水稻重要农艺性状遗传基础解析及株型QTL精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究:(1)利用一目惚、丰锦、笹锦、日本晴、沈农265、秋田小町、辽粳263、02428和辽粳294等9个粳稻品种及河田香稻、Kasalath、Habataki、IR36、R99和IR3等6个籼稻品种为材料构建了用于水稻基因型分析的高信息量SSR框架图;(2)比较了沈农265和丽江新团黑谷的F2群体与RIL群体的遗传信息,并利用RIL群体及构建的连锁图谱对剑叶相关性状、穗相关性状、籽粒相关性状、株高及其构成因素和3个不同生育时期的叶绿素含量进行QTL分析,并分别进行深入比较;(3)对同时控制穗长、节间长和剑叶长的重要株型相关基因qPCL9进行精细定位。主要结果如下:
     (1)用489对SSR引物对9份粳稻和6份籼稻材料进行SSR标记分析,每条染色体的总体多态性信息量(PIC)值分布于0.4039~0.5840之间,籼稻亚种内的PIC值分布于0.3685~0.4952之间,粳稻亚种内的PIC值分布于0.1326~0.3164之间,籼稻的多态性高于粳稻。以PIC值作为主要参考指标筛选出适于遗传多样性分析的199对SSR引物(总体PIC值>0.50),从中选择建立了包含141个SSR引物的多样性分析体系。筛选出籼粳特异性引物93对,其中包括17对核心引物、48对二级引物和28对三级引物。确定了32对适于粳稻遗传多样性分析的引物(粳稻PIC值>0.50)。这些引物能很好地反映品种间的遗传多样性。
     (2)比较分析了F2群体和RIL群体的遗传信息及控制剑叶相关性状(剑叶长、剑叶宽和比叶重)的QTL:1)多数标记在染色体上的顺序相同,但标记间距不同。F2群体中30个标记显著偏离孟德尔分离比例(P<0.05),13个标记极显著偏离预期的(1:2:1)孟德尔分离比例(P<0.0),其中19个偏向SN265,11个偏向LTH。RIL群体中62个标记显著偏离预期的(1:2:1)孟德尔分离比例(P<0.05),38个标记极显著偏离预期的(1:2:1)孟德尔分离比例(P<0.01),其中43个偏向SN265,19个偏向LTH。偏分离标记共形成10个偏分离区域,其中有6个区域同时出现在在两个群体中。2)RIL群体检测QTL的能力强于F2群体,F2群体共检测到7个控制剑叶性状的QTL(2个控制剑叶长;4个控制剑叶宽;1个控制比叶重),而RIL群体共检测到17个控制剑叶性状的QTL(7个控制剑叶长;5个控制剑叶宽;5个控制比叶重),在两群体中同时检测到的QTL有4个,分别是9号染色体上控制剑叶长的qFLL9; 4号染色体上控制剑叶宽的qFLW4;12号染色体上控制剑叶宽的qFLW12.1和6号染色体上控制比叶重的qSLW6。其中控制比叶重的qSLW6(加性效应值为1.956mg/cm2),极富研究与应用价值。
     (3)12个穗部性状和3个籽粒性状在RIL群体中表现为接近正态的连续分布,变异幅度大,呈现双向超亲分离。共检测到控制12个穗部性状的QTL 39个,包括控制穗长的QTL有4个;控制一次枝梗数的QTL有5个;控制二次枝梗数的QTL有3个;控制每穗颖花数的座位有2个;控制每穗实粒数的QTL有2个;控制一次枝梗颖花数的QTL有5个;控制每个一次枝梗上的颖花数的QTL有5个;控制二次枝梗颖花数的QTL有5个;控制每个二次枝梗上的颖花数的QTL有4个;控制结实率的QTL有4个;控制一次枝梗结实率的QTL有2个;控制二次枝梗结实率的QTL有3个。这些QTL分别在第2、4、7、11和12号染色体上形成QTL簇,这一现象很可能是穗部性状显著相关的遗传基础。检测到控制籽粒性状的QTL13个,其中包括控制千粒重的QTL4个;控制粒长的QTL5个;控制粒宽的QTL4个。其中第2染色体RM250-RM207区域同时控制粒长和粒宽,第3染色体中部同时控制粒长和千粒重,第9染色体RM24412-H90区域同时控制粒长、粒宽和千粒重。
     (4)对水稻株高及其构成因素进行QTL定位,并与控制赤霉素和油菜素内酯合成及信号转导的相关基因进行比对分析发现。RIL群体的株高及各构成因素均呈正态分布。株高与各构成因素间呈正相关,且相关系数由上至下递减。相邻的构成因素间呈极显著的正相关,而相距较远的构成因素间的相关性减弱甚至负相关,进一步分析表明株高主要受倒1和倒4节间长度的影响。共检测到控制株高及其构成因素的QTL 21个,分布在第1、2、3、5、6、7、8、9、11和12号染色体上。其中位于第9染色体上的QPH9b即直立穗基因EP1(DEP1或qPE9-1)对于水稻的株高起着很重要的作用,其主要通过影响倒1和倒2节间的长度来影响株高,该基因的分子功能与之前发现的众多控制株高的基因均不同,可能是一个种新的调控株高的机制。通过比较21个QTL与赤霉素和油菜素内酯合成及其信号转导相关基因发现,该群体株高的遗传基础极其复杂,根据比较分析的结果提出了株高调控的可能分子机制。
     (5)对水稻分蘖期、抽穗期和成熟期的叶绿素含量以及生育后期的持绿能力进行QTL定位分析。检测到5个控制分蘖期叶绿素含量的QTL、7个控制水稻抽穗期叶绿素含量的QTL和10个控制成熟期叶绿素含量的QTL,分布在除第5染色体以外的11条染色体上。比较它们与编码叶绿素合成及降解过程中的重要酶的基因发现,虽然生育前期检测到的QTL较少,但对应的叶绿素合成降解相关基因却较多。随生育期的推移,检测到的QTL数目增多,但对应的叶绿素合成降解相关基因却减少。暗示生育前期大多数叶绿素合成(降解)相关基因表达的水平差异不大,后期控制叶绿素合成降解的个别关键基因表达水平增加。并以此为基础提出了叶片生育后期持绿的两种可能生理基础。
     (6)利用F2和RIL群体在第9染色体上RM566-RM160之间鉴定到一个同时控制穗长、秆长和剑叶长的重要区域,暂命名为qPCL9。为了避免其它位点的干扰,利用标记辅助选择筛选到9号染色体长臂目标区段杂合,而背景纯合的剩余杂合单株qPCL9。在该单株衍生的889个F2个体中,未检测到三个性状之间的重组现象,因此我们推测此三个性状由同一个基因控制。因为RHL-qPCL9表现为短穗、短秆(短节间)和短剑叶表型,且其后代分离为短(658):长(231)=2.85:1.00(χ2=0.4593,P>0.05)符合3:1的分离比,判断qPCL9为隐性基因。并利用该群体将qPCL9定位在标记RM24423和RM24434之间,根据RAP数据库的注释,该区间为198-kb,包含17个预测基因。考虑基因的表达位置和功能,AK107584(similar to cytochrome P450 monooxygenase CYP92A1)、AKl 11616(similar to elicitor-inducible cytochrome P450)和J065094C22 (similar to cytochrome P450)可能是候选基因,但也不排除其它预测基因的可能。
The main contents in this study is 1) to develop a highly informative microsatellite (SSR) marker framework for rice (Oryza sativa L.) genotyping by using fifteen rice cultivars including 6 indica varieties (He-tian-xiang-dao, Kasalath, Habataki, IR36, R99, IR3) and 9 japonica varieties (Hitomebore, Toyonishiki, Sasanishiki, Nipponbare, Akitakomachi, Shen-nong265, Liaojing263, Liaojing294,02428),2) to comparative analysis of genetic information between two populations (F2 and RIL) and to detect and compare QTL for panicle related traits, grain related traits, flag leaf traits, plant height and its components and chlorophyll content at the stages of tillering, heading and maturity by employing RIL population derived from the cross between Shennong 265 and Lijiangxintuanheigu and its genetic linkage map and 3) to fine map the important plant type related quantitative trait locus qPCL9, which controlling flag leaf length, internode length and flag leaf length. The main results are as follow:
     (1) Six indica varieties and nine japonica varieties were used to analyze the polymorphism information content (PIC) value of 489 SSR markers. The PIC value of each chromosome were ranged from 0.4039 (chromosome 2) to 0.5840 (chromosome 11). Between the two rice subspecies, indica (0.3685~0.4952) gave a larger PIC value than japonica (0.1326~0.3164) and displayed a higher genetic diversity. A SSR framework including 141 highly informative markers for genotyping was selected from 199 SSR markers (PIC>0.50). Ninety-three SSR markers distributed on 12 chromosomes were found to be related to indica-japonica differentiation. Of these SSR primers,17 pairs were considered to be as core primers (all the japonica varieties have the same specific alleles, while the indica varieties have another specific alleles),48 pairs as second class primers (all the japonica (or indica) varieties have the same specific alleles, while the indica (or japonica) varieties have two or more other specific alleles) and 28 pairs as third class primers (all the japonica and indica varieties have two or more alleles, but the specific alleles are difference between japonica and indica). Thirty-two SSR markers were selected to be highly informative and useful for genetic diversity analysis of japonica varieties.This work provides a lot of useful information of SSR markers for rice breeding programs, especially for genotyping, diversity analysis and genetic mapping.
     (2) Comparative analysis of genetic information and QTL controlling flag leaf related traits including flag leaf length, flag leaf width and specific leaf weight between two populations (F2 and RIL) derived from a same cross between two japonica rice cultivars, 'Shennong265'and'Lijiangxintuanheigu' were studied.1) Most markers had same sequence along chromosomes, but the genetic distance between two markers was different. Thirty and thirteen markers showed genetic distortion significantly and extremely significantly in F2 population, separately. Nineteen and eleven markers deviated toward SN265 and LTH, separately. Sixty two and thirty eight markers showed genetic distortion significantly and extremely significantly in RIL population, separately. Forty three and nineteen markers deviated toward SN265 and LTH, separately. These distortional markers formed ten segregation distortion regions (SDR). Six of them were detected in both F2 and RIL populations.2) RIL population had more powerful detective ability than F2 population. Seven QTL controlling flag leaf related traits including two controlling leaf length, four controlling leaf width and one controlling specific weight were detected in F2 population. While seventeen QTL for these traits (seven for leaf length, five for leaf width and five for specific leaf weight) were detected in RIL population. Four QTL were detected in both populations including qFLL9 controlling flag leaf length on chromosome 9, qFLW4 controlling flag leaf width on chromosome 4, qFLW12.1controlling flag leaf width on chromosome 12 and qSLW6 controlling specific leaf weight on chromosome 6. Among them, qSLW6 (Additive effect=1.956mg/cm2) for specific leaf weight has a high research and application value.
     (3) 12 panicle related traits and 3 grain related traits showed a continuous normal distribution in the RIL population and transgressive segregation was also identified in all 15 traits.39 QTL were identified for panicle related traits including four for panicle length, five affecting primary branch number per panicle, three controlling secondary branch number per panicle, two affecting spikelet number per panicle, two controlling grain number per panicle, five for spikelet number of primary branch, five for spikelet number per primary branch, five controlling spikelet number of secondary branch, five affecting spikelet number per secondary branch, four controlling percent seed set, two for percent seed set of primary branch and two controlling percent seed set of secondary branch. They showed cluster forms on chromosome 2, 4,7,11 and 12. Clusters of QTL in genome would be the important genetic basis of the correlation among panicle related traits.13 QTL were detected for grain related traits (4 for 1000-grains weight,5 for grain length and 4 for grain width). The region between RM205 and RM207 on chromosome 2 controlled both phenotypes of grain length and width. The middle of chromosome 3 affected grain length and 1000-grains weight. The region between RM24412 and H90 controlled grain length, grain width and 1000-grains weight on chromosome 9.
     (4) QTL affecting plant height and its component factors were analyzed by employing 126 recombinant inbred lines (RIL) derived from a cross between two japonica rice cultivars, Shennong265 and Lijiangxintuanheigu. And then compared them with the genes involved in gibberellins and brassinosteroid biosynthesis and transduction. Plant height and its component factors showed a continuous normal distribution in the RIL population. The plant height showed a high positive correlation with its component factors, respectively. The correlation between plant height and its component factors descended from upper to lower. The correlation between adjacent plant height components was positively significant while the significance of the correlation between non-adjacent plant height components was less even negative. Further result indicated that the plant height is mainly affected by the length ofⅠinternode andⅣinternode.A total of 21 QTL controlling plant height and its components were identified on chromosomes 1,2,3,5,6,7,8,9,11 and 12, respectively. QPH9b (EP1, DEP1 or qPE9-1) on chromosome 9 plays a very important role in affecting plant height through controlling theⅠinternode andⅡinternode length from top. Its molecular function was different from the other genes controlling plant height be identified previously. So, it would be provided a novel mechanism for plant height. Comparison between 21 QTL and genes controlling gibberellins and brassinosteroid biosynthesis and transduction indicated that the genetic basis of plant height is extremely complex in this RIL population. And possible molecular mechanism for plant height was proposed by result of the comparison.
     (5) We analyzed the QTL controlling chlorophyll content at the stages of tillering, heading and maturity. Five, seven and ten QTL controlling chlorophyll contents at tillering stage, heading stage and maturity stage were detected, respectively. They were distributed on all rice chromosomes except chromosome 5.Comparison of the QTL and the genes underlying the key enzymes of chlorophyll biosynthesis and degradation revealed that relatively more QTL detected at earlier stage co-located with the genes related to chlorophyll biosynthesis and degradation. With the growth stage going on, more QTL were detected but only a few of them involved in chlorophyll biosynthesis and degradation. The results suggested that the expression level of most genes related to chlorophyll biosynthesis (degradation) had no difference at earlier stage but specific key genes increased at later stage. And two possible genetic bases for stay-green were proposed.
     (6)qPCL9, which controlling panicle length, culm length and flag leaf length, was identified on chromosome 9 in both F2 and RIL populations. In order to eliminate the influence of other loci, one single residual heterozygous plant for qPCL9 region, RHL-qPCL9 was selected based on MAS. We did not obtain any recombination among these three traits.This result revealed that these three traits were controlled by a same gene. We found that the heterozygous RHL-qPCL9 plant had short panicle, cuhn and flag leaf, and the segregation ratio between short plants and long plants in the segregating population was 658:231=2.85:1.00, fitting well to the 3:1 ratio (χ2=0.4593,P>0.05). These results revealed that the length of panicle, culm and flag leaf was controlled by a single gene,and it is a recessive trait in this population. Using this segregating population, this region was narrowed down to an interval between RM24423 and RM24434. According to the rice annotation project database, there are seventeen predicted genes in the 198-kb target region. Considering the organ specificity in gene expression and the molecular function information from a protein knowledgebase,AK107584 (similar to cytochrome P450 monooxygenase CYP92A1),AK111616 (similar to elicitor-inducible cytochrome P450) and J065094C22 (similar to cytochrome P450) might be the most likely candidate genes for qPCL9, but does not rule out the possible of the ten other candidate genes.
引文
1.阿加拉铁,曾龙军,薛大伟等.2008.水稻灌浆期不同阶段叶绿素含量的QTL分析.作物学报,34(1):61-66.
    2. 曹刚强,高用明,朱军.2007.多环境下水稻DH群体剑叶长度的QTL分析.作物学报,33(2):223-229.
    3. 曹树青,陆巍,翟虎渠等.2001.用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究.中国水稻科学,15(4):309-313.
    4. 陈温福,徐正进.2007.水稻超高产育种理论与方法.北京:科学出版社,2007,94-98.
    5. 杜景红,樊叶杨,吴季荣等.2008.水稻第6染色体短臂产量性状QTL簇的分解.中国农业科学,41(4):939-945.
    6. 樊叶杨,庄杰云.2000.应用微卫星标记鉴别水稻籼粳亚种.遗传,22(6):392-394.
    7.黄成,姜树坤,刘梦红等.2009.水稻抽穗期的QTL剖析.华北农学报,24(3):7-9.
    8.‘黄耀祥,林青山.1994.水稻超高产、特优质株型模式的构想与育种实践.广东农业科学,(4):1-6.
    9.姜树坤,钟鸣,徐正进.2006. RAPD标记进行水稻籼粳分类的研究.、沈阳农业大学学报,37(4):639-641.
    10.姜树坤,张喜娟,徐正进等.2010.粳稻叶绿素含量的QTL剖析及其与叶绿素合成降解相关基因的比较分析.作物学报,36(3):376-384.
    11.金伟栋,程保山,洪德林.2008.基于SSR标记的太湖流域粳稻地方品种遗传多样性研究.中国农业科学,41(11):3822-3830.
    12.林鸿宣,庄杰云,钱惠荣等.1996.水稻株高及其构成因素数量性状基因座位的分子标记定位.作物学报,22(3):257-263.
    13.刘道宏.1983.植物叶片的衰老.植物生理学通讯,2:16-21.
    14.马殿荣,李茂柏,王楠等.2008.中国辽宁省杂草稻遗传多样性及群体分化研究.作物学报,34(3):403-411
    15.彭茂民,杨国华,张菁晶等.2007.不同遗传背景下水稻剑叶形态性状的QTL分析.中国水稻科学,21(3):247-252.
    16.彭涛,钟秉强,凌英华等.2007.不同环境条件下籼型杂交稻株高的发育遗传研究.中国水稻科学,22(2):148-154.
    17.钱前,郭龙彪,杨长登.2007.水稻基因设计育种.北京:科学出版社,2007.
    18.童汉华,梅捍卫,邢永忠等.2007.水稻生育后期剑叶形态和生理特性的QTL定位.中国水稻科学,21(5):493-499.
    19.万建民.2007.超级稻的分子设计育种.沈阳农业大学学报,38(5):652-661.
    20.王建强,吕文彦,程海涛等.2009.粳稻不同株高突变体F2世代株高分离分析.华中农业大学学报,28(4):398-403.
    21.王韵,程立锐,郑天清等.2009.影响水稻株高和剑叶宽主效QTL对人工选择的响应.中国水稻科学,23(4):363-370.
    22.徐云碧,申宗坦,陈英等.1995.水稻籼梗杂种F2群体中RFLP标记的异常分离及其染色体分布.植物学报,37(2):91-96.
    23.徐正进,陈温福,张文忠.2004.北方粳稻新株型超高产育种研究进展.中国农业科学,37(10):1407-1413.
    24.杨桂芬,陶大云,胡凤益.1995a.籼型矮秆陆稻株高遗传研究.西南农业大学学报,17(6):489-494.
    25.杨桂芬,陶大云,胡凤益:1995b.粳型矮秆陆稻株高遗传研究.西南农业大学学报,17(6):495,500.
    26.杨权海,陆巍,胡茂龙等.2003.水稻叶片叶绿素和过氧化氢含量的QTL检测及上位性分析.遗传学报,30(3):245-250.
    27.杨仁崔,杨惠杰.1998.国际水稻研究所新株型稻研究进展.杂交水稻,13(5):29-31.
    28.余萍,李自超,张洪亮等.2004.广西普通野生稻(Oryza rufipogon Griff)表型性状和SSR多样性研究.遗传学报,31(9):934-940.
    29.袁隆平.1997.杂交水稻超高产育种.杂交水稻,12(6):1-6.
    30.余守武,杨长登,樊叶杨等.2008.水稻第1染色体千粒重QTL的遗传分解.科学通报,53(12):1389-1394.
    31.岳兵,薛为亚,罗利军等.2006.水稻剑叶部分形态生理特性QTL分析以及它们与产量、产量性状的关系.遗传学报,33(9):824-832.
    32.张德水,陈受宜,惠东威等.1997.栽培大豆与半野生大豆杂种F2群体中RFLP标记的偏分离及其形成原因的分析.遗传学报,24(4):362-367.
    33.张秋英,欧阳由男,戴伟民等.2005.水稻基部伸长节间性状与倒伏相关性分析及QTL定位.作物学报,31(6):712-717.
    34.张涛,郑家奎,徐建第等.2008.香稻品种的遗传多样性研究.中国农业科学,41(3):625-635.
    35.张喜娟,姜树坤,郑旭等.2009.水稻基部伸长节间性状与茎秆机械强度的相关分析和QTL定位.植物生理学通讯,45(3):223-228.
    36.周开达,马玉清,刘太清.1995.穗重型杂交稻育种.四川农业大学学报,13(4):403-407.
    37.朱军.1997.遗传模型分析方法.北京:中国农业出版社,240-292.
    38.朱作峰,孙传清,李自超等.2001.用SSR标记对水稻品种的分类研究.农业生物技术学报,9(1):58-61.
    39. Abdelkhalik A F, Shishido R, Nomura K, et al.2005. QTL-based analysis of leaf senescence in an indicaljaponica hybrid in rice (Oryza sativa L.). Theor Appl Genet,110(7):1226-1235.
    40. Ashikari M, Sakakibara H, Lin S, et al.2005. Cytokinin oxidase regulates rice grain production. Science, 309(5735):741-745.
    41. Ashikari M, Wu J, Yano M, et al.1999. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the a-subunit of GTP-binding protein. Proceedings of the National of Sciences of the United States of America,96:10284-10289.
    42.Bai M Y, Zhang L Y, Gampala S S, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proceedings of the National of Sciences of the United States of America,2007,104(34): 13839-13844.
    43.Beale SI.2005. Green genes gleaned. Trends Plant Sci,10(7):309-312.
    44. Becker J, Heun M.1995. Barley microsatellites:allele variation and mapping. Plant Mol Biol, 27(4):835-845.
    45. Botstein D, White RL, Skolnick M, et al.1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet,32(3):314-331.
    46. Brondani C, Rangel N, Brondani V, et al.2002. QTL mapping and introgression of yield related traits from Oryza glumaepatula to cultivated rice using microsatellite markers. Theor Appl Genet, 104:1192-1203.
    47. Choe S. Brassinosteroid biosynthesis and inactivation. Physiologia Plantarum,2006,126:539-548.
    48. Coburn JR, Temnykh SV, Paul EM, et al.2002. Design and application of microsatellite marker panels for semiautomated genotyping of rice(Oryza sativa L.). Crop Sci,42:2092-2099.
    49. Dinka SJ, Campbell MA, Demers T, et al.2007. Predicting the size of the progeny mapping population required to positionally clone a gene. Genetics,176(4):2035-2054.
    50. Doi K, Izawa T,Fuse T, et al.2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development,18(8):926-936.
    51. Ebitani T, Takeuchi Y, Nonoue Y, et al.2005. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar 'Kasalath' in a genetic background of japonica elite cultivar 'Koshihikari'.Breed Sci,55:65-73.
    52. Fan CC, Xing YZ, Mao HL, et al.2006. GS2,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 112(6):1164-1171.
    53. Fujino K, Sekiguchi H, Matsuda Y, et al.2008. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proceedings of the National of Sciences of the United States of America,105(34):12623-12628.
    54. Fukuoka S, Saka N, Koga H, et al.2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science,325(5943):998-1001.
    55. Gomi K, Matsuoka M.Gibberellin signalling pathway.Current Opinion in Plant Biology,2003,6: 489-493.
    56. Gomi K, Sasaki A, Itoh H, et al. GID2, an F-box subunit of the SCFE3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. The Plant Journal,2004,37(4):626-634.
    57. Hartweck L M. Gibberellin signaling. Planta,2008,229(1):1-13.
    58. Harushima Y, Kurata N, Yano M, et al.1996. Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet,92:145-150.
    59. He GM, Luo XJ, Tian F, et al.2006. Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Research,16(5):618-626.
    60. Hortensteiner S.2006. Chlorophyll degradation during senescence. Annu Rev Plant Biol,57:55-77.
    61. Hong Z, Ueguchi-Tanaka M, Fujioka S, et al. The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. The Plant Cell,2005,17(8): 2243-2254.
    62. Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, et al. Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. The Plant Journal,2002,32(4):495-508.
    63. Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. The Plant Cell,2003,15(12): 2900-2910.
    64. Huang N, Courtois B, Khush G S, et al.1996. Asscoiation of quantitative trait loci for plant height with major dwarfing genes in rice. Heredity,77:130-137.
    65. Huang X, Qian Q, Liu Z, et al.2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet,41(4):494-497.
    66. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. The Plant Cell,2001,13(5):999-1010.
    67.International Rice Genome Sequencing Project.2005.The map-based sequence of the rice genome. Nature,436(11):793-800.
    68.Ishimaru K, Yano M, Aoki N, et al.2001. Toward the mapping of physiological and agronomic characters on a rice function map:QTL analysis and comparison between QTL and expressed sequence tags. Theor Appl Genet,102:793-800.
    69. Itoh H, Tatsumi T, Sakamoto T, et al. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Moclecular Biology,2004,54(4):533-547.
    70. Itoh H, Ueguchi-Tanaka M, Sentoku N, et al. Cloning and functional analysis of two gibberellin 3 beta-hydroxylase genes that are differently expressed during the growth of rice. Proceedings of the National of Sciences of the United States of America,2001,98(15):8909-8914.
    71. Jiang H, Li M, Liang N, et al.2007. Molecular cloning and function analysis of the stay green gene in rice. Plant J,52(2):197-209.
    72. Jin J, Huang W, Gao JP, et al.2008. Genetic control of rice plant architecture under domestication. Nat Genet,40(11):1365-1369.
    73. Jung K H, Hur J, Ryu C H, et al.2003. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol,44(5):463-472.
    74. Khush GS.2001. Green revolution:the way forward. Nat Rev Genet,2(10):815-822.
    75. Kojima S, Takahashi Y, Kobayashi Y, et al.2002. Hd3a, a rice ortholog of the arabidopsis FT Gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 43(10):1096-1105.
    76. Komatsu K, Maekawa M, Ujiie S, et al.2003. LAX and SPA:major regulators of shoot branching in rice. Proceedings of the National of Sciences of the United States of America,100(20):11765-11770.
    77. Kong FN, Wang JY, Zou JC, et al.2007. Molecular tagging and mapping of the erect panicle gene in rice. Mol Breed,19:297-304.
    78. Konishi S, Izawa T, Lin SY, et al.2006. An SNP caused loss of seed shattering during rice domestication. Science,312(5778):1392-1306.
    79. Konishi T, Yano Y, Abe K.1992. Geographic distribution of alleles at the Ga2 locus for segregation distortion in barley. Theor Appl Genet,85:419-422.
    80. Kusaba M,Ito H, Morita R, et al.2007. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex Ⅱ and grana degradation during leaf senescence. Plant Cell,19:1362-1375.
    81. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L.1987. MAPMAKER: an interactive computer for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1:174-182.
    82. Lander ES, Botstein D.1989. Mapping medelian factors underlying quantitative traits using RFLP linkage maps. Genetics,121:185-199.
    83. Lee S, Kim J H, Yoo E S, et al..2005. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol,57(6):805-818.
    84. Li CB, Zhou AL, Sang T.2006. Rice Domestication by Reducing Shattering. Science,311(5769): 1936-1939.
    85. Liu J, Van Eck J, Cong B, et al.2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National of Sciences of the United States of America, 99(20):13302-13306.
    86. Li J M. Brassinosteroid signaling:from receptor kinases to transcription factors. Current Opinion in Plant Biology,2005,8:526-531.
    87. Li XY, Qian Q, Fu ZM, et al.2003. Control of tillering in rice. Nature,422:618-621.
    88. Li ZK, Yu SB, Lafitte HR, et al.2003. QTL x environment interactions in rice. I. heading date and plant height. Theor Appl Genet,108(1):141-153.
    89. Liu W, Fu Y, Hu G, et al.2007. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta,226(3):785-795.
    90. Luo A, Qian Q, Yin H, et al.2006. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice:Plant Cell Physiology,47(2): 181-191.
    91. Matsushita S, Iseki T, Fukuta Y, et al.2003. Characterization of segregation distortion chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica,134:27-32.
    92. McCouch SR, CGSNL.2008. Nomenclature system for rice. Rice,1:72-84.
    93. Monna L, Kitazawa N, Yoshino R, et al.2002. Positional cloning of rice semidwarfing gene, sd-1:Rice "Green Revolution Gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Research, 9(1):11-17.
    94. Morita R, Kusaba M, Yamaguchi H, et al.2005. Characterization of chlorophyllide a oxygenase (CAO) in rice(Oryza sativa). Breed Sci,55(3):361-364.
    95.Nelson JC.1997. QGENE:software for marker-based genomic analysis and breeding. Mol Breed,3: 1239-245.
    96.Ni J, Colowit PM, Mackill DJ.2002. Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci,42:601-607.
    97. Nishimura A, Ashikari M, Lin S, et al.2005. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proceedings of the National of Sciences of the United States of America,102(33):11940-11944.
    98. Oka HI.1988. Origin of Cultivated Rice. Tokyo:Elsevier.
    99. Olszewski N, Sun T P, Gubler F. Gibberellin signaling:biosynthesis, catabolism, and response pathways. The Plant cell,2002,14(s):61-80.
    100. Panaud O, Chen X, McCouch S D.1996. Development of micro-satellite marker and characterization of sample sequence lengthen polymorphism (SSLP) in rice (Oryza sativa L). Mol Gen Genet,252: 597-607.
    101. Peleman JD and Voort JR van der.2003. Breeding by design. Trends Plant Sci,8(7):330-334.
    102. Qi J, Qian Q, Bu Q, et al.2008. Mutation of the rice Narrow leaf 1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol,147(4):1947-1959.
    103. Ren ZH, Gao JP, Li LG, et al.2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics,37(10):1029-1030.
    104. Riefler M, Novak O, Strnad M, et al.2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell,18(1):40-54.
    105. Rohlf PJ.1997. NTSYSpc:Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software. Setauket:New York, USA.
    106. Sakamoto T, Morinaka Y, Ohnishi T, et al.2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology,24(1):105-109.
    107. Septiningsih EM, Trijatmiko KR, Moeljopawiro S, et al.2003. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet,107:1419-1432.
    108:Shimada A, Ueguchi-Tanaka M, Sakamoto T, et al.2006.The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. The Plant Journal,48(3):390-402.
    109. Shomura A, Izawa T, Ebana K, et al.2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet,40(8):1023-1028.
    110. Song XJ, Huang W, Shi M, et al.2007. A QTL for rice grain width and weight encodes a reviously unknown RING-type E3 ubiquitin ligase. Nature Genetics,39(5),623-630.
    111. Spielmeyer W, Ellis M H, Chandler P M.2002. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National of Sciences of the United States of America,99(13):9043-9048.
    112. Suzuki J Y, Bollivar D W, Bauer C E.1997. Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet,31:61-89.
    113. Takahashi Y, Shomura A, Sasaki T, et al.2001. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes a subunit of protein kinase CK2. Proceedings of the National of Sciences of the United States of America,98(14):7922-7927.
    114. Tan L, Li X, Liu F, et al.2008. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet,40(11):1360-1364.
    115. Tanabe S, Ashikari M, Fujioka S, et al.2005. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarfll, with reduced seed length. The Plant Cell,,17(3):776-790.
    116. Thomson MJ, Septiningsih EM, Suwardjo F, et al.2007. Genetic diversity analysis of traditional and improved Indonesian rice(Oryza sativa L.) germplasm using microsatellite markers. Theor Appl Genet, 114(3):559-568.
    117. Tian F, Li DJ, Fu Q, et al.2006. Construction of introgression lines carrying wild rice(Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet,112:570-580.
    118. Tuinstra MR, Ejeta G, Goldsbrough PB.1997. Heterogeneous inbred family (HIF) analysis:a method for developing nearisogenic lines that differ at quantitative trait loci. Theor Appl Genet,95:1005-1011.
    119. Ueda T, Sato T, Hidema J, et al.2005. qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase. Genetics,171(4):1941-1950.
    120.Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al.2005, Gibberellin insensitive dwarfl encodes a soluble receptor for gibberellin. Nature,437(7059):693-698.
    121.Voorrips RE.2002. MapChart:Software for the graphical presentation of linkage maps and QTL. Journal of Heredity,93(1):77-78.
    122. Wang E, Wang J, Zhu X, et al.2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet,40(11):1370-1374.
    123. Weng J, Gu S, Wan X, et al.2008. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res,18(12):1199-1209.
    124. Wu Z, Zhang X, He B,et al.2007. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol,145(1):29-40.
    125. Xiao J, Li J, Yuan L, et al.1996. Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from a sub-specific rice cross. Theor AppI Genet,92:230-244.
    126. Xie X, Jin F, Song MH, et al.2008. Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet,116:613-622.
    127. Xu K, Xu X, Fukao T, et al.2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Science,442(7103):705-708.
    128. Xu Y, Zhu L, Xiao J, et al.1997. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Genl Genet,253:535-545.
    129. Xue W, Xing Y, Weng X, et al.2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,40(6):761-767.
    130. Yamamuro C, Ihara Y, Wu X, et al.2000. Loss of function of a rice brassinosteroid insensitivel homolog prevents internode elongation and bending of the lamina joint. The Plant Cell,12(9): 1591-1606.
    131. Yan CJ, Zhou JH, Yan S, et al.2007. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice. Theor Appl Genet,115(8):1093-1100.
    132. Yan J, Zhu J, He C, et al.1998. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics,150(3):1257-1265.
    133. Yano M, Katayose Y, Ashikari M, et al.2000. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,12(12): 2473-2484.
    134. Yano M, Kojima S, Takahashi Y.2001. Genetic control of flowering time in rice, a short-day Plant. Plant Physiology,127:1425-1429.
    135. Yu B, Lin Z, Li H, et al.2007. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant Journal,52(5)891-898.
    136. Yu SB, Li JX, Xu CG, et al.2002. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet,104(4):619-625.
    137. Zeng LR, Qu S, Bordeos A, et al.2004. Spotted leqf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 16(10):2795-2808.
    138. Zeng ZB.1994. Precision mapping of quantitative trait loci. Genetic,136:1457-1468.
    139. Zhang H, Li J, Yoo J H, et al.2006. Rice Chlorina-1 and Chlorina-9 encode Ch1D and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 62(3):325-337.
    140. Zhang Q.2007. Strategies for developing Green Super Rice. Proceedings of the National of Sciences of the United States of America,104(42):16402-16409.
    141. Zhang Q, Shen BZ, Dai XK, et al.1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male steRILity in rice. Proceedings of the National of Sciences of the United States of America,91(18):8675-8679.
    142. Zhu J.1995. Analysis of conditional effects and variance components in developmental genetics. Genetics,141:1633-1639.