GPR40与β细胞脂毒性的关系及吡格列酮干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
游离脂肪酸(FFAs)短期干预可促进β细胞分泌胰岛素,长期干预抑制β细胞的功能。研究发现FFAs受体G蛋白偶联受体40(GPR40)能介导胰岛素分泌,在2型糖尿病的病理生理机制中起重要作用。尽管进行了许多研究,目前GPR40的生物学功能还未完全清楚。为了对GPR40有更加深入的认识,本研究探讨GPR40是否介导FFAs对胰岛β细胞葡萄糖刺激的胰岛素分泌(GSIS)的短期和长期影响;是否介导FFAs对β细胞胰-十二指肠同源盒基因-1(PDX-1)和葡萄糖转运蛋白2(GLUT2)表达的影响,以及是否参与吡格列酮对胰岛β细胞脂毒性的干预作用。
     本研究第一部分构建稳定表达GPR40shRNA的βTC6细胞株。首先设计合成两对含GPR40shRNA的寡核苷酸模板链,连接入线性pSilencer4.1-CMV neo siRNA表达载体,并测序鉴定。脂质体法把载体转染至βTC6细胞,通过G418筛选得到稳定转染的βTC6细胞株。RT-PCR和western blot检测细胞GPR40 mRNA和蛋白的表达情况。结果显示成功构建了GPR40 shRNA重组质粒,转染重组质粒pSilencer-GPR40shRNA的βTC6细胞GPR40 mRNA和蛋白表达比对照组显著降低,建立了持续低表达GPR40的βTC6细胞株。
     本研究第二部分旨在探讨GPR40是否介导FFAs和吡格列酮作用下βTC6细胞的GSIS。分别以不同浓度FFAs(0.25、0.5或1 mmol/L,油酸与棕榈酸的比例为2:1)或/和吡格列酮(0.1、1或10μmol/l)干预细胞1小时或48小时。结果显示,FFAs干预一小时,阴性对照组的GSIS显著增加,但转染GPR40shRNA的细胞GSIS未见明显增加。FFAs干预48小时后,GPR40shRNA细胞与阴性对照组GSIS均显著下降。吡格列酮与FFAs共同干预48小时,阴性对照组GSIS较FFAs干预48小时显著增加,但GPR40shRNA组未见显著变化。
     本研究第三部分探讨FFAs是否通过GPR40影响βTC6细胞PDX-1和GLUT2的表达,吡格列酮对脂毒性的保护作用是否通过GPR40的介导而影响βTC6细胞PDX-1及GLUT2的表达。分别以0.5 mmol/L FFAs干预1小时或48小时,或0.5 mmol/L FFAs与10μmol/l吡格列酮共同干预细胞48小时。结果显示,FFAs干预1小时显著增加阴性对照组PDX-1和GLUT2的表达,而转染GPR40shRNA的细胞PDX-1和GLUT2的表达未见明显增加。FFAs干预48小时后,转染GPR40shRNA的细胞与阴性对照组PDX-1和GLUT2的表达均下降。吡格列酮与FFAs共同干预48小时,阴性对照组PDX-1和GLUT2的表达较FFAs干预48小时显著增加,但GPR40shRNA组未见显著变化。
     综合上述结果,GPR40介导了FFAs短期作用下β细胞GSIS的增加以及PDX-1和GLUT2表达的上调,但未介导FFAs的慢性脂毒性作用。而吡格列酮对β细胞脂毒性的改善则可能部分通过GPR40的作用增加PDX-1和GLUT2的表达,从而改善GSIS。
Free fatty acids (FFAs) acutely stimulate insulin secretion from pancreaticβ-cells, whereas impairβ-cell function following long term exposure. The FFAs receptor, G-protein-coupled receptor 40 (GPR40) has been proposed to mediate insulin secretion, hence to play an important pathophysiological role in type 2 diabetes mellitus. Despite intensive research efforts, the physiological role of GPR40 still remains unclear. In order to gain a better understanding for GPR40, this study was conducted to investigate the role of GPR40 in pancreatic islet cells, including the effect of GPR40 on both short and long-term FFAs on GSIS, the relationship between GPR40 and FFAs mediated expression of PDX-1 and GLUT2 as well as the GPR40 contribution to the thiazolidinedione reverse role on lipotoxicity ofβ-cells.
     The first part of this study was to establishβTC6 cell line stably expressing GPR40shRNA. Therefore two complementary 55-mer siRNA template oligonucleotides encoding GPR40 short hairpin RNAs (shRNAs) were designed and ligated with linearized pSilencer 4.1-CMV neo siRNA expression vector. Then the sequence was further identified by sequencing from both sides. The plasmid was transfected intoβTC6 cells using lipofectamine method. The clonedβTC6 cells were selected by G418. RT-PCR and western blot were used to detecte the expression of GPR40. The results showed that the recombinant plasmid knocked down GPR40 mRNA and protein inβTC6 cells.βTC6 cell line stably expressing GPR40shRNA were established.
     The second part of this study was to determine the contribution of GPR40 to short- or long-term effects of FFAs and pioglitazone on glucose stimulated insulin secretion (GSIS) inβTC6 cells. Cells were then incubated in FFAs (0.25,0.5,or 1 mmol/L, a 2:1 mixture of oleate: palmitate) or/and pioglitazone(0.1, 1, or 10μmol/l) for 1 h or 48 h. Results showed that 1-h exposure to FFAs significantly enhanced GSIS in pSilencer-control transfected cells, but not in the cells transfected with GPR40shRNA. While 48-h exposure to FFAs significantly impaired GSIS in pSilencer-control transfected cells as well as the cells transfected with GPR40shRNA. Furthermore, pioglitazone enhanced insulin secretion in pSilencer-control transfected cells exposed to FFAs for 48 h, but not in the cells transfected with GPR40shRNA.
     The third part of this study was to determine the contribution of GPR40 to short- or long-term effects of FFAs and pioglitazone on the expression of PDX-1 and GLUT2 inβTC6 cells. Cells were incubated in 0.5 mmol/L FFAs for 1 h or 48 h, or 10μmol/l pioglitazone or combination of 0.5 mmol/L FFAs and 10μmol/l pioglitazone for 48 h. Results showed that 1-h exposure to FFAs significantly increased expression of PDX-1 and GLUT2 in pSilencer-control transfected cells, but not in the cells transfected with GPR40shRNA. While 48-h exposure to FFAs significantly decreased expression of PDX-1 and GLUT2 in pSilencer-control transfected cells as well as the cells transfected with GPR40shRNA. Furthermore, pioglitazone increased expression of PDX-1 and GLUT2 in pSilencer-control transfected cells exposed to FFAs for 48 h, but not in the cells transfected with GPR40shRNA.
     These results indicate that GPR40 mediates the short-term effects of FFAs on GSIS and the expression of PDX-1 and GLUT2, but does not mediate the chronic lipotoxicity onβ-cells. The reverse role of pioglitazone on lipotoxicity ofβ-cells may be related to GPR40.
引文
1. Corkey BE, Deeney JT, Yaney GC, Tornheim K, Prentki M. The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction[J]. J Nutr 2000, 130 (2S Suppl.): 299S–304S.
    2. Prentki M, Joly E, El-Assad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: a role in beta-cell adaptation and failure in the etiology of diabetes[J]. Diabetes 2002, 51 (Suppl. 3): S405–S413.
    3. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein coupled receptor GPR40 is activated by medium and long chain fatty acids[J]. J Biol Chem 2003, 278(13): 11303–11311.
    4. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40 [J]. Nature 2003, 422(6928): 173–176.
    5. Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs [J]. Biochem Biophys Res Commun 2003, 301(2): 406–410.
    6. Tomita T, Masuzaki H, Iwakura H, Fujikura J, Noguchi M, Tanaka T, Ebihara K, Kawamura J, Komoto I, Kawaguchi Y, Fujimoto K, Doi R, Shimada Y, Hosoda K, Imamura M, Nakao K. Expression of the gene for a membrane-bound fatty acid receptor in the pancreas and islet cell tumours in humans: evidence for GPR40 expression in pancreatic beta cells and implications for insulin secretion [J]. Diabetologia 2006, 49(5):962-968.
    7. Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H, Nakata M,Yano T, Shimakawa K, Taketomi S, Takeuchi K, Odaka H, Kaisho Y. Overexpression of GPR40 in pancreatic beta-cells augments glucose stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice [J]. Diabetes 2009, 58(5): 1067–1076.
    8. Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse [J]. Cell Metab 2005, 1(4): 245–258.
    9. Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo [J]. Diabetes 2007, 56 (4): 1087–1094.
    10. Tan CP, Feng Y, Zhou YP, Eiermann GJ, Petrov A, Zhou C, Lin S, Salituro G, Meinke P, Mosley R, Akiyama TE, Einstein M, Kumar S, Berger JP, Mills SG, Thornberry NA, Yang L, Howard AD. Selective small-molecule agonists of G proteincoupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice [J]. Diabetes 2008, 57(8): 2211–2219.
    11. Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G, Gustafson EL, Hedrick JA, Davis HR. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease [J]. Diabetes 2008, 57(11): 2999– 3006.
    12. Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding [J]. Diabetes 2008, 57(9): 2432– 2437.
    13. Zraika S, Dunlop M, Proietto J, Anrikopoulos S. Effects of free fatty acids on insulin secretion in obesity [J]. Obes Rev 2002, 3(2): 103–112.
    14. Haber EP, Ximenes HM, Procopio J, Carvalho CR, Curi R, Carpinelli AR. Pleiotropic effects of fatty acids on pancreatic beta-cells [J]. J Cell Physiol 2003, 194 (1): 1–12.
    15. Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells [J]. Diabetologia 2003, 46(10): 1297–1312.
    16. Lee Y, Hirose H, Ohneda M, Johnson JH, Mcgarry JD, Unger RH. Beta-celllipotoxicity in the pathogenesis of non-insulin dependent diabetes mellitus of obese rats: impairment in adipocyteb-cell relationships [J]. Proc Natl Acad Sci U S A 1994, 91(23): 10878–10882.
    17. Zhou YP, Grill V. Long-term exposure to fatty acids and ketones inhibits b-cell functions in human pancreatic islets of Langerhans [J]. J Clin Endocrinol Metab 1995, 80 (5): 1584–1590.
    18. Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P. Lipotoxicity in human pancreatic islets and the protective effect of metformin [J]. Diabetes 2002, 51 (Suppl. 1): S134– S137.
    19. Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD. Role of GPR40 in fatty acid action on the beta cell line INS-1E [J]. Biochem Biophys Res Commun 2005, 335(1): 97-104.
    20. Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J,Miyazaki J, Owman C, Olde B. Free fatty acid receptor 1 (FFA1R /GPR40) and its involvement in fatty-acid-stimulated insulin secretion [J]. Cell Tissue Res 2005, 322(2): 207– 215.
    21. Schnell S, Schaefer M, Sch?fl C. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40 [J]. Mol Cell Endocrinol 2007, 263(1–2): 173–180.
    22. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion [J]. Diabetes 2008, 57(9): 2280–2287.
    23. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs):tissue distribution of PPAR- alpha, -beta, and-gamma in the adult rat [J]. Endocrinology 1996, 137(1): 354– 366.
    24. Blumentrath J, Neye H, Verspohl EJ. Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells [J]. Cell Biochem Funct 2001, 19(3): 159-169.
    25. Nakamichi Y, Kikuta T, Ito E, Ohara-Imaizumi M, Nishiwaki C, Ishida H, Nagamatsu S. PPAR-gamma overexpression suppresses glucose-induced proinsulin biosynthesis and insulin release synergistically with pioglitazone in MIN6 cells [J]. Biochem Biophys Res Commun 2003, 306(4): 832-836.
    26. Masuda K, Okamoto Y, Tsuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Seino Y. Effects of Troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide [J]. Diabetologia 1995, 38(1): 24–30.
    27. Ohtani K, Shimizu H, Tanaka Y, Sato N, Mori M. Pioglitazone hydrochloride stimulates insulin secretion in HIT-T 15 cells by inducing Ca2+ influx [J]. J Endocrinol 1996, 150(1): 107–111.
    28. Shimomura K, Shimizu H, Ikeda M, Okada S, Kakei M, Matsumoto S, Mori M. Fenofibrate, troglitazone, and 15-deoxy-Delta12,14-prostaglandin J2 close KATP channels and induce insulin secretion [J]. J Pharmacol Exp Ther 2004, 310(3): 1273– 1280.
    29. Darren C-W. Tan, and Partha Roy. Glucose-dependent functional heterogeneity inβ-TC-6 murine insulinoma [J]. World Academy of Science, Engineering and Technology, 2009, 53:368–371.
    30. Tuschl T. Expanding small RNA interference [J]. Nat Biotechnol 2002, 20(5): 446–448.
    31. Chakraborty C. Potentiality of small interfering RNAs ( siRNA) as recent therapeutic targets for gene-silencing [J]. Curr Drug Targets 2007, 8(3):469–482.
    32. Haney SA. Expanding the repertoire of RNA interference screens for developing new anticancer drug targets [J]. Expert Opin Ther Targets 2007, 11(11):1429– 1441.
    33. Mahotka C, Wenzel M, Springer E, Gabbert HE, Gerharz CD. Survivin-deltaEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties [J]. Cancer Res 1999, 59(24): 6097–6102.
    34. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems[J]. Proc Natl Acad Sci U S A. 2001, 98(17): 9742–9747.
    35. Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs [J].J Cell Sci 2001, 114(Pt 24): 4557–4565.
    36. Yang D, Buchholz F, Huang Z, Goga A, Chen CY, Brodsky FM, Bishop JM. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells [J]. Proc Natl Acad Sci U S A 2002, 99(15): 9942–9947.
    37. Sui G, Soohoo C, Affar EB, Gay F, Shi Y, Forrester WC, Shi Y. A DNA vector- based RNAi technology to suppress gene expression in mammalian cells [J]. Proc Natl Acad Sci U S A 2002, 99(8):5515–5520.
    38. Castanotto D, Li H, Rossi JJ. Functional siRNA expression from transfected PCR products [J]. RNA 2002, 8(11): 1454–1460.
    39. Li AQ, Si JM, Shang Y, Gan LH, Guo L, Zhou TH. Construction of COL1A1 short hairpin RNA vector and its effect on cell proliferation and migration of gastric cancer cells [J]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2010, 39(3): 257–263.
    40. Poitout V, Stout LE, Armstrong MB, Walseth TF, Sorenson RL, Robertson RP. Morphological and functional characterization of beta TC-6 cells--an insulin- secreting cell line derived from transgenic mice [J]. Diabetes 1995, 44(3): 306– 313.
    41.张莹,程桦,徐明彤等. GRP40介导游离脂肪酸对葡萄糖刺激的胰岛素分泌和β细胞内钙离子浓度的变化[J].中华内分泌代谢杂志2009, 25(5): 530–534.
    42. Alquier T, Peyot ML, Latour MG, Kebede M, Sorensen CM, Gesta S, Ronald Kahn C, Smith RD, Jetton TL, Metz TO, Prentki M, Poitout V. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets [J]. Diabetes 2009, 58(11): 2607-2615.
    43. Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, Dello Russo C. Receptor-independent actions of PPAR thiazolidinedione agonists: ismitochondrial function the key [J]? Biochem Pharmacol 2005, 70(2): 177–188.
    44. Meidute Abaraviciene S, Lundquist I, Galvanovskis J, Flodgren E, Olde B, Salehi A. Palmitate-induced beta-cell dysfunction is associated with excessive NO production and is reversed by thiazolidinedione -mediated inhibition of GPR40 transduction mechanisms [J]. PLoS One 2008, 3(5): e2182.
    45. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes [J]. Genes Dev 1998,12(12): 1763–1768.
    46. Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse beta-cells leads to diabetes [J]. Nature 2000, 408 (6814): 864–868.
    47. Li Y, CaoX, Li LX, Brubaker PL, Edlund H, Drucker DJ. Beta-cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1 [J]. Diabetes 2005, 54 (2): 482–491.
    48. Gremlich S, Bonny C, Waeber G, Thorens B. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2,glucokinase,insulin,and somatostatin levels [J]. J Biol Chem 1997, 272(48): 30261–30269.
    49. McKinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function [J]. Diabetologia 2001, 44(10): 1203– 1214.
    50. Melloul D, Marshak S, Cerasi E. Regulation of insulin gene transcription [J]. Diabetologia, 2002, 45(3): 309–326.
    51. Zhao L, Guo M, Matsuoka TA, Hagman DK,Parazzoli SD, Poitout V, Stein R. The isletβcell-enriched MafA activator is a key regulator of insulin gene transcription [J]. J Biol Chem 2005, 280(12): 11887–11894.
    52. Hagman DK, Hays LB, Parazzoli SD, Poitout V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans [J]. J Biol Chem 2005, 280(37): 32413–32418
    53. Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS. Regulation of the insulin gene by glucose and fatty acids [J]. J Nutr 2006, 136(4): 873–876.
    54. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC. Involvement of c-JunN-terminal kinase in oxidative stress-mediated suppression of insulin gene expression [J]. J Biol Chem 2002, 277(33): 30010–30018.
    55. Moibi JA, Gupta D, Jetton TL, Peshavaria M, Desai R, Leahy JL. Peroxisome proliferator-activated receptor- gamma regulates expression of PDX-1 and NKX6.1 in INS-1 cells [J]. Diabetes 2007, 56(1):88–95.
    56. Gupta D, Jetton TL, Mortensen RM, Duan SZ, Peshavaria M, Leahy JL. In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor gamma response element in the mouse pdx-1 promoter [J]. J Biol Chem 2008, 283(47): 32462–32470.
    57. Kim HI, Kim JW, Kim SH, Cha JY, Kim KS, Ahn YH. Identification and functional characterization of the peroxisomal proliferator response element in rat GLUT2 promoter [J]. Diabetes 2000, 49(9): 1517–1524.
    1. Schlyer S, Horuk R. I want a new drug: G-protein-coupled receptors in drug development. Drug Discov Today 2006,11(11-12): 481-493.
    2. Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40 [J]. Nature 2003, 422(6928): 173–176.
    3. Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surfacereceptor activated by free fatty acids and thiazolidinedione drugs [J]. Biochem Biophys Res Commun 2003, 301(2): 406–410.
    4. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI. The orphan G protein coupled receptor GPR40 is activated by medium and long chain fatty acids [J]. J Biol Chem 2003, 278(13): 11303–11311.
    5. Shapiro H, Shachar S, Sekler I, Hershfinkel M, Walker MD. Role of GPR40 in fatty acid action on the beta cell line INS-1E [J]. Biochem Biophys Res Commun 2005, 335(1): 97-104.
    6. Tomita T, Masuzaki H, Noguchi M, Iwakura H, Fujikura J, Tanaka T, Ebihara K, Kawamura J, Komoto I, Kawaguchi Y, Fujimoto K, Doi R, Shimada Y, Hosoda K, Imamura M, Nakao K. GPR40 gene expression in human pancreas and insulinoma [J]. Biochem Biophys Res Commun 2005, 338(4): 1788-1790.
    7. Flodgren E, Olde B, Meidute-Abaraviciene S, Winzell MS, Ahrén B, Salehi A. GPR40 is expressed in glucagon producing cells and affects glucagon secretion [J]. Biochem Biophys Res Commun 2007, 354(1): 240–245.
    8. Ma D, Tao B, Warashina S, Kotani S, Lu L, Kaplamadzhiev DB, Mori Y, Tonchev AB, and Yamashima T. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys [J]. Neurosci Res 2007, 58(4): 394–401.
    9. Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, le Coutre J, Ninomiya Y, Damak S. Taste preference for fatty acids is mediated by GPR40 and GPR120 [J]. J Neurosci 2010, 30(25): 8376-8382.
    10. Yonezawa T, Katoh K, Obara Y. Existence of GPR40 functioning in a human breast cancer cell line, MCF-7 [J]. Biochem Biophys Res Commun 2004, 314(3): 805–809.
    11. Hardy S, St-Onge GG, Joly E, Langelier Y, PrentkiM. Oleate promotes the proliferation of breast cancer cells via the G protein-coupled receptor GPR40 [J]. J Biol Chem 2005, 280(14): 13285–13291.
    12. Gras D, Chanez P, Urbach V, Vachier I, Godard P, Bonnans C. Thiazolidinediones induce proliferation of human bronchial epithelial cells through the GPR40 receptor [J]. Am J Physiol Lung Cell Mol Physiol 2009, 296(6): L970-978.
    13. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion [J]. Diabetes 2008, 57(9): 2280–2287.
    14. Stein DT, Stevenson BE, Chester MW, Basit M, Daniels MB, Turley SD, McGarry JD. The insulinotropic potency of fatty acids is influenced profoundly by their chain length and degree of saturation [J]. J Clin Invest 1997, 100(2): 398– 403.
    15. Zraika S, Dunlop M, Proietto J, Anrikopoulos S. Effects of free fatty acids on insulin secretion in obesity [J]. Obes Rev 2002, 3(2): 103–112.
    16. Haber EP, Ximenes HM, Procopio J, Carvalho CR, Curi R, Carpinelli AR. Pleiotropic effects of fatty acids on pancreatic beta-cells [J]. J Cell Physiol 2003, 194 (1): 1–12.
    17. Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells [J]. Diabetologia 2003, 46(10): 1297–1312.
    18. Stein DT, Esser V, Stevenson BE, Lane KE, Whiteside JH, Daniels MB, Chen S, McGarry JD. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat [J]. J Clin Invest 1996, 97(12): 2728–2735.
    19. Lee Y, Hirose H, Ohneda M, Johnson JH, Mcgarry JD, Unger RH. Beta-cell lipotoxicity in the pathogenesis of non-insulin dependent diabetes mellitus of obese rats: impairment in adipocyteb-cell relationships [J]. Proc Natl Acad Sci U S A 1994, 91(23): 10878–10882.
    20. Zhou YP, Grill V. Long-term exposure to fatty acids and ketones inhibits b-cell functions in human pancreatic islets of Langerhans [J]. J Clin Endocrinol Metab 1995, 80 (5): 1584–1590.
    21. Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P. Lipotoxicity in human pancreatic isletsand the protective effect of metformin [J]. Diabetes 2002, 51 (Suppl. 1): S134– S137.
    22. Prentki M, Joly E, El-Assad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: a role in beta-cell adaptation and failure in the etiology of diabetes [J]. Diabetes 2002, 51 (Suppl. 3): S405–S413.
    23. El-Assaad W, Buteau J, Peyot ML, Nolan C, Roduit R, Hardy S, Joly E, Dbaibo G, Rosenberg L, Prentki M. Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death [J]. Endocrinology 2003, 144(9): 4154-4163.
    24. Salehi A, Flodgren E, Nilsson NE, Jimenez-Feltstrom J,Miyazaki J, Owman C, Olde B. Free fatty acid receptor 1 (FFA1R /GPR40) and its involvement in fatty-acid-stimulated insulin secretion [J]. Cell Tissue Res 2005, 322(2): 207– 215.
    25. Schnell S, Schaefer M, Sch?fl C. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40 [J]. Mol Cell Endocrinol 2007, 263(1–2): 173–180.
    26. Feng DD, Luo Z, Roh SG, Hernandez M, Tawadros N, Keating DJ, Chen C. Reduction in voltage-gated K+ currents in primary cultured rat pancreatic beta-cells by linoleic acids [J]. Endocrinology 2006, 147(2): 674-682.
    27. Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse [J]. Cell Metab 2005, 1(4): 245–258.
    28. Latour MG, Alquier T, Oseid E, Tremblay C, Jetton TL, Luo J, Lin DC, Poitout V. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo [J]. Diabetes 2007, 56 (4): 1087–1094.
    29. Tan CP, Feng Y, Zhou YP, Eiermann GJ, Petrov A, Zhou C, Lin S, Salituro G, Meinke P, Mosley R, Akiyama TE, Einstein M, Kumar S, Berger JP, Mills SG, Thornberry NA, Yang L, Howard AD. Selective small-molecule agonists of G proteincoupled receptor 40 promote glucose-dependent insulin secretion and reduce blood glucose in mice [J]. Diabetes 2008, 57(8): 2211–2219.
    30. Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ, Vassileva G,Gustafson EL, Hedrick JA, Davis HR. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease [J]. Diabetes 2008, 57(11): 2999– 3006.
    31. Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding [J]. Diabetes 2008, 57(9): 2432– 2437.
    32. Nagasumi K, Esaki R, Iwachidow K, Yasuhara Y, Ogi K, Tanaka H, Nakata M, Yano T, Shimakawa K, Taketomi S, Takeuchi K, Odaka H, Kaisho Y. Overexpression of GPR40 in pancreatic beta-cells augments glucose stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice [J]. Diabetes 2009, 58(5): 1067–1076.
    33. Alquier T, Peyot ML, Latour MG, Kebede M, Sorensen CM, Gesta S, Ronald Kahn C, Smith RD, Jetton TL, Metz TO, Prentki M, Poitout V. Deletion of GPR40 impairs glucose-induced insulin secretion in vivo in mice without affecting intracellular fuel metabolism in islets [J]. Diabetes 2009, 58(11): 2607-2615.
    34. Briscoe CP, Peat AJ, McKeown SC, Corbett DF, Goetz AS, Littleton TR, McCoy DC, Kenakin TP, Andrews JL, Ammala C, Fornwald JA, Ignar DM, Jenkinson S. Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules [J]. Br J Pharmacol 2006, 148(5): 619-628.
    35. Meidute Abaraviciene S, Lundquist I, Galvanovskis J, Flodgren E, Olde B, Salehi A. Palmitate-induced beta-cell dysfunction is associated with excessive NO production and is reversed by thiazolidinedione -mediated inhibition of GPR40 transduction mechanisms [J]. PLoS One 2008, 3(5): e2182.
    36. Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, Dello Russo C. Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key [J]? Biochem Pharmacol 2005, 70(2): 177–188.