水稻分子遗传图谱构建及产量相关性状QTL定位分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用来自日本的优质粳稻品种“月之光”和籼稻品种“明恢63”为亲本杂交(月之光×明恢63)构建了含189个家系的F_2群体,建立含127个SSR标记的遗传连锁图谱。采用QTL作图软件WinQTLCartgrapher2.5对F2群体的抽穗期、株高和千粒重等产量相关性状进行了QTL定位分析,定位的QTL信息对抽穗期、株高、千粒重的遗传研究和分子标记辅助育种有重要意义,其主要研究结果如下:
     1.选择均匀覆盖整个水稻基因组的SSR引物701对,在两亲本间筛选到167对引物呈多态性,选择带型清晰且在基因组中分布较均匀的标记构建了一个含127个SSR分子标记的连锁图谱,使用MAPMAKER/EXP3.0构建连锁图,重组值用Kosambi函数转换成遗传图距(cM),连锁群总长度为2123.1cM,标记间平均距离为16.7cM,群体标记均匀地分布在12条染色体上。
     2.用复合区间定位法对水稻的抽穗期QTL进行定位,共发现4个QTLs,分布于第1、6、8、12条染色体上,表型贡献率为6.4%~48.0%。
     3.用复合区间定位法对水稻的株高QTL进行定位,共发现4个QTLs,分布于第1、3、8、12条染色体上,表型贡献率为6.3%~21.1%。
     4.用复合区间定位法对水稻的粒重QTL进行定位,共发现3个QTLs,分布于第1、6、8条染色体上,表型贡献率为6.2%~10.3%。
     5. QTL研究的最终目的是将研究结果和水稻农艺性状相结合,根据水稻性状的具体特点,采取相应的实施路线,使育种更加快速有效,为水稻分子标记辅助选择育种提供了有价值的遗传信息。
Using a F_2population containing189individiuals derived from a Japonica/Indicacross(YuZhiGuang×MingHui63), A linkage map with127SSR marker was constructed,with which QTLscontrolling heading date,plant height and1000grain weight was mapped by the software Cartgrapher2.5.All the QTL information is useful to rice genetic research and molecular breeding for the traits of headingdate,plant height and1000grain weight.The main results were described as follows:
     1. Total701SSR markers were used to screen the polymorphism between two parents(YuZhiGuang×MingHui63), Among167SSR markers with polymorphism,127were finally used toconstruct a genetic linkage map, using MAPMAKER/EXP3.0in a population of189lines. reconstructingvalue with Kosambi function convert from a genetic map distance (cM), It spans2123.1cM in total lengthcovering all12chromosomes, with average distance between markers of16.7cM.
     2. Four QTLs for heading date were detected, located on1、6、8and12chromsome, accounting for thephenotypic variation of6.4-48.0%respectively.
     3. Meanwhile, Four QTLs relating to plant height were detecteded on1、3、8and12chromsome,explaining6.3%~21.1%of the phenotypic variation respectively.
     4. Aswhile, three QTLs were detected on1、6、8chromsome for1000grain weight accounting for6.2%~10.3%of the phenotypic variation respectively.
     5. QTL the ultimate purpose of this research is combine study to agronomic traits of rice, according tospecific characteristics of rice traits, take corresponding implementation route, make more quickly andeffectively for rice breeding, molecular maker assisted selection breeding provides valuable geneticinformation..
引文
[1]刘光兴.遗传标记技术在海洋桡足类生物多样性和系统发生研究中的应用[J].中国海洋大学学报,2007,37(1):33-37.
    [2]刘长国,罗军,杨公社. DNA标记技术研究进展[J].黄牛杂志,2001,27(6):41-45.
    [3]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1994,15(4):19-22.
    [4]周延清. DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005:56-57.
    [5] Bostein D, White R L, Skolnick M, et a1. Construction of a genetic Linkage map in man usingrestriction fragment polymorphism [J]. Am J Hum Genet,1980,32:314-331.
    [6] Bernaltzky R, Tankley S D. Restriction fragments as molecular markers for germplasm evaluation andutilization [J]. Plant genetic sand breeding,1989:353-362.
    [7]王晓辉,刘桂林. DNA分子标记技术[J].畜禽业,2003(6):50-51.
    [8]白玉. DNA分子标记技术及其应用[J].安徽农业科学,2007,35(24):7422-7424.
    [9] Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primersare useful as genetic markers [J]. Nucleic Acids Res,1990,18(22):6531-6535.
    [10] Welsh J, McClelland M. Finger printing genomes using PCR with arbitrary primers [J]. Nucl AcidsRes,1990,18:7213-7218.
    [11]王志林,赵树进,吴新荣.分子标记技术及其进展[J].生命的化学,2001,21(1):39-42.
    [12] Velappa M N, Sondrass J L, Hakovita J R. Rapid identification of pathgenoic bacteria bysingle-enzyme amplified fragment length polymorphism a analysis [J]. Diagnostic Microbiology andInfections Disease,2001,39:77-83.
    [13] Vos P, Hogers R, Zabeau M, et al. AFLP: a new techmique for DNA finger printing [J]. Nucleic AcidsRes,1995,23(21):4407-4417.
    [14]刘华,贾继增.指纹图谱在作物品种鉴定中的应用[J].作物品种资源,1997(2):45-48.
    [15]王红梅,张正英,陈玉梁. SSR标记技术及其在植物遗传学中的应用[J].西北师范大学学报,2003,39(1):113-116.
    [16]罗文永,胡骏,李小方.微卫星序列及其应用[J].遗传学报,2003,25(5):615-619.
    [17]Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome [J].Science,1989,245:1434-1435.
    [18] Chor J, Mindrinos M, Richarssdr, et al. Genome-wide mapping with biallelic markers in arabidopsisthaliana [J]. Nature Genetics,1999,23:203-207.
    [19] Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of cucurbita maxima from spain usingRAPD and SRAP markers [J]. Genetic Resources and Crop Evolution,2003,50(3):227-238.
    [20]丁锦平,高国庆,周瑞阳等.花生SRAP反应体系的建立与优化[J].安徽农业科学,2008,36(10):4009-4010.
    [21] Riaz A, Li G, Quresh Z, et al. Genetic diversity of oilseed Brassica napus inbred lines based onsequence-related amplified polymorphism and its relation to hybrid performance [J]. Plant Breed,2001,120:411-415.
    [22] Budak H, Shearman R C, Parkaksiz I. Comparative analysis of seeded and vegetative biotypebuffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs [J]. TheorAppl Genet,2004,109:280-285.
    [23] Fetriol M, Pico B, Nuez,F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAPand AFLP markers [J]. Theor APPI Genet,2003,107:271-282.
    [24] Budak H, Shearman R C, Gaussoin R E, et al. Application of sequenee-related amplifiedpolymorphism markers for characterization of turf grass species [J]. Hortscienee,2004,39:955-958.
    [25]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679.
    [26]胡铁柱,王玲,冯熙路,等.稻瘟病菌群体的分子遗传学研究—由5个亚群体组成的广东省稻瘟病菌群体遗传结构的分析[J].中国农业科学,2003,36(12):1476-1483.
    [27]边银丙,宋小亚.几种新型DNA分子标记及其在食用菌研究中的应用[J].食用菌学报,2006,13(1):73-81.
    [28]吕瑞玲,吴小凤,刘敏超.分子标记技术及在水稻遗传研究中的应用[J].中国农学通报,2009,25(04):65-73.
    [29] Wu KS, Tanksley SD. Abundance polymorphism and geneti mapping of microsate-Ilites in rice [J].Molecular&General Genetics,1993,24:225-235.
    [30]王天宇,黎裕.分子标记技术在玉米基因定位和辅助选择中的应用[J].玉米科学,2000,8(4):3-8.
    [31]田翠.水稻QTL定位研究进展[J].基因组学与应用生物学,2009,28(3):557-562
    [32]方宣均,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    [33]张玉山.水稻重要农艺性状的QTL分析和主效QTL近等基因系的构建[D].武汉:华中农业大学,2006.
    [34]张玉山,邢永忠.水稻数量性状和其位点的基因图位克隆研究进展[J].分子植物育种,2006,4(6):91-97.
    [35]陈海生,陶龙兴,王熹,等.水稻穗芽相关性状的QTL定位[J].中国水稻科学,2006,20(3):253-258.
    [36]席章营,吴建宇.作物次级群体的研究进展[J].农业生物技术学报,2006,14(1):128-134.
    [37]杨树明,曾亚文,杜娟,等.水稻丽粳2号近等基因系杂种后代耐冷性遗传研究[J].植物遗传资源学报,2006,7(3):306-309.
    [38]薛为亚.水稻产量相关基因Ghd7的分离与鉴定[D].武汉:华中农业大学,2008
    [39] Izawa T, Shimamoto K. Becoming a model plant: the importance of rice to plant science [J]. TrendsPlant Sci,1996,1:95-99.
    [40] Wang W Y, Ding H F, Jiang M S, et al. Delimitation of the PSH1(t) gene for rice purple leaf sheath toa23.5kb DNA fragment [J]. Genome,2009,52:268-274.
    [41]袁隆平,杂交水稻学[M].北京:中国农业出版社.2002.
    [42] Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with2275markersusing a single F2population [J]. Genetics,1998,148:479-494.
    [43]贾小丽,林文雄.水稻抽穗期基因定位及其环境互作研究[J].中国农学通报,2011,27(24):29-32.
    [44] Zhou Y, Li W, Wu W, et al. Genetic dissection of heading time and its components in rice [J]. TheorAppl Genet,2001,102:1236-1242.
    [45] Komiya R, Ikegami A, Tamaki S, et al. Hd3a and RFT1are essential for flowering in rice [J].Development,2008,135:767-774.
    [46] Wei X, Xu J, Guo H, et al. DTH8Suppresses Flowering in Rice, Influencing Plant Height and yieldpotentialsimultaneously [J]. Plant Physiology,2010,153:1747–1758.
    [47] Xue W, Xin, Y, Weng X, et al. Natural variation in Ghd7is an important regulator of heading date andyield potential in rice [J]. Nat. Genet,2008,40:761-767.
    [48] Yano M, Kojima S, Takahashi Y, et al. Genetic control of flowering time in rice, a short-day plant [J].Plant Physiol,2001.127:1425-1429.
    [49] Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering down stream of Hd1under short-day condition [J]. Plant Cell Physiol,2002,43:1096-1105.
    [50] Takahashi Y, Shomura A, Sasaki T. Hd6, a rice quantitative trait locus involved in photoperiodsensitivity, encodes the alpha subunit of protein kinase CK2[J]. Proc Natl Acad Sci, USA,2001.98:7922-7927.
    [51] Doi K, Izawa T, Fuse T. Ehd1, a B-type response regulator in rice, confers short-daypromotion of flowering and controls FT-like gene expression independently of Hd1[J]. GenesDev,2004,18:926-936.
    [52] Kazuki, Matsubara, Utako Yamanouchi, et al. Ehd2, a Rice Ortholog of the Maizeindeterminate1Gene, Promotes Flowering by Up-Regulating Ehd1[J]. Plant Physiol,2008,148:1425-1435.
    [52] Izawa T, Oikawa T, Tokutomi S. Phytomchromes confer The Photo periodic control offlowering in rice (a short-day plant)[J]. Plant Journal,2000,22:391-399.
    [54] Yan W H, Wang P, Chen H X. A Major QTL, Ghd8, plays pleiotropic roles in regulating grainproductivity, plant height and heading date in rice [J]. Molecular Plant,2011,4(2):319-330.
    [55]朱虹霞.利用两个水稻回交群体构建图谱及七个农艺性状的QTL分析[D].合肥:安徽农业大学,2009.
    [56]高奋明,姜勇,孔德伟,等.水稻株高的遗传控制及其在育种上的应用[J].分子植物育种,2005,3(1):87-93.
    [57] Chang T T. Semi dwarfing genes in rice germ liasm collection [J]. Rice Genet News,1984,1:94-95.
    [58] Monna L, Ktazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: ricegreen revolution gene encodes a mutant enzyme involved in gibberellin synthesis [J]. DNA Res,2002,9(1):11-17.
    [59]樊叶杨,王凯,庄杰云,等.水稻产量性状QTL的克隆研究及育种应用进展[J].中国稻米,2010,16(6):1-5.
    [60] Fan C C, Xing Y Z, Mao H L, et al. GS3, major QTL for grain length and weight and minor QTL forGrain width and thickness in rice, encode a putative transmembrane protein [J]. Theor Appl Genet,2006,112(6):1164117.
    [61] Mao H L, Sun S Y, Yao J L, et al. Linking differential domain functions ofthe GS3protein to naturalvariation of grain size in rice [J]. Proc Natl Acad Sci USA,2010,107:19579-19584.
    [62] Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associate With grain size increased yieldsduring rice domestication [J]. Na Genet,2008,40(8):1023-1028.
    [63] Weng J F, Gu S H, Wan X Y, et al. Isolation and initial character-ization of GW5, a major QTLassociated with rice grain width and weight [J]. Cell Res,2008,18(12):1199-1209.
    [64]Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previouslyunknown RING-type E3ubiquitin ligase [J]. Nat Genet,2007,39(5):623-630.
    [65] Wang E T, Wang J J, Zhu X P, et al. Control of rice grain-filling And yield by a gene with a potentiasignature of domestication [J]. Nat Genet,2008,40(11):1370-1374.
    [66]郑景生,李义珍,方宣钧.水稻第2染色体上细菌性条斑病抗性QTL的检测[J].中国农业科学,2005,38(9):1923-1925.
    [67]郑景生,江良荣,曾建敏,等.应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL[J].分子植物育种,2003,1(5/6):633-639.
    [68] Dellaporta S L, Wood J, Hicks J B. A plant DNA mini-preparation: versionⅡ[J]. Plant Mol. Biol. Rep,1983,1(4):19-21..
    [69] Sanguinetti C J, Dias Neto E, Simpson A G. Rapid silver staining and recover of PCR productsseparated on polyacrylamide gels [J]. Biotechniques,1994,17:915-919.
    [70] Lincoln S E, Daly M J, Lander E S. Constructing genetic linkage maps with MAPMAKER/EXPVersion3.0: A tutorial and reference manual [C]. A Whitehead Institute for Biomedical ResearchTechnical Report, Third Edition, Jan:1993.
    [71] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer Version2.5, department of statistics
    [C]. North Carolina State University, Raleigh, NC,2001–2006.
    [72] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping [J]. Genetics,1994,138:963–971.
    [73] McCouch S R, Cho Y G, Yano M, et al. Report on QTL nomenclature [J]. Rice Genet Newslett,1997,14:11-13.
    [74]王付华.水稻RIL群体SSR标记遗传图谱构建和耐冷相关性状QTL的定位[D].南京:南京农业大学,2006.
    [75] Temnykh S, Park WD, Ayres N, et al. Mapping and genome organization of microsatellite sequencesin rice (Oryza sativa L.)[J]. Theor Appl Genet,2000,100:697-712.
    [76] Mc Couch S R, Teytelman L, Xu Y, et al. Development and mapping of2240new SSR markers forrice (Oryza sativa L)[J]. DNA Res,2002,9:199-207.
    [77]裴承国.水稻极晚熟抽穗期基因qHD8-1的精细定位[D].泰安:山东农业大学,2011.
    [78]李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答[J].作物学报2010,36(6):918931.
    [79]岳兵,邢永忠.水稻抽穗期分子遗传研究进展[J].分子植物育种,2005,3(2):222-228.
    [80]李晶炤,何平,郑先武,等.利用水稻重组自交系群体对一些重要农艺性状进行基因定位和互作分析[J].植物学报,1999,41(11):1199-1203.
    [81] Yamamoto T, Taguchi-Shiobara F, Ukai Y. Mapping quantitative trait loci for days-to-heading, andculm.panicle and internode lengths in a BC1F3population using an elite rice vatiety, Kosbihikari, asthe recurrent palcnt [J]. Breeding Science,2001,51:63-71.
    [82] Lin S Y, Sasaki T,Yano M. Mapping quantitative trait loci controlling seed dormancy and heading datein rice Oryza sativa L. using backcross inbred lines [J]. Theor Appl Genet,1998,96(8):997-1003.
    [83] Yano M, Sasaki T. Genetic and molecular dissection of quantitative trait locus in rice [J]. PlantMolecular Breeding,1997,35:145-153.
    [84] Xiao Jinhua, Li Jiming, Grandillo Silvana, et al. Identification of trait-improving quantitative trait locialleles from a wild rice relative, oryza rufipogon [J]. Genetics,1998,150:899–909.
    [85]邢永忠,徐才国,华金平,等.水稻株高和抽穗期基因的定位和分离[J].植物学报,2001,43(7):721-725.
    [86]刘文俊,王令强,何予卿.利用2个相关群体定位和比较水稻株高与抽穗期QTL[J].华中农业大学学报,2007,26(2):161-166.
    [87]袁爱平.水稻株高、抽穗期和有效穗数的QTL定位分析[D].太原:山西农业大学,2004.
    [88]王令强.分子标记遗传图谱构建和稻米品质性状的遗传分析[D].武汉:华中农业大学,2007.
    [89]彭丁文.水稻粒重遗传与育种研究进展[J].南方农业学报,2011,42(3):250-252.
    [90]姚国新,李金杰,张强,等.利用4个姊妹近等基因系群体定位水稻粒重和粒形QTL[J].作物学报,2010,36(8):13101317.