ChREBP和ACC1在肝细胞糖/脂代谢调控中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在整个生物体能量平衡中肝脏代谢调控系统起着关键作用,因为肝脏是糖代谢(糖酵解和肝糖原合成)和甘油三脂合成(脂肪生成)的主要部位。脂肪生成会受到关键酶的调控,这些酶的活性依靠变构和共价修饰产生。大部分糖酵解和脂肪生成过程中的酶的合成会受到进食状况的调控,其中葡萄糖是起到至关重要作用的营养物质。葡萄糖主要作用于编码这些酶的基因的转录调控过程。
     糖应答元件结合蛋白(ChREBP)和乙酰辅酶A羧化酶(ACCs)是糖/脂代谢过程中两个重要因子。ChREBP是碱性/环-螺旋-环/亮氨酸拉链(bHLH/LZ)转录因子家族成员,在肝脏内大量表达的。它在进食高碳水化合物食物后会高效表达,而在进食高脂类食物后其表达会受到抑制。它对很多脂酶有调控作用。同时,ChREBP的活性又会被胰岛素、葡萄糖和抗糖尿病类药物的调节。因此,研究ChREBP的作用机理有着重要的意义。
     ACCs家族目前发现的有两个成员:ACC1和ACC2。ACC1主要是在肝脏和脂肪组织的细胞质中表达;ACC2主要是在心脏和肌肉组织的线粒体中表达。ACCs是ChREBP的靶基因之一,会受到食物、激素和其他一些生理因子的调控。
     本研究采用real-time PCR和细胞转染等技术,对猪ChREBP基因的生物学特性,ChREBP的功能和转录水平的表达调控,ACC1转录水平的表达调控等进行了研究,获得如下结果:
     1.通过同源分析比较,以小鼠和人的ChREBP基因序列为参照,运用RT-PCR方法,获得了猪ChREBP基因;以猪的心、肝、脾、和肺等11个组织样品作为研究材料,通过半定量RT-PCR分析获得了ChREBP的组织表达谱;通过辐射杂种板分析进行了ChREBP的染色体定位,并与人的定位结果进行了比较。
     2.在无血清无糖培养条件下,对HepG2人肝癌细胞系进行葡萄糖和胰岛素的时间和梯度刺激。采用real-time PCR方法,检测了ChREBP、胆固醇应答元件结合蛋白(SREBP-1c).ACC1和脂肪酸合成酶(FAS)mRNA的表达量。结果表明,葡萄糖在单独作用时也可引起ChREBP.SREBP-1c.ACC1和FAS表达量的升高。
     3.以RT-PCR的方式,克隆得到ChREBP和SREBP-1c的编码序列,分别构建真核表达载体。通过转染和共转染,研究ChREBP和SREBP-1c对靶基因(ACC1)的调控作用。结果表明,ChREBP和SREBP-1c并无协同作用,相反它们有可能对靶基因启动子区的调控位点有竞争作用。
     4.在游离脂肪酸的作用下,细胞中ChREBP和SREBP-1c mRNA的表达量下降,而ACC1的表达量却在花生四稀酸存在的情况下大幅度升高。相关因子肝脏X蛋白受体(LXR)和过氧化酶增值体激活受体(PPARa)在花生四稀酸的作用下表达量无明显变化,但cAMP应答元件结合蛋白1 (CREB1)的表达量有所增高。这表明,花生四稀酸不是通过已知两条糖/脂代谢途径来诱导ACC1表达的。
     5.检测花生四稀酸诱导或转染CREB1后的细胞培养液中的葡萄糖含量和细胞中甘油三酯的含量,同时通过real-time PCR,检测了细胞中葡萄糖吸收和脂肪酸合成的标志性基因——葡萄糖转运蛋白2 (GLUT2),葡萄糖-6-磷酸酶(G6Pase)和FAS的表达量。综合以上结果,表明花生四稀酸对ACC1的诱导会引起细胞中甘油三酯的沉积,但对葡萄糖的摄取没有明显影响。
     6.构建CREB1的真核表达载体及ACC1的启动子荧光素酶载体,进行转染和共转染。通过real-time PCR检测转染CREB1的细胞中ChREBP, SREBP-1c和ACC1的表达量。在共转染后,检测荧光素酶的活性,观察ACC1启动子活性的变化。结果表明,CREB1可结合到ACC1的PⅡ启动子上。这与花生四稀酸的诱导实验的结果相同,进一步证实花生四稀酸是通过CREB1来调控ACC1的表达的。这一作用可能与前列腺素(PG)途径相关。
Liver tissue is a major organ of glycometabolism (glycolysis and hepatic glycogen synthesis) and lipometabolism (lipid synthesis). The metabolic system plays an important action during the maintain energy balance. Lipid synthesis are regulated by some pivotal enzymes which activated by allosterism and contravalence modification. Most of the enzymes linked to glycometabolism and lipometabolism are regulated by the diet. And glucose is one of the significant nutrients. Glucose could act on the transcription of the genes.
     Carbohydrate response element-binding protein (ChREBP) and Acetyl-CoA carboxylase (ACCs) are both important factors of glycometabolism and lipometabolism in liver. ChREBP is a member of the bHLH/ZIP transcription factor family. It is expressed in the liver significantly. The high carbohydrate diets could up regulate the expression of ChREBP, as the high lipogene diets would suppress its expression. It could bind to the ChoRE region of many lipogenic enzymes to actived their gene transcription. Meanwhile, its activity would be regulated by insulin, glucose and antidiabetiecs, that why we need to study the mechanism of ChREBP.
     ACC has two isoforms:ACC1 and ACC2. ACC1 is mainly expressed in the cytoplasm of liver and adipose tissue, and proposed to be involved in fatty acid synthesis, whereas ACC2 is predominantly expressed in skeletal muscle and heart, which is believed to be responsible for fatty acidβ-oxidation. ACC is one of the factors-induced by carbohydrate response element-binding protein (ChREBP). It is regulated by diet, hormone and other physiological factors else.
     In this study, by choosing pig and mouse ChREBP and ACC1 and using real-time PCR, transfection and western blotting, we studied the gene characteristics, transcriptional regulation and function of ChREBP, and transcriptional regulationg of ACC1 and got the following results:
     1. By the comparative analysis, according mouse and human ChREBP sequences, pig ChREBP gene was cloned. By semi-quantitative RT-PCR, the tissue expression profile of ChREBP in eleven tissue samples was determined. By radiation hybrid (RH) mapping analysis, pig ChREBP was located and compared with the result of human ChREBP.
     2. With different time and different dose treatment of glucose and insulin on HepG2 hepatoma cell line, by real-time PCR, the mRNA expression of ChREBP, sterol regulatory element binding protein-1c (SREBP-1c), ACC1 and fatty acid synthetase (FAS). The results indicated that glucose could increased the expression of ChREBP, SREBP-1c, ACC1 and FAS separately.
     3. By RT-PCR, CDS of ChREBP and SREBP were cloned. Subsequently, their expression vectors were constructed, respectively. By transfection or co-transfection, their effects on transcription of ACC1 and FAS were investigated. The results indicated that there is no cooperation but competition between ChREBP and SREBP-1c.
     4. By using arachidonic acid (AA), ACC1 was obviously activated while as the expression of ChREBP and SREBP-1c was reduced. The expression of liver X receptor (LXR) and peroxisome proliferators-activated receptorα(PPARα) which bind to the promoter of ACC1 were reduced while as cAMP-response element binding protein 1 (CREB1) was activated. It suggests that the stimulation of AA was not via the glycometabolism approaches which have been studied.
     5. By real-time PCR, the expression of the symbol genes in cells linked to glucose absoption and fatty acid synthetic, such as glucose transport 2 (GLUT2), glucose-6-phosphatase (G6Pase) and FAS was checked after dealing with AA. Measured the wastage of glucose in culture media and the creation of triacylglycerol (TG) in cells. The results domanstrated that the inducement of AA on ACC1 can promote fatty acid synthesis but has no relation to glycometabolism.
     6. Constructing the expression vector of CREB1, by transfecting and co-transfecting, its effect on transcription of ChREBP, SREBP-1c and ACC1 were investigated. Subsequently, the promoter vector of ACC1 was constructed. By co-transfecting with the expression vector of CREB1, the activity of firefly luciferase was checked. The datas showed that CREB1 could bind to the PⅡpromoter of ACC1. It is match the result of AA stimulation. It confirmed the effect of AA on ACC1 expression via activation of CREB1.
引文
1. Abu-Elheiga, L., Almarza-Ortega, D. B., Baldini, A.&Wakil, S. J. (1997). Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. JBiol Chem 272,10669-77.
    2. Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A.&Wakil, S. J. (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2.Science 291,2613-6.
    3. Abu-Elheiga, L., Oh, W., Kordari-, P.&Wakil,S. J. (2003). Acetyl-CoA carboxylase 2 mutant.mice are protected. against'obesity and,diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci USA 100,10207-12.
    4. Ando, H., Yanagihara, H., Hayashi, Y., Obi, Y., Tsuruoka, S., Takamura, T., et al. (2005). Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse.visceral adipose tissue. Endocrinology 146,5631-6.
    5. Bai, X. P., Li, H. L., Yang, W. Y., Xiao, J. Z., Wang, B., Du, R. Q.&Lou, D. J. (2007). [The mechanism of and relationship between lipid metabolism genes expression and insulin resistance in high-fat-fed mice]. Zhonghua Nei Ke Za Zhi 46,751-754.
    6. Barber,M.C.,Price, N.T. &Travers, M. T. (2005). Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim Biophys Acta 1733,1-28.
    7. Barber, M. C.Travers, M. T. (1995). Cloning and characterisation of multiple acetyl-CoA carboxylase transcripts in ovine adipose tissue. Gene 154,271-5.
    8. Barber, M. C.Travers, M. T. (1998). Elucidation of a promoter activity that directs the expression of acetyl-CoA carboxylase alpha with an alternative N-terminus in a tissue-restricted fashion. Biochem J 333 (Pt 1),17-25.
    9:Belmonte, N., Phillips, B. W., Massiera, F., Villageois, P., Wdziekonski, B., Saint-Marc, P., et al. (2001). Activation of extracellular signal-regulated kinases and CREB/ATF-1 mediate the expression of CCAAT/enhancer-binding proteins beta and-delta in preadipocytes:Mol Endocrinol 15,2037-49.
    10. Billin, A. N., Eilers, A. L., Coulter, K. L., Logan, J. S.&Ayer, D. E. (2000). MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol 20,8845-54.
    11. Botolin, D.Jump, D. B. (2003). Selective proteolytic processing of rat hepatic sterol regulatory element binding protein-1 (SREBP-1) and SREBP-2 during postnatal development. JBiol Chem 278,6959-62.
    12. Cairo, S., Merla, G., Urbinati, F., Ballabio, A.&Reymond, A. (2001). WBSCR14, a gene mapping to the Williams--Beuren syndrome deleted region, is a new member of the Mlx transcription factor network. Hum Mol Genet 10,617-27.
    13. Carvalho, E., Kotani, K., Peroni,O. D.&Kahn, B. B. (2005). Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol Endocrinol Metab 289, E551-61.
    14. Chen, G., Liang, G., Ou, J., Goldstein, J. L.&Brown, M. S. (2004). Central role for liver X receptor in insulin-mediated activation of Srebp-lc transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A 101,11245-50.
    15. Chiang, C. W., Kanies, C., Kim, K. W., Fang, W. B., Parkhurst, C., Xie, M., et al. (2003). Protein phosphatase 2A dephosphorylation of phosphoserine 112 plays the gatekeeper role for BAD-mediated apoptosis. Mol Cell Biol 23,6350-62.
    16. Choi, K. C., Ryu, O. H., Lee, K. W., Kim, H. Y., Seo, J. A., Kim, S. G., et al. (2005). Effect of PPAR-alpha and-gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem Biophys Res Commun 336, 747-53.
    17. Commerford, S. R., Peng, L., Dube, J. J.&O'Doherty, R. M. (2004). In vivo regulation of SREBP-lc in skeletal muscle:effects of nutritional status, glucose, insulin, and leptin. Am J Physiol Regul Integr Comp Physiol 287, R218-27.
    18. de Koning, D. J., Janss, L. L., Rattink, A. P., van Oers, P. A., de Vries, B.J., Groenen, M. A., van der Poel, J. J., de Groot, P. N., Brascamp, E. W., van Arendonk, J. A. (1999). Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs. Genetics 152(4):1679-90.
    19. da Silva Xavier, G., Rutter, G. A., Diraison, F., Andreolas, C.&Leclerc, I. (2006). ChREBP binding to fatty acid synthase and L-type pyruvate kinase genes is stimulated by glucose in pancreatic beta-cells. J Lipid Res 47,2482-91.
    20. Denechaud, P. D., Bossard, P., Lobaccaro, J. M., Millatt, L., Staels, B., Girard, J., et al. (2008). ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 118,956-64.
    21. Dentin, R., Benhamed, F., Pegorier, J. P., Foufelle, F., Viollet, B., Vaulont, S., et al. (2005). Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J Clin Invest 115,2843-54.
    22. Dentin, R., Girard, J.&Postic, C. (2005). Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c):two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87,81-6.
    23. Dentin, R., Pegorier, J. P., Benhamed, F., Foufelle, F., Ferre, P., Fauveau, V., et al. (2004). Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-lc on glycolytic and lipogenic gene expression. JBiol Chem 279,20314-26.
    24. Desvergne, B., Michalik, L.&Wahli, W. (2006). Transcriptional regulation of metabolism. Physiol Rev 86,465-514.
    25. Drevon, C. A. (2005). Fatty acids and expression of adipokines. Biochim Biophys Acta 1740,287-92.
    26. Dronadula, N., Rizvi, F., Blaskova, E., Li, Q.&Rao, G. N. (2006). Involvement of cAMP-response element binding protein-1 in arachidonic. acid-induced vascular smooth muscle cell motility. J Lipid Res 47,767-77.
    27. Eilers, A. L., Sundwall,E.,Lin, M., Sullivan, A. A.&Ayer, D. E. (2002).A novel heterodimerization domain,CRM1, and 14-3-3 control subeellular localization of the MondoA-Mlx heterocomplex. Mol Cell Biol 22,8514-26.
    28. Ferrer-Martinez,A., Marotta, M., Turini, M.; Mace, K.&Gomez-Foix, A. M. (2006). Effect of sucrose and saturated-fat diets on mRNA levels of genes limiting muscle fatty acid and glucose supply in rats. Lipids 41,55-62.
    29. Foretz, M., Ancellin, N.,Andreelli, F.,. Saintillan, Y., Grondin, P.,Kahn, A.,et al. (20.05). Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54, 1331-9.
    30. Foufelle, F., Perdereau, D.,Gouhot, B., Ferre, P.&Girard, J. (1992). Effect of diets rich in medium-chain and long-chain triglycerides on lipogenic-enzyme gene expression in liver and adipose tissue of the weaned rat. Eur JBiochem 208,381-7.
    31. Girard, J.,Ferre,P.&Foufelle, F. (1997). Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr 17, 325-52.
    32. Grefhorst, A., Elzinga, B.M., Voshol, P.J., Plosch, T., Kok, T., Bloks, V. W., et al. (2002). Stimulation'of lipogenesis by pharmacological activation of.the liver X receptor leads to. production of large, triglyceride-rich very low density lipoprotein particles. JBiol Chem 277,34182-90.
    33. Grefhorst, A., van Dijk, T. H., Hammer, A., van der Sluijs, F. H., Havinga, R., Havekes, L. M., et al. (2005). Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice. Am J Physiol Endocrinol Metab 289, E829-38.
    34. Gregoire, F. M., Smas, C. M.&Sul, H. S. (1998). Understanding adipocyte differentiation. Physiol Rev 78,783-809.
    35. Gustafsson, J. A. (1998). Fatty acids in control of gene expression. Nutr Rev 56, s20-1; discussion s54-75.
    36. Ha, J., Daniel, S., Kong, I. S., Park, C. K., Tae, H. J.&Kim, K. H. (1994). Cloning of human acetyl-CoA carboxylase cDNA. Eur J Biochem 219,297-306.
    37. Hannah, V. C., Ou, J., Luong, A., Goldstein, J. L.&Brown, M. S.(2001). Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells.JBiol Chem 276,4365-72.
    38. Haugen, F., Zahid, N., Dalen, K. T., Hollung, K., Nebb, H.I.&Drevon, C. A. (2005). Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res 46,143-53.
    39. He, Z., Jiang, T., Wang, Z., Levi, M.&Li, J. (2004). Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. Am J Physiol Endocrinol Metab 287, E424-30.
    40. Horton, J. D., Goldstein, J. I,&Brown, M. S. (2002). SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125-31.
    41. Iizuka, K., Bruick, R. K., Liang, G., Horton, J. D.&Uyeda, K. (2004). Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 101,7281-6.
    42. Ishii, S., Iizuka, K., Miller, B.C.&Uyeda, K. (2004). Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc Natl Acad Sci U S A 101,15597-602.
    43. Jakel, H., Nowak, M., Moitrot, E., Dehondt, H., Hum, D. W., Pennacchio, L. A., et al. (2004). The liver X receptor ligand T0901317 down-regulates APOA5 gene expression through activation of SREBP-lc. JBiol Chem 279,45462-9.
    44. Jakobsson, A., Jorgensen, J. A.&Jacobsson, A. (2005). Differential regulation of fatty acid elongation enzymes in brown adipocytes implies a unique role for Elovl3 during increased fatty acid oxidation. Am J Physiol Endocrinol Metab 289, E517-26.
    45. Jiang, T., Wang, Z., Proctor, G., Moskowitz, S., Liebman, S. E., Rogers, T., et al. (2005). Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem 280,32317-25.
    46. Johnston, N. (2004). Sugar directly triggers fat formation. Drug Discov Today 9, 1037-8.
    47. Jones, J. R., Barrick, C., Kim, K. A., Lindner, J., Blondeau, B., Fujimoto, Y., et al. (2005). Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance.Proc Natl Acad Sci U S A 102, 6207-12.
    48. Kabashima, T., Kawaguchi, T., Wadzinski, B. E.&Uyeda, K.(2003) Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A 100,5107-12.
    49. Kang, L., Dunn-Meynell, A. A., Routh, V. H., Gaspers, L. D., Nagata, Y., Nishimura, T., et al.(2006). Glucokinase is a critical regulator of ventromedial hypothalamic neuronal glucosensing. Diabetes 55,412-20.
    50. Kawaguchi, T., Osatomi, K., Yamashita, H., Kabashima, T. &Uyeda, K. (2002). Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J Bioh Chem 277,3829-35.
    51. Kawaguehi, T., Takenoshita,M., Kabashima, T.&Uyeda, K.(2001).Glucose and cAMP regulate the L-type pyruvate kinase gerie by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 98,13710-5.
    52. Kim, K. H.(1997). Regulation of mammalian acetyl-coenzyme A carboxylase.Annu Rev Nutr 17,77-99.
    53. Kim, M. J., Chang, U. J.&Lee, J. S. (2008). Inhibitory Effects of Fucoidan in 3T3-L1 Adipocyte Differentiation. Mar Biotechnol (NY).
    54. Kim, S. Y.,Kim,H. I., Kim,T. H., Im, S. S., Park, S.K., Lee,I. K., et al. (2004). SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem 279,30823-9.
    55. Kim, Y. J., Lee, M. S., Lee, H. J., Wu, Y., Freake, H. C., Chun; H. S.,et al.(2005). Hormones and nutrients regulate acetyl-CoA carboxylase promoter Ⅰ in rat primary hepatocytes. J Nutr Sci Vitaminol (Tokyo) 51,124-8.
    56. Kitajima, K., Tashiro, S.&Numa, S.(1975). Acetyl-coenzyme-A carboxylase in cultured hepatocytes. Effects of exogenous fatty acids on the content, synthesis and degradation of the enzyme. Eur JBiochem 54,373-83.
    57. Korczynska, J., Stelmanska, E., Nogalska, A., Szolkiewicz, M., Goyke, E., Swierczynski, J., et al. (2004). Upregulation of lipogenic enzymes genes expression in white adipose tissue of rats with chronic renal failure is associated with higher level of sterol regulatory element binding protein-1. Metabolism 53,1060-5.
    58. Lagarde, M., Drouot, B., Guichardant, M. &Dechavanne, M. (1985). In vitro incorporation and metabolism of some icosaenoic acids in platelets. Effect on arachidonic acid oxygenation. Biochim Biophys Acta 833,52-8.
    59. Le Goff, W., Zheng, P., Brubaker, G.&Smith, J. D. (2006). Identification of the cAMP-responsive enhancer of the murine ABCA1 gene:requirement for CREB1 and STAT3/4 elements. Arterioscler Thromb Vase Biol 26,527-33.
    60. Lee, W. M., Elliott, J. E. &Brownsey, R. W. (2005). Inhibition of. acetyl-CoA carboxylase isoforms by pyridoxal phosphate. JBiol Chem 280,41835-43.
    61. Letexier, D., Peroni, O., Pinteur, C.&Beylot, M. (2005). In vivo expression of carbohydrate responsive element binding protein in lean and obese rats. Diabetes Metab 31,558-66.
    62. Letexier, D., Pinteur, C., Large, V., Frering, V.&Beylot, M. (2003). Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue.J Lipid Res 44,2127-34.
    63. Levin, B. E., Routh, V. H., Kang, L., Sanders, N. M.&Dunn-Meynell, A. A. (2004). Neuronal glucosensing:what do we know after 50 years? Diabetes 53,2521-8.
    64. Li, Y., Cummings, R. T., Cunningham, B. R., Chen, Y.&Zhou, G. (2003). Homogeneous assays for adenosine 5'-monophosphate-activated protein kinase. Anal Biochem 321,151-6.
    65. Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D., et al.(2000). Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288,2379-81.
    66. Lopez-Casillas, F.Kim, K. H. (1989). Heterogeneity at the 5' end of rat acetyl-coenzyme A carboxylase mRNA. Lipogenic conditions enhance synthesis of a unique mRNA in liver. JBiol Chem 264,7176-84.
    67. Lopez-Casillas, F., Ponce-Castaneda, M. V.&Kim, K. H. (1991). In vivo regulation of the activity of the two promoters of the rat acetyl coenzyme-A carboxylase gene. Endocrinology 129,1049-58.
    68. Ma, L., Robinson, L. N.&Towle, H. C. (2006). ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. JBiol Chem 281,28721-30.
    69. Ma, L., Sham, Y. Y., Walters, K. J.&Towle, H. C. (2007). A critical role for the loop region of the basic helix-loop-helix/leucine zipper protein Mlx in DNA binding and glucose-regulated transcription. Nucleic Acids Res 35,35-44.
    70. Ma, L., Tsatsos, N.G.&Towle, H. C. (2005). Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes. JBiol Chem 280,12019-27.
    71. Makrides, S. C. (1999). Components of vectors for gene transfer and expression in mammalian cells. Protein Expr Purif 17,183-202.
    72. Mao, J., DeMayo, F. J., Li, H., Abu-Elheiga, L., Gu, Z., Shaikenov, T. E., et al. (2006). Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc Natl Acad Sci U S A 103, 8552-7.
    73. Mao, J., Marcos, S., Davis, S. K., Burzlaff, J.&Seyfert, H.M. (2001). Genomic distribution of three promoters of the bovine gene encoding. acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in rat. Biochem J 358,127-35.
    74. Mao, J., Molenaar, A. J., Wheeler, T. T.&Seyfert, H. M. (2002). STAT5 binding contributes to lactational stimulation of promoter III expressing the bovine acetyl-CoA carboxylase alpha-encoding_gene in the mammary gland. J Mol Endocrinol 29,73-88.
    75. Mao, J.Seyfert, H. M. (2002). Promoter II of the bovine acetyl-coenzyme A carboxylase-alpha-encoding gene is widely expressed and strongly active in different cells. Biochim Biophys Acta 1576,324-9.
    76. Mater, M. K., Thelen, A. P., Pan, D. A.&Jump, D. B. (1999). Sterol response element-binding protein 1c (SREBP1c) is involved in the polyunsaturated.fatty acid suppression of hepatic S14 gene transcription. J Biol Chem 274,32725-32.
    77. Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M., Okazaki, H., Tamura, Y., et al. (2004). Insulin-independent induction of sterol regulatory element-binding protein-lc expression in the livers of streptozotocin-treated mice. Diabetes 53,560-9.
    78. Merla, G., Howald, C., Antonarakis, S. E.&Reymond, A. (2004). The subcellular localization of the ChoRE-binding protein, encoded by the Williams-Beuren syndrome critical region gene 14, is regulated by 14-3-3. Hum Mol Genet 13,1505-14.
    79. Milan, D., Bidanal, J. P., Le Roy, P., Chevalet, C., Woloszyn, N., Caritez, J. C., Gruand, J., Lagant, H., Lafaueheur, M. B., Renard, C., Vaiman, M., Mormede, P., Desautes, C., Amigues, Y., Bourgeois, F., Gellin, J., Ollivier, L. (1998). Current status of QTL deteetion in LargeWhite×Meishan crosses in France. Pro 6th World Congr Genet Appl Livest Prod 26,414-7.
    80. Minami, A., Ishimura, N., Sakamoto, S., Takishita, E., Mawatari, K., Okada, K., et al. (2002). Effect of eicosapentaenoic acid ethyl ester v. oleic acid-rich safflower oil on insulin resistance in type 2 diabetic model rats with hypertriacylglycerolaemia. Br J Nutr 87,157-62.
    81. Mingrone, G., Rosa, G., Greco, A. V., Manco, M., Vega, N., Nanni, G., et al. (2003). Intramyocitic lipid accumulation and SREBP-1c expression are related to insulin resistance and cardiovascular risk in morbid obesity. Atherosclerosis 170,155-61.
    82. Miquerol, L., Cluzeaud, F., Porteu, A., Alexandre, Y., Vandewalle, A.&Kahn, A. (1996). Tissue specificity of L-pyruvate kinase transgenes results'from the combinatorial effect of proximal promoter and distal activator regions. Gene Expr 5, 315-30.
    83. Mitro, N., Mak, P. A., Vargas, L., Godio, C., Hampton, E., Molteni, V., et al. (2007). The nuclear receptor LXR is a glucose sensor. Nature 445,219-23.
    84. Mittelman, S. D., Van Citters, G. W., Kirkman, E. L.&Bergman, R. N. (2002). Extreme insulin resistance of the central adipose depot in vivo. Diabetes 51,755-61.
    85. Moioli, B., Napolitano, F., Orru, L. &Catillo, G. (2005). Single nucleotide polymorphism detection in promoter III of the acetyl-CoA carboxylase-alpha gene in sheep. JAnim Breed Genet 122,418-20.
    86. Mori, Y., Murakawa, Y., Katoh, S., Hata, S., Yokoyama, J., Tajima, N., et al. (1997). Influence of highly purified eicosapentaenoic acid ethyl ester on insulin resistance in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus. Metabolism 46,1458-64.
    87. Moser, G., Mueller, E., Beekmann, P., Yue, G., Geldermann. (1998) Mapping of QTL in F2 generations of Wild Boar, Pietrain and Meishan pig. Pro 6th World Congr Genet Appl Livest Prod 26,478-81.
    88. Mulder, A. H., Tack, C. J., Olthaar, A. J., Smits,.P., Sweep, F.C.&Bosch, R. R. (2005). Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab 289, E627-33.
    89. Nawrocki, A. R., Rajala, M. W., Tomas, E., Pajvani, U. B., Saha, A. K., Trumbauer, M. E., et al. (2006). Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. JBiol Chem 281,2654-60.
    90. Ng, T. W., Watts, G. F., Farvid, M. S., Chan, D. C.&Barrett, P.H. (2005). Adipocytokines and VLDL metabolism:independent regulatory effects of adiponectin, insulin resistance, and fat compartments on VLDL apolipoprotein B-100 kinetics? Diabetes 54,795-802.
    91. Nogalska, A., Sucajtys-Szulc, E.&Swierczynski, J. (2005). Leptin decreases lipogenic enzyme gene expression through modification of SREBP-1c gene expression in white adipose tissue of aging rats. Metabolism 54,1041-7.
    92. Oberkofler, H., Schraml, E., Krempler, F.&Patsch, W. (2004). Restoration of sterol-regulatory-element-binding protein-1c gene expression in HepG2 cells by peroxisome-proliferator-activated receptor-gamma co-activator-1alpha.Biochem J 381,357-63.
    93. O'Callaghan, B.L., Koo, S.H., Wu, Y., Freake, H.C.&Towle, H.C.r(2001). Glucose regulation of the acetyl-CoA carboxylase promoter PI in rat hepatocytes. J Biol Chem 276,16033-9.
    94. Oh, W., Abu-Elheiga, L., Kordari, P., Gu, Z., Shaikenov, T., Chirala, S.S.,et al. (2005). Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc Natl Acad Sci USA 102,1384-9.
    95. Ohguchi, H., Tanaka, T., Uchida, A., Magoori, K., Kudo, H., Kim, I.,et al. (2008). Hepatocyte Nuclear Factor 4(Belmonte, Phillips et al.) contributes to thyroid hormone homeostasis by cooperatively regulating the typel Iodothyronine Deiodinase gene with GATA4 and Kruppel-like transcription factor 9. Mol Cell Biol.
    96. Osborne, T. F. (2000). Sterol regulatory element-binding proteins (SREBPs):key regulators of nutritional homeostasis and insulin action. JBiol Chem 275,32379-82.
    97. Palanivel, R.Sweeney, G. (2005). Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin. FEBS Lett 579,5049-54.
    98. Panakova, D., Sprong, H., Marois, E., Thiele, C. &Eaton, S. (2005). Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435,58-65.
    99. Pegorier, J. P., Le May, C.&Girard, J. (2004). Control of gene expression by fatty acids. JNutr 134,2444S-2449S.
    100.Peterson, D. G., Matitashvili, E. A.&Bauman, D. E. (2004). The inhibitory effect of trans-10, cis-12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP-1.JNutr 134,2523-7.
    101.Portois, L., Maget, B., Tastenoy, M., Perret, J.&Svoboda, M. (1999). Identification of a glucose response element in the promoter of the rat glucagon receptor gene. J Biol Chem 274,8181-90.
    102.Proctor, G., Jiang, T., Iwahashi, M., Wang, Z., Li, J.&Levi, M. (2006). Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55,2502-9.
    103.Rho, H. K.,Park, J., Suh, J. H.&Kim, J. B. (2005). Transcriptional regulation of mouse 6-phosphogluconate dehydrogenase by ADDl/SREBPlc. Biochem Biophys Res Commun 332,288-96.
    104.Rohrer, G. A., Keele, J. (1998) Identification of quantitative trait loci affecting carcass composition in swine I:Fat deposition traits. JAnim Sci 76,2247-54.
    105.Rosa, G., Manco, M., Vega, N., Greco, A. V., Castagneto, M., Vidal, H., et al. (2003). Decreased muscle acetyl-coenzyme A carboxylase 2 mRNA and insulin resistance in formerly obese subjects. Obes Res 11,1306-12.
    106.Rothsehild, M. F., Liu, H. C., Thggle, C. K., Yu, T. p., Wang, L. (1995) Analysis of chromosome 7 genetic markers for growth and careass performance traits. J Anim Breed Genet 112,341-8.
    107.Screaton, R. A., Conkright, M. D., Katoh, Y., Best, J. L., Canettieri, G., Jeffries, S., et al. (2004). The CREB coactivator TORC2 functions as a calcium-and cAMP-sensitive coincidence detector. Cell 119,61-74.
    108.Seeger, J., Ziegelmeier, M., Bachmann, A., Lossner, U., Kratzsch, J., Bluher, M., et al. (2008). Serum levels of the adipokine vaspin in relation to metabolic and renal parameters. J Clin Endocrinol Metab 93,247-51.
    109.Seo, J. B., Moon, H. M., Noh, M. J., Lee, Y. S., Jeong, H. W., Yoo, E. J., et al. (2004). Adipocyte determination-and differentiation-dependent factor 1/sterol regulatory element-binding protein lc regulates mouse adiponectin expression. JBiol Chem 279, 22108-17.
    110.Sharma, G.Goalstone, M. L. (2005). Dominant negative FTase (DNFTalpha) inhibits ERK5, MEF2C and CREB activation in adipogenesis. Mol Cell Endocrinol 245, 93-104.
    111.Snider, R. M., McKinney, M., Forray, C.&Richelson, E. (1984). Neurotransmitter receptors mediate cyclic GMP formation by involvement of arachidonic acid and lipoxygenase. Proc Natl Acad Sci U S A 81,3905-9.
    112.Stoeckman, A. K., Ma, L.&Towle, H. C.(2004).Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes.J Biol Chem 279,15662-9.
    113.Tae, H. J., Luo, X.&Kim, K. H. (1994). Roles of CCAAT/enhancer-binding protein and its binding site on repression and derepression of acetyl-CoA carboxylase gene. J Biol Chem 269,10475-84.
    114.Tae, H. J., Zhang, S.&Kim, K. H. (1995). cAMP activation of CAAT enhancer-binding protein-beta gene expression and promoter I of acetyl-CoA carboxylase. JBiol Chem 270,21487-94.
    115.Talukdar, S.Hillgartner, F. B.(2006).The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene, transcription by the liver X receptor agonist TO-901317. J Lipid Res 47,2451-61.
    116.Tafling, E., Salter, A.&Bennett, A. (2004). Transcriptional regulation of human SREBP-lc (sterol-regulatory-element-binding protein-1c): a key regulator of lipogenesis. Biochem Soc Trans 32,107-9.
    117.Thampy, K. G., Haas, M. J.&Mooradian, A. D. (2000). Age-related changes in rat hepatic acetyl-coenzyme A carboxylase. Proc Soc Exp Biol Med 225,123-7.
    118.Toussant, M.J., Wilson, M. D.&Clarke, S.D.(1981). Coordinate suppression of liver acetyl-CoA carboxylase and fatty acid synthetase by polyunsaturated fat. J Nutr 111, 146-53.
    119.Towle, H. C. (2001). Glucose and cAMP:adversaries in the regulation of hepatic gene expression. Proc Natl Acad Sci U S A 98,13476-8.
    120.Towle, H. C. (2005). Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab 16,489-94.
    121.Travers, M. T.Barber, M. C.(1997). Tissue-specific control of the acetyl-CoA carboxylase gene. Biochem Soc Trans 25,1215-9.
    122.Travers, M. T.Barber, M. C. (2001). Acetyl-CoA carboxylase-a:Gene structure-function relationships.J. Anim. Sci.79, E136-143.
    123.Travers, M. T., Vallance, A. J., Gourlay, H. T., Gill, C. A., Klein, I., Bottema, C. B., et al. (2001). Promoter I of the ovine acetyl-CoA carboxylase-alpha gene:an E-box motif at-114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem 7359,273-84.
    124.Tsatsos, N. G.Towle, H. C. (2006). Glucose activation of ChREBP in hepatocytes occurs via a two-step mechanism. Biochem Biophys Res Commun 340,449-56.
    125.Uyeda, K., Yamashita, H.&Kawaguchi, T. (2002). Carbohydrate responsive element-binding protein (ChREBP):a key regulator of glucose metabolism and fat storage. Biochem Pharmacol 63,2075-80.
    126.Putten, J. P.Krans,H. M. (1985). Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes. JBiol Chem 260,7996-8001.
    127.Vankoningsloo, S., Piens, M., Lecocq, C., Gilson, A., De Pauw, A., Renard, P., et al. (2005). Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells: role of fatty acid beta-oxidation and glucose. JLipid Res 46,1133-49.
    128.Wang, H.Wollheim, C. B. (2002). ChREBP rather than USF2 regulates glucose stimulation of endogenous L-pyruvate kinase expression in insulin-secreting cells.J Biol Chem 277,32746-52.
    129.Wang, L., Yu, T. P., Tuggle, C. K., Liu, H. C., Rothsehild, M. F. (1998)A directed search for quantitative trait loci on chromosome 4 and 7 in the. pig. J Anim Sci 76, 2560-7.
    130.Warrg, Y., Botolin, D., Xu, J., Christian, B., Mitchell, E., Jayaprakasam, B., et al. (2006). Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res 47,2028-41.
    131.Wang, Y., Jones Voy, B., Urs, S., Kim, S., Soltani-Bejnood, M., Quigley,N., et al. (2004). The human fatty acid synthase gene and de novo lipogenesis are coordinately regulated in human adipose tissue. JNutr 134,1032-8.
    132.Witters, L. A., Gao, G., Kemp, B. E., Quistorff, B. (1994) Hepatic 5'-AMP-activated protein kinase:zonal distribution and relationship to acetyl-CoA carboxylase activity in varying nutritional states. Arch Biochem Biophys 308,413-9.
    133.Xu, J., Christian, B.&Jump, D. B. (2006). Regulation of rat hepatic L-pyruvate kinase promoter composition and activity by glucose, n-3 polyunsaturated fatty acids, and peroxisome proliferator-activated receptor-alpha agonist. JBiol Chem 281,18351-62.
    134.Xu, J., Teran-Garcia, M., Park, J. H., Nakamura, M. T.&Clarke, S. D. (2001). Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. JBio Chem 276,9800-7.
    135.Yamaguchi, S., Katahira, H., Ozawa, S., Nakamichi, Y., Tanaka, T., Shimoyama, T.,et al. (2005). Activators of AMP-activated protein kinase enhance GLUT4 translocation and. its glucose transport activity in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 289, E643-9.
    136.Yamashita, H., Takenoshita, M., Sakurai, M., Bruick, R. K., Henzel, W.J., Shillinglaw, W., et al.(2001). A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver.Proc Natl Acad Sci U S A 98,9116-21.
    137.Yoshikawa, T., Shimano, H., Yahagi, N., Ide, T., Amemiya-Kudo, M., Matsuzaka, T., et al. (2002).Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR).binding to LXR response elements. JBiol Chem 277,1705-11.
    138.Zammit, V.A.(1996).Role of insulin in Hepatic fatty acid partitioning:emerging concepts. Biochem J 314 (Pt 1),1-14.
    l39.Zang,Y.,Wang, T., Xie,W., Wang-Fischer, Y. L., Getty, E., Han, J., et.al.(2005). Regulation of acetyl CoA carboxylase and carnitine palmitoyl transferase-1 in rat adipocytes.Obes Res 13,1530-9.
    140.Zhang, F.,Pan,T.,Nielsen,L.D.&Mason, R. J. (2004). Lipogenesis in fetal rat lung: importance of C/EBPalpha, SREBP-1c,and stearoyl-CoA desaturase. Am J Respir Cell Mol Biol 30,174-83.
    141.Zhibin He,Tao Jiang, Zhuowei Wang, Levi, M.&Li, a. J. (2004). Modulation of carbohydrate response elementbinding protein ChREBP gene expression in 3T3-L1 adipocyte and rat adipose tissue. PresS. Am J Physiol Endocrinol Metab 20,1179-89.