进一步提高其抗菌活性,进而提高其实际应用潜力。对比实验测定与模型预测抗菌活性发现,三种定量预测模型均可较准确的预测抗菌肽活性。总体而言,CoMFA模型对抗菌活性的预测能力最优,而STR-MLR模型的预测能力稍差,可能与STR-MLR建模样本数较少有关。
     5.溶血毒性是抗菌肽能否进入实际应用的重要前提,本研究分别使用平板法与微量稀释法测定设计抗菌肽的溶血活性。平板实验显示设计抗菌肽在72小时不出现溶血现象,相比48小时就出现溶血的模板肽(LfcinB6),设计抗菌肽的溶血活性并不明显。微量稀释法所测定的抗菌肽溶血百分率显示,设计抗菌肽在100μg·ml-1时才出现溶血效应,且浓度在1mg·ml-1时的溶血率均低于5%,表明设计抗菌肽具有良好的安全性,具有进一步开发利用的潜力。
     6.本文设计抗菌四肽对4种菌株的MIC在8-64μg·ml-1之间,表明更小分子的抗菌肽同样具有优异的抗菌活性,为设计与筛选化学合成容易小分子抗菌肽奠定了基础。然而,该抗菌肽在32μg·ml-1时出现溶血效应,且在1mg·ml-1时的溶血率百分率高达25%,因而有必要将其作为先导化合物进行结构改造,以进一步提高其安全性。
     本文将生物信息学、化学信息学与生物化学有机结合,通过抗菌肽的QSAR研究以及保守残基分析,建立了抗菌肽设计与筛选的理论方案。根据抗菌六肽、五肽的二维及三维QSAR研究结果,结合抗菌肽的阳离子性与两亲性的结构特征,虚拟组合设计并高效筛选获得4个理论抗菌肽,最后通过抗菌活性及溶血毒性实验研究,获得3个抗菌活性较好、溶血毒性小的抗菌五肽。本文设计抗菌肽的理论预测与实验测定抗菌活性相当接近,说明基于QSAR理论预测模型的抗菌肽设计与筛选方法高效、可靠、易行。本研究不仅成功建立了抗菌肽理论设计、高效筛选与实验验证的完整技术方案,而且筛选获得3个小分子抗菌肽先导物,为抗菌肽的理论研究与应用开发奠定了良好基础。
Antibiotics are widely used and abuse in clinic because its significant antimicrobial effect, which result in the resistance of lots of bacteria. Antibiotics are the chemical substance generated by bacteria in order to avoid attacking from pathogenic microorganism. However, the microorganism can become resistance through hydrolase, drug pump, genetic mutation or membrane transformation. Currently, the bacterium with resistance is existed in anywhere and threatens the human health seriously. For bacteria with resistance, the antibiotics are improved by researchers, but they can become resistance more cleverly, and the development of antibiotics is more difficult. Antimicrobial peptide (AMP) is the polypeptide, which protected the organism avoiding attack from pathogenic bacteria, and it is the important component of innate system. The antimicrobial mechanism of AMP is significant distinction from antibiotics, thus it has broad antimicrobial spectrum, rapidly disinfection and low resistance, which has the potential to be developed as the novel antimicrobial agent with high efficiency and low toxicity.
     The AMP becomes the focus because of its inherent characters and magnificent prospects. There are some AMPs are designed and screened through sequence motif and combinational peptide library method, which based on cationic and amphipathic properties of AMP. However, the AMP has some deficiency, such as high cost of manufacture, poor protease stability and potential hemolysis, which limited them into clinic application. The emerging of short AMP and its analogues promotes the clinic application of AMP greatly, but they have the problem of non-ideal activity and potential hemolysis. Currently, there is no reliable theory model for the prediction of antimicrobial and hemolytic activity, which makes the AMP design and development more difficult. Therefore, the theoretic model uses to guide the rational design and virtual screening of AMP, and the short AMP with high activity, good hydrolytic stability and low hemolysis can be explored, which may become the basis for development of novel antimicrobial agent. Consequently, this study constructs the theoretical model based on quantitative structure activity relationship (QSAR) to guide the combinational design and virtual screening of AMP, and the antimicrobial and hemolytic experiments are used to validate the reliability of theoretical model. The research results are gained in this study as following:
     The AMP are characterized by89physicochemical properties of amino acids, and the method combined the stepwise regression and multiple linear regression (STR-MLR) is used to construct QSAR model for synthesis AMP (R2=0.793, Q2=0.751), novispirin AMP (R2=0.970, Q2=0.872) and surface-tethered AMP (R2=0.686, Q=0.639). The reliability and predictive ability of STR-MLR model is superior or equivalent to that constructed in literatures. The normalized regression coefficients (NRC) of STR-MLR can discover the dominant position, and the contribution of amino acid calculated by NRC can reveal important amino acids, which can guide the design and modification of AMP directly. STR-MLR model has many advantages, such as good reliability and predictive ability, definite physicochemical meaning, simply operation and facilitate realization.
     The quantitative predictive models are established by STR-MLR and conserved residues analysis is performed for serial hexapeptides and pentapeptides with antimicrobial activity for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which discovers the advantage positions and dominant amino acids. Based on the alignment of common backbone of N-and C-terminal, the three dimension quantitative structure activity relationship (3D-QSAR) models are constructed by comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) for short AMP. The correlation coefficient (Q2) of cross validation is larger than0.400, meaning the3D-QSAR model has good reliability and predictive ability, which can guide the design and screening of AMP. Additionally, the counter map of CoMFA and CoMSIA can provide the visible information for molecular design and modification, which can guide the combinational design de residue modification of AMP. The scheme of virtual combination design is defined based on the STR-MLR model and3D-QSAR results, template peptide (LfcinB6, RRWQWR), cationic and amphipathic properties, advantage positions and dominant amino acids, then540pentapeptides are generated and121peptides are screened according to cationic and amphipathic properties of AMP. Finally, the design and screening method of AMP are validated by antimicrobial and hemolytic experiments of4pentapeptides, which predicted and screened by STR-MLR, CoMFA, CoMSIA models comprehensively. Additionally, in order to explorer the antimicrobial activity of shorter peptide, a tetrapeptide is designed for experimental research base sequence analysis and QSAR results.
     The designed AMP is synthesized, purified and analyzed by solid synthesis, reverse phase high performance liquid chromatography (RP-HPLC) and mass spectrum (MS) respectively. The purity of AMPs is higher than95%, and the molecular mass is equivalent to that determined by MS, which meet the requests of antimicrobial and hemolytic experiments.
     In order to validate the antimicrobial efficiency, the growth inhibition and minimal inhibition concentration (MIC) for E. coli, S. aureus, Bacillus subtilis and Pseudomonas aeruginosa are determined by agar plate assay and broth microdilution method respectively. The agar plate assay indicates that AMPs have superior activity than template peptide except "RWQWR", and the blot of AMP is not shrinked in7days, which means the AMPs have stable activity. Comparing to the antibiotics, the inhibition efficiency of AMP is only half of gentamycin, which should be improved greatly. The MIC of designed AMP for4strains is between16and128μg·ml-1, which should be improved through structural modification. Comparison between determined and predicted activity, three QSAR models built here can predict the antimicrobial activity accurately. In general, the CoMFA model has best predictive ability, but the STR-MLR mode is not ideal, which attributes to the few samples used to establish QSAR model.
     The hemolysis of AMP is the prerequisite of its application, and it is evaluated by plate assay and microdilution method respectively. The plate assay shows the AMPs have not hemolytic effect in72hour, which is superior to that of LfcinB6. The percentage hemolysis of AMP determined by microdillution method indicates they have hemolytic effect with concentration is100μg·ml-1,but the percentage hemolysis below5%with concentration is1mg·ml-1. The experimental result shows the AMP has good safety and potentiality for development.
     The MIC of tetrapeptide is8-64μg·ml-1for4strains, which indicate the short AMP with high activity and become the basis for design and screening of short AMP with easy synthesis. However, the tetrapetide has hemolytic efficiency with concentration is32μg·ml-1and the hemolytic percentage is up to25%when the concentration is1mg·ml-1, which shows it can be studied as lead compound and promoted the security through structural modification.
     In ths study, the method combining bioinformatics, chemoinformatics and biochemistry are used to AMP research. The design and screening scheme of AMP is established based on QASR research and conserved residues analysis. Based2D-QSAR and3D-QSAR results, cationic and amphipathic properties of AMP, there are4pentapeptides are designed and screened for experimental validation. Finally,3pentapeptides with high activity and low hemolysis are validated by antimicrobial and hemolytic experiments. The determined and predicted activity is very close, which shows the method of design and screening based QSAR predictive model is effective and realibity for AMP development. Additionally, the scheme is simple, facilitate, high-performance and reliability. In general, the theoretical scheme of rational design, high-performance screening and experimental validation for AMP are established and3short AMP are screened, which become the basis for theoretial research and development of AMP.
引文
[1]Aminov RI. A brief history of the antibiotic era:lessons learned and challenges for the future. Front Microbiol.2010,1:134.
    [2]Wheat PF. History and development of antimicrobial susceptibility testing methodology. Antimicrob Chemother.2001,48(Suppl 1):1-4.
    [3]Roberts W. Studies on biogenesis. Philosophical Transactions of the Royal Society of London.1874,164:466.
    [4]Beale LS. A Germ-Theory:Remarks on Some of Dr. Tyndall's Recent Observations. Br Med J.1876,1(790):223-4.
    [5]Brunel J. Antibiosis from Pasteur to Fleming. JHist Med Allied Sci.1951,6(3):287-301.
    [6]Florey HW. Use of Micro-organisms for Therapeutic Purposes. Br Med J.1945,2(4427): 635-642.
    [7]Guthe T, Idsoe O, Willcox RR. Untoward penicillin reactions. Bull World Health Organ. 1958; 19(3):427-501.
    [8]Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Brit JExper Path.1929,10:226-37.
    [9]Campos MC, Cuadra ZTE, Rodriguez EG, Fernandez FJ. Penicillin and cephalosporin production:A historical perspective. Rev Latinoam Microbiol.2007,49 (3-4):88-98.
    [10]Chain E, Florey HW, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG. Penicillin as a chemotherapeutic agent. The Lancet.1940,236(6104):226-228.
    [11]Abraham EP, Chain E, Fletcher CM, Gardner AD, Heatley NG, Jennings MA, Florey HW. Further observations on penicillin. The Lancet.1941,238(6155):177-189.
    [12]Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov.2002,1(11):895-910.
    [13]McManus MC. Mechanisms of bacterial resistance to antimicrobial agents. Am J Health Syst Pharm.1997,54:1420-1433.
    [14]Krause RM. The origin of plagues:old and new. Science.1992,257:1073-1078.
    [15]Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control. 2006,34(5 Suppl 1):S3-10.
    [16]Abraham EP, Chain E. An Enzyme from Bacteria able to Destroy Penicillin. Nature.1940, 146,837-837.
    [17]Davies J. Inactivation of Antibiotics and the Dissemination of Resistance Genes. Sience. 1994,264(5157):375-382.
    [18]Alanis AJ. Resistance to Antibiotics:Are We in the Post-Antibiotic Era?. Arch Med Res.2005,36(6):697-705.
    [19]Gordon YJ, Romanowski EG, McDermott AM. A Review of Antimicrobial Peptides and Their Therapeutic Potential as Anti-Infective Drugs. Curr Eye Res.2005,30(7):505-515.
    [20]Sterner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial protein involved in insect immunity. Nature.1981,292:246-248.
    [21]Selsted ME, Szklarek D, Lehrer RI. Purification and antibacterial activity of antimicrobial peptides from rabbit granulocytes. Infect Immun.1984,45:150-154.
    [22]Slsted ME, Harwig SSL, Ganz T, Schilling JW, Lehrer RI. Primary structures of three human neutrophil defensins. J Clin Invest.1985,76:1436-1985.
    [23]Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA.1987,84:5449-5453.
    [24]Gallo RL, Huttner KM. Antimicrobial peptides:an emerging concept in cutaneous biology. J Invest Dermatol.1998,111(5):739-43.
    [25]Boman HG. Antibacterial peptides:basic facts and emerging concepts. J Intern Med.2003, 254:197-215.
    [26]Frecer V, Ho B, Ding JL. De novo design of potent antimicrobial peptides. Antimicrob Agents Chemother.2004,48(9):3349-57.
    [27]Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta.1999,1462:1-10.
    [28]Wiesner J, Vilcinskas A. Antimicrobial peptides:the ancient arm of the human immune system. Virulence.2010,1(5):440-64.
    [29]Brogden KA. Antimicrobial peptitdes:pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol.2005,3:238-50.
    [30]Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM, et al. The MACPF/CDC family of pore forming toxins. Cell Microbiol.2008,10:1765-74.
    [31]Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal odel? A case study on melittin pores. Biophys J.2001,81:1475-85.
    [32]Tossi A, Sandri L. Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des 2002; 8(9):743-61..
    [33]Brahmachary M, Krishnan SP, Koh JL, Khan AM, Seah SH, Tan TW, Brusic V, Bajic VB. ANTIMIC:a database of antimicrobial sequences. Nucleic Acids Res.2004,32(Database issue):D586-9.
    [34]Wang Z, Wang G. APD:the Antimicrobial Peptide Database. Nucleic Acids Res.2004, 32(Database issue):D590-D592.
    [35]Wang G, Li X, Wang Z. APD2:the updated antimicrobial peptide database and its application in peptide design.Nucleic Acids Res.2009,37(Database):D933-937.
    [36]Whitmore L, Wallace BA. The Peptaibol Database:a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res.2004,32(Database issue): D593-4.
    [37]Whitmore L, Chugh JK, Snook CF, Wallace BA. The peptaibol database:a sequence and structure resource. JPept Sci.2003,9(11-12):663-5.
    [38]Gueguen Y, Gamier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech M, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang Y, Bo D, Xiang J, Tassanakajon A, Piquemal D, Bachere E. PenBase, the shrimp antimicrobial peptide penaeidin database:sequence-based classification and recommended nomenclature. Dev Comp Immunol.2006,30(3):283-8.
    [39]Seebah S, Suresh A, Zhuo S, Choong YH, Chua H, Chuon D, Beuerman R, Verma C. Defensins knowledgebase:a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res.2007,35(Database issue):D265-8.
    [40]Fjell CD, Hancock RE, Cherkasov A. AMPer. a database and an automated discovery tool for antimicrobial peptides. Bioinformatics.2007,23(9):1148-55.
    [41]Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S.CAMP:A useful resource for research on antimicrobial peptides. Nucleic Acids Res.2010,38(Database): D774-D780.
    [42]Hammami R, Ben Hamida J, Vergoten G, Fliss I.PhytAMP:a database dedicated to antimicrobial plant peptides. Nucleic Acids Res.2009,37(Database):D963-968.
    [43]Wade D, Englund J. Synthetic Antibiotic Peptides Database. Protein PeptLett.2002,9(1): 53-57.
    [44]Vagner J, Qu H, Hruby VJ. Peptidomimetics, a synthetic tool of drug discovery. Curr Opin Chem Biol.2008,12(3):292-6.
    [45]Li Y, Chen Z. RAPD:a database of recombinantly-produced antimicrobial peptides. FEMS Microbiol Lett.2008,289(2):126-9.
    [46]Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I. BACTIBASE second release:a database and tool platform for bacteriocin characterization. BMC Microbiol.2010,10:22.
    [47]Lata S, Mishra NK, Raghava GP. AntiBP2:improved version of antibacterial peptide prediction. BMC Bioinformatics.2010, 11(Suppl 1):S19.
    [48]Cherkasov A, Jankovic B. Application of 'inductive' QSAR descriptors for quantification of antibacterial activity of cationic polypeptides. Molecules.2004,9(12):1034-52.
    [49]Taboureau O, Olsen OH, Nielsen JD, Raventos D, Mygind PH, Kristensen HH. Design of novispirin antimicrobial peptides by quantitative structure-activity relationship. Chem Biol Drug Des.2006,68(1):48-57.
    [50]Fjell CD, Jenssen H, Hilpert K, Cheung WA, Pante N, Hancock RE, Cherkasov A. Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem.2009,52(7):2006-15.
    [51]Zhu W L, Song Y, Park M Y, et al. Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Biochim Biophys Acta.2007,1768(6):1506-17.
    [52]Scott R W, DeGrado W F, Tew G N. De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotech.2008,19:620-627.
    [53]He J, Andersonb M, H, Shi W Y, et al. Design and activity of a 'dual-targeted' antimicrobial peptide. Inter J Antimicro Agent.2009,33:532-537.
    [54]Papo N, Oren Z, Pag U, et al. The consequence of sequence alteration of an amphipathic alpha-helical an timicrobial pepfide and its diastereomers. J Biol Chem.2002,277(37): 33913-33921.
    [55]Tsao H S, Spinella S A, Lee A T, et al. Design of novel histone-derived antimicrobial peptides. Peptides.2009,30:2168-2173.
    [56]Blondelle S E, Lohner K. Combinatorial libraries:a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers.2000,55(1):74-87.
    [57]Giangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur JBiochem.2001,268(21):5589-5600.
    [58]Abiraj K, Gowda ASP, Gowda DC. Synthesis of shorter active analogues of Bactenecin7: The effect of change of N-terminal configuration on antimicrobial activity. Lett Pep Sci. 2002,9(6):283-290.
    [59]Abiraj K, Prasad HS, Gowda AS, Gowda DC. Design, synthesis and antibacterial activity studies of model peptidess of proline/arginine-rich region in bactenecin7. Protein Pept Lett.2004,11(4):291-300.
    [60]Bertinetti BV, Pena NI, Cabrera GM. An antifungal tetrapeptide from the culture of Penicillium canescens. Chem Biodivers.2009,6(8):1178-84.
    [61]邓超,王联结.阳离子抗茵肽的研究进展.中国生物工程杂志.2008,28(6):100-107.
    [62]Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol.2006,6(5):468-72.
    [63]Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol.2006,24(12):1551-7.
    [64]Fjell CD, Hiss JA, Hancock RE, et al. Designing antimicrobial peptides:form follows function. Nat Rev Drug Discov.2011,11(1):37-51.
    [65]Nijnik A, Hancock R E W. Host defence peptides:antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerging Health Threats Journal.2009,2:el-e7.
    [66]Lata S, Sharma B K, Raghava G P S. Analysis and prediction of antibacterial peptides. BMC Bioinformatics.2007,8:263-273.
    [67]Torrent M, Nogues V M, Boix E. A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinform.2009,10:373.
    [68]Bhonsle J B, Venugopal D, Huddler D P, et al. Application of 3D-QSAR for Identification of Descriptors Defining Bioactivity of Antimicrobial Peptides. J Med Mol.50(26) 6545-6553.
    [69]Xu G H, Wu M, Wang L, et al. Conformational and dynamics simulation study of antimicrobial peptide hedistin-heterogeneity of its helix-turn-helix motif. Biochim Biophys Acta.2009,1788(12):2497-2508.
    [70]Vogle H J, Schibli J D, Jing W, et al. Towards a structure-function analysis of bovine lactoferricin and related tryptophan and arginine containing peptides. Biochem Cell Biol. 2002,80:49-63.
    [71]Svenson J, Karstad R, Flaten GE, Brandsdal BO, Brandl M, Svendsen JS. Altered activity and physicochemical properties of short cationic antimicrobial peptides by incorporation of arginine analogues. Mol Pharm.2009,6(3):996-1005.
    [72]Makovitzki A, Baram J, Shai Y. Antimicrobial lipopolypeptides composed of palmitoyl Di- and tricationic peptides:in vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry.2008,47(40):10630-6.
    [73]Thaker HD, Sgolastra F, Clements D, Scott RW, Tew GN. Synthetic mimics of antimicrobial peptides from triaryl scaffolds. J Med Chem.2011,54(7):2241-54.
    [74]Laverty G, McLaughlin M, Shaw C, Gorman SP, Gilmore BF. Antimicrobial activity of short, synthetic cationic lipopeptides. Chem Biol Drug Des.2010,75(6):563-9.
    [75]Strom MB, Rekdal O, Svendsen JS. Antimicrobial activity of short arginine- and tryptophan-rich peptides. J Pept Sci.2002,8(8):431-7.
    [76]Gimenez D, Andreu C, del Olmo M, Varea T, Diaz D, Asensio G. The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorg Med Chem.2006,14(20):6971-8.
    [77]李志良.定量构效关系研究进展.化学通报.1995,9:5-10.
    [78]李志良,胡芳,梁本熹,余虎,石乐明,李梦龙,酒井诚.神经网络用于环丙胺类衍生物的构效关系研究.药学学报.1996,31(1):38-42.
    [79]李志良,胡芳,梁本熹,余虎,李梦龙,石乐明.神经网络用于苯乙胺衍生物的QSAR研究.中国药物化学杂志.1996,6(1):3840.
    [80]李志良,松本和子,胡芳,村松由起,宫下芳胜,佐佐木慎一.定量构效关系研究中图论方法:烷烃C-13 NMR化学位移.波谱学杂志.1996,13(5):483-485.
    [81]王连生,张爱茜.定量结构-活性相关研究进展.环境科学进展.1994,2(4):15-22;.
    [82]瞿福平,杨义燕.定量结构-生物降解性能关系(QSBR)研究原理及进展.中国环境科学.1999,19(1):18-21.
    [83]王飞跃,陈雁飞.有机物的结构-活性定量关系及其在环境化学和环境毒理学中的应用.环境科学进展.1994,2(1):26-50.
    [84]Miyashita Y, LI Zhiliang, Sasaki S. Chemical pattern recognition and multivariate analysis for QSAR studies. Trend Anal Chem TrAC.1993,12(12):50-60.
    [85]Sneath P H A. Relations between chemical structure and biological activity in peptides. J Theor Biol.1966,12:157-195.
    [86]Nadasdi L, Medzihradszky K. A study of the applicability of QSAR calculation for peptide hormones. Biochem Biophys Res Commun.1981,99:451-457.
    [87]Depriest S A, Mayer D, Naylor C D, Marshall G R.3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors:A comparision of CoMFA models based on deduced and experimentally determined active site geometries. J Am Chem Soc.1993,115: 5372-5384.
    [88]Meyer H Zur Theorie der Alkolnarkose I. Welche Eigenschaft der Anaextheticabedingt ihre narkotische Wirkung. Archiv fur Experimentell Pathlolgie und Pharmakologie.1899, 42:109-118.
    [89]王连生,韩朔睽.有机定量结构-活性相关.北京:甲国环境科学出版社.1993:10-25.
    [90]王连生,韩朔睽.分子结构、性质与活性.北京:化学工业出版社.1997:5-30.
    [91]Overton E. Osmotic Properties of Cells in the Bearing on Toxicology and Pharmacy. Zeitxdhrigt fur Physikalisch Chemie.1897,22:189-209.
    [92]Ferguson J. The Use of Chemical Potentials as Indices of Tcxicity. Proceedings of the Roval Sociity ser B.1939,127:487-503.
    [93]Hansch C, Muir M, Fujita T, Peyton PM, Fred G, Margaret S. The Correlation of Biological Activity of Plant Growth Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients. J Am Chem Soc.1963,85:2817-2824.
    [94]Hansch C, Fujita T. A Method for the Correlation of Biological Activity and Chemical Structure. J Am Chem Soc.1964,86:1616-1626.
    [95]Free S M, Wilson J W. A Mathematical Contribution to Structure-Activity Studies. J Med Chem.1964,7:395-399.
    [96]钟国华,胡美英QSAR及其在农药设计中的应用和进展.农药学学报.2001,3(1):1-11.
    [97]王桂莲,白乃彬.环境污染物定量构效关系模型研究进展.环境科学进展.1995,3(4):39-45.
    [98]刘仲杰,刘叔倩.三维定量构效关系最新研究进展.河北科技大学学报.1999,20(1):17-21.
    [99]Hopfinger A J. A QSAR Investigation of Dihydrofolate Reductase Inhibitionby Baker Triazines Based upon Molecular Shape Analysis. J Am Chem Soc.1980,102(8): 7196-7206.
    [100]Cramer R D, Patterson DE, Bunce J D. Comparative molecular field analysis (CoMFA) 1. effect of shape on binding of steroids to carrier proteins. J Am Chem Soc.1988,110: 5959-5967.
    [101]Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem.1994,37(24):4130-46.
    [102]Klein CD, Hopfinger AJ. Pharmacological activity and membrane interactions of antiarrhythmics:4D-QSAR/QSPR analysis. Pharm Res.1998,15(2):303-11.
    [103]Vedani A, Dobler M.5D-QSAR:the key for simulating induced fit?. J Med Chem.2002, 45(11):2139-49.
    [104]Katritzky A R, Maran U, Lobanov V S, Karelson M. Perspective:Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties. J Chem Inf Comput Sci.2000,40:1-18.
    [105]Michele M M, Samir G, Stanley P W. Aqueous solubilities, octanol/water partition coefficients, and entropies of Melting of chlorinated benzenes and biphenyls. J Chem Eng Data.1984,29:184-190.
    [106]Darryl W H, Connell D W. Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ Sci Technol.1988,22:382-387.
    [107]Hansch C, Zhang L. QSAR of HIV inhibitors. Bioorg Med Chem Lett.1992,2: 1165-1169.
    [108]Lien E J. Quantitative structure-activity relationship and dipole moments of anticonvulsants and CNS depressants. J Pharm Sci.1970,6:463-498.
    [109]Lien E J. Use of dipole moments as a parameter in drug-receptor interaction and quantitative structure-activity relationship studies. J Pharm Sci.1982,7:641-667.
    [110]Boyce C B C, Millorrow B V. A simple assessment of partition data for correlating structure and biological activity using thin-layer chromatography. Nature.1965,2: 537-556.
    [111]Spengler J P, Wegner K, Schunack W. H2-antihistaminics structure-activity relationship in H-receptor antagonists containing a 4-pyrimidone moiety. Agents Actions.1984,14: 566-598.
    [112]Jinno K. Correlation between the retention of cardiac glycosides in diphenylsilyl stationary phase, their structure and biological activity. J Chromatogr.1983,26:485-502.
    [113]王连生,赵元慧,高鸿.摩尔体积预测有机物水的溶解度和辛醇/水分配系数.环境化学.1992,11(1):55-70.
    [114]Baumann K. Uniform-length molecular descriptors for quantitative structure-property relationship and quantitative structure-activity relationship:classification studies and similarity searching. Trends Anal Chem.1999,18(1):36-46.
    [115]张大仁,黄庆国,韩朔睽.分子表面积的精确和经验计算及其在QSAR研究中的应用.环境化学.1994,13(3):234-238.
    [116]徐景达.药物结构与活性的关系.结构-活性关系座谈会编.北京:人民卫生出版社.1987:25-36.
    [117]刘次全.量子生物学及其应用.北京:高等教育出版社.1990:30-48.
    [118]杨光富,刘银华,杨光铮.以ALS为靶标的新型除草剂的分子设计,合成及生物活性研究:Ⅳ1,2,4-三唑并[1,5-a]嘧啶-2-磺酰胺的晶体结构,量子化学与构效关系研究.化学学报.1998,56(8):729-735.
    [119]张爱茜,陈日清,魏东斌.氯代芳香族化合物对羊角月牙藻的毒性的QSAR分析.中国环境科学.2000,20(2):102-105.
    [120]商志才,俞庆森,方瑞英.3,5-二芳基-S-三氮唑类化合物终止妊娠活性的QSAR研究.计算机与应用化学.1999,16(4):275-279.
    [121]辛厚文.分子拓扑学.合肥:中国科技大学出版社.1992:80-125.
    [122]许禄,胡昌玉.应用化学图论.北京:科学出版社.2000:76-100.
    [123]戴家银,勒立军,王连生.分子拓扑学参数及其在定量活性-结构关系(QSAR)研究中的应用.环境科学进展.1998,6(4):56-63.
    [124]Rouvrav D H. The modeling of chemical phenonena using topological indices. J Comput Chem.1987,8:470-482.
    [125]姚瑜元,许禄,杨翌秋.一种新的拓扑指数及其在有机化合物结构/性质相关性研究中的应用.环境科学学报.1994,14(1):1-10.
    [126]任碧野,许友,陈国斌.一种新的拓扑指数用于有机化合物的QSPR/QSAR研究.化学学报.1999,57(5):563-571.
    [127]Zefirov N S, Palyulin V A. QSAR for boiling Points of "small" Sulfides. Are the "High-Quality Structure-Property-Activity Regressions" the Real High Quality QSAR Models. J Chem Inf Comput Sci.2001,41:1022-1027.
    [128]Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex:amino acid index database, progress report 2008. Nucleic Acids Res.2008, 36(Database issue):D202-5.
    [129]俞汝勤.化学计量学导论.长沙:湖南教育出版社.1991:1-168.
    [130]刘树深,易忠胜.基础化学计量学.北京:科学出版社.1999:58-118.
    [131]任若恩,王惠文.多元统计数据分析(理论、方法、实例).北京:国防工业出版社.1997:1-218.
    [132]罗积玉,邢英.经济统计分析方法及预测.北京:清华大学出版社.1987:50-108.
    [133]罗札·塞克斯.应用统计手册.天津:天津科技翻译出版社.1988:32-198.
    [134]许禄.化学计量学方法.北京:科学出版社.1995:1-522.
    [135]倪永年.化学计量学在分析化学中的应用.北京:科学出版社.2004:135-178.
    [136]史永刚,冯新泸,李子存.化学计量学.北京:中国石化出版社.2003:195-235.
    [137]李鸿吉.数理统计实用算法.北京:科学出版社.2003:582-632.
    [138]Sharaf M A, Illman D L, Kowalski B R. Chemometrics. New York:Joln Wiley & Sons. 1986:1-200.
    [139]Geladi P, Kowalski B R. Partial least-square regression:a tutorial. Anal Chim Acta.1986, 185:1-17.
    [140]Wakeling I N, Macfie H J H. A robust PLS procedure. J Chemom.1992,6:189-198.
    [141]Baroni M, Clementi S, Cruciani G, Costantino G, Riganelli P.Predictive ability of regression models part 2:selection of the best predictive PLS model.J Chemometr.1992,6: 347-356.
    [142]陈凯先,蒋华良,嵇汝运.计算机辅助药物设计——原理、方法及应用.上海:上海科学技术出版社.2000.20-48.
    [143]徐筱杰,侯廷军,乔学斌等.计算机辅助药物分子设计.北京:化学工业出版社.2004.18-73.
    [144]Mason JS计算机辅助药物设计(上).北京:科学出版社.2007.48-72
    [145]叶德泳.计算机辅助药物设计导论.北京,化学工业出版社.2004.32-65.
    [146]郭宗儒.药物分子设计.北京,科学出版社.2005.25-78
    [147]徐文芳.新药设计原理与方法.北京,中国医药科技出版社.1997.11-43.
    [148]Andrews DH. The Relation Between the Raman Spectra and the Structure of Organic Molecules. Phys Rev.1930,36:544-554.
    [149]Hill TL. On Steric Effects. J Chem Phys.1946,14:465.
    [150]Lifson S, Warshel A. A Consistent Force Field for Calculation on Conformations, Vibrational Spectra and Enthalpies of Cycloalkanes and n-Alkane Molecules. J Phys Chem.1968,49 (11):5116-5229.
    [151]Mulliken RS. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. J Chem Phys.1955,23:1833.
    [152]Singh UC, Kollman PA. An approach to computing electrostatic charges for molecules. J Comp Chem.1984,5(2):129-145.
    [153]Del Re G. A simple MO-LCAO method for the calculation of charge distributions in saturated organic molecules. J Chem Soc.1958,4031-4040.
    [154]Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges.1980,36(22):3219-3228..
    [155]Blyholder G. Molecular Orbital View of Chemisorbed Carbon Monoxide. J Phys Chem. 1964,68(10):2772-2777.
    [156]Del Re G, Pullman B, Yonezawa T. Electronic structure of the a-amino acids of proteins: I. Charge distributions and proton chemical shifts. Biochem Biophys Acta.1963,75: 153-182.
    [157]Alder BJ, Wainwright TE. Phase transition for a hard sphere system. J Chem Phys.1957, 27:1208-1209.
    [158]Hancock RE. Cationic peptides:effectors in innate immunity and novel antimicrobials. Lancet Infect Dis.2001,1(3):156-64.
    [159]Levy SB, Marshall B. Antibacterial resistance worldwide:causes, challenges and responses. Nat Med.2004,10(12 Suppl):S122-9.
    [160]Choi S, Isaacs A, Clements D, Liu D, Kim H, Scott RW, Winkler JD, DeGrado WF. De novo design and in vivo activity of conformationally restrained antimicrobial arylamide foldamers. Proc Natl Acad Sci.2009,106(17):6968-73.
    [161]Bucki R, Pastore JJ, Randhawa P, Vegners R, Weiner DJ, Janmey PA. Antibacterial activities of rhodamine B-conjugated gelsolin-derived peptides compared to those of the antimicrobial peptides cathelicidin LL37, magainin Ⅱ, and melittin. Antimicrob Agents Chemother.2004,48(5):1526-33.
    [162]Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol.2000,8(9):402-10.
    [163]Oren Z, Shai Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers.1998,47(6):451-63.
    [164]Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol.1998,76(2-3):235-46.
    [165]Hilpert K, Elliott M, Jenssen H, Kindrachuk J, Fjell CD, Korner J, Winkler DF, Weaver LL, Henklein P, Ulrich AS, Chiang SH, Farmer SW, Pante N, Volkmer R, Hancock RE. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol.2009,16(1):58-69.
    [166]Schneider TD, Stephens RM. Sequence logos:a new way to display consensus sequences. Nucleic Acids Res.1990,18(20):6097-100.
    [167]Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo:a sequence logo generator. Genome Res.2004,14(6):1188-90.
    [168]Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A. Highly Selective End-Tagged Antimicrobial Peptides Derived from PRELP. PLoS ONE.2011,6(1): e16400.
    [169]Str(?)m MB, Haug BE, Skar ML, Stensen W, Stiberg T, Svendsen JS. The pharmacophore of short cationic antibacterial peptides. J Med Chem.2003,46(9):1567-70.
    [170]Str(?)m MB, Rekdal O, Svendsen JS. Antimicrobial activity of short arginine- and tryptophan-rich peptides. J Pept Sci.2002,8(8):431-7.
    [171]Nguyen LT, Chau JK, Perry NA, de Boer L, Zaat SA, Vogel HJ. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs. PLoS One.2010,5(9): e12684.
    [172]Gimenez D, Andreu C, del Olmo M, Varea T, Diaz D, Asensio G. The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity. Bioorg Med Chem.2006,14(20):6971-8.
    [173]Chan WC, White PD. Fmoc solid phase peptide synthesis:a practical approach. Oxford University Press.2000.
    [174]Merrifield RB. Solid Phase peptide synthesis I. The synthesis tetrapeptide. J Am Chem Soc.1963,85:2149-2154.
    [175]Lenard J, Robinson AB. Use of hydrogen fluoride in Merrifield solid-phase peptide synthesis. J Am Chem Soc.1967,89(1):181-2.
    [176]Wunsch E. Synthesis of naturally occurring polypeptides, problems of current research. Angew Chem Int Ed Engl.1971,10(11):786-95.
    [177]Carpio A. Albendazole therapy for subarachnoid cysticerci:clinical and neuroimaging analysis of 17 patients. J Neurol Neurosurg Psychiatry.1999,66(3):411-2.
    [178]Islam M, Siddiqui AA, Rajesh R, Bakht A, Goyal S. Synthesis and antimicrobial activity of some novel oxadiazole derivatives. Acta Pol Pharm.2008,65(4):441-7.
    [179]Rai NP, Narayanaswamy VK, Govender T, Manuprasad BK, Shashikanth S, Arunachalam PN. Design, synthesis, characterization, and antibacterial activity of{5-chloro-2-[(3-substitutedphenyl-1,2,4-oxadiazol-5-yl)-methoxy]-phenyl}-(phenyl)-methanones. Eur J Med Chem.2010,45(6):2677-82.
    [180]Park KH, Park Y, Park IS, Hahm KS, Shin SY. Bacterial selectivity and plausible mode of antibacterial action of designed Pro-rich short model antimicrobial peptides. J Pept Sci. 2008,14(7):876-82.
    [181]Str(?)m MB, Rekdal O, Svendsen JS. Antimicrobial activity of short arginine- and tryptophan-rich peptides.2002, J Pept Sci 8:431-437.