人源性细胞动物体内移植的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     生物人工肝和肝细胞移植面临一个共同的问题:高质量、来源丰富的人源性细胞来源的问题。干细胞以及人源性肝细胞系的研究进展为获取肝细胞提供了新的思路。
     成体肝干细胞中,骨髓源性干细胞具有可以自体获取、易于获取、来源丰富和免疫原性小等特点,是比较理想的肝干细胞。骨髓MSCs可以分化为肝细胞,然而,目前难以通过骨髓源性MSCs获取足够临床应用数量的肝细胞,因为人源性骨髓源性干细胞的培养条件非常严格,难以大量扩增或大规模诱导分化。通常骨髓源性MSCs均在体外诱导分化为肝细胞,通过动物肝脏人肝细胞化获取人肝细胞的方法尚未见报道。
     目前,人们已建立了许多人源性肝细胞系,迄今为止,只有C_3A细胞系开始应用于生物人工肝的临床研究,其他细胞系均没有进入临床试验,更没有一个细胞系用于肝细胞移植的临床研究。其中一个很重要的问题是这些细胞系应用的安全性,其中致瘤性是人肝细胞系应用安全性的一个重要指标。CL—1细胞系具有很好的生物学功能,其致瘤性的值得探讨。
     第一部分 人源性细胞大鼠肝内移植的实验研究
     材料与方法
     建立SD大鼠2—AAF+CCL_4+CP大鼠肝再生模型,经门静脉移植入骨髓源性MSCs和CL—1细胞。移植后每日持续给予环孢素A皮下注射(3.5mg/kg)抑制排斥反应。比较大鼠在处理过程中肝功能(ALT,TBiL)的变化,通过免疫组化、PCR、实时荧光定量RT—PCR的方法检测大鼠肝脏中人肝细胞的存在以及计算所占的比例。
     结果与讨论
     移植人骨髓源性MSCs和CL—1细胞的大鼠肝功能明显好转(P<
    
    0.01二,但在观察期内未达到正常水平(P<0.01=,未移植大鼠全部死亡。
    免疫组化以及PCR检测显示移植后大鼠肝脏中存在人源性细胞;实时荧
    光定量RT一PCR显示移植人骨髓源性MSCs的大鼠肝脏中人肝细胞的比
    例分别为9.79%(14天)和9.09%(28天),移植CL一1细胞的大鼠肝
    脏中人肝细胞的比例分别为9.27%(14天)和8.86%(28天)
    结论
     人骨髓源性MSCs和CL一1细胞可以在2一AAF+CCL4+CP大鼠
    肝脏内存活;人骨髓源性MSCs可以在2一AAF+CCL4+CP选择性肝再
    生大鼠肝脏内诱导分化为肝样细胞并实现部分替代(9.79%);人CL一1
    细胞可以在大鼠肝脏内存活并能部分替代(9.27%);肝内移植人骨髓
    MSCs和CL一1细胞均有助于2一AAF+CCL4+CP大鼠肝损伤后肝功能
    的恢复;在观察期限内,人CL一1细胞在免疫抑制的2一AAF+CCL4+
    CP大鼠肝脏内未发现肿瘤形成。
    第二部分人cL一1细胞裸鼠体内致瘤性的实验研究
    材料与方法
     将体外培养的CL一1细胞接种到裸鼠皮下(n二12),观察其致瘤性,
    4W后切取种植瘤、肝肺脑进行病理检查,接种1 640作阴性对照。
    结果与讨论
     前3周瘤体生长缓慢,后生长加快;接种后4周,总致瘤率为58%
     (7/12),对照组裸鼠皮下未见种植瘤生长;种植瘤大体标本示:瘤体呈
    光滑的圆球型,界限清楚,有完整包膜,瘤体直径为(8 .26士1.49)~。。
    镜下CL一1种植瘤显示:细胞形态大小比较均一,细胞核深染,核仁不
    明显,核分裂像较多,细胞呈双梁状排列,有少量的侵犯肌层和脂肪组
    织;肝、肺、脑组织切片染色未发现有转移瘤。
    结论
     人CL一1细胞在裸鼠体内有一定的致瘤性(7/12)。
Background
    Bioartificial liver (BAL) and hepatocyte transplantation (HTx) confront a common problem: abundant source of high quality human-derived hepatocyte. The progress of the study on stem cells and human-derived hepatocyte cell line provides a new way to obtain human-derived hepatocyte.
    Bone marrow-derived stem cells are abundant in cell source, low-immunogenicity, can be obtained easily and from oneself, are ideal hepatic stem cell. Bone marrow-derived mesenchymal stem cell (MSCs) can differentiate into hepatocyte, nevertheless, it is difficult to obtain sufficient hepatocyte for clinic application by the differentiation of bone marrow-derived MSCs because the cultivation condition of bone marrow-derived MSCs is very strict in vitro so that they cannot repopulate and differentiate on a large scale. Generally, bone marrow-derived MSCs differentiate into hepatocyte in vitro. It is not reported to obtain human hepatocyte by the way of human hepatocytized of animal liver.
    Nowadays, there are many human hepatocyte cell line (hHCL) but only C3A hHCL are used in BAL. The other hHCL are not used in BAL. No hepatocyte cell lines are used in HTx mainly because of the problem of security. The oncogenicity of hHCL is an important aspect of security. CL-1 hHCL has good biological function while its oncogenicity should be discussed.
    
    
    
    Part I The experimental study on the transplantation on human-derived cells into the rat liver
    Materials and Methods
    The human MSCs from bone marrow and human CL-1 cells(5 X104) were transplanted in to the liver of SD rats which 2-AAF+CCL4+CP rat models were set up. After transplantation, rats were maintained on a daily dose of CsA (3.5mg/kg). The hepatic function (ALT, TBiL) of the rats were checked, and then the human-derived cells of the transplanted rats were detected by Immunohistochemistry staining and PCR detection; lastly, the human-derived cells of the transplanted rats were detected by the real time RT-PCR
    Result and Discussion
    The liver function of the rats which had been transplanted human MSCs from bone marrow and human CL-1 cells were ameliorated but were not normal while those who had not been transplanted cells all die in a short time; the results of Immunohistochemistry staining and PCR detection indicate there were human-derived cells in the liver of the transplanted rats; the proportion of human hepatocyte in the rat which transplanted with human MSCs was 9.79% and 9.09% respectively and the proportion of human hepatocyte in the rat which transplanted with human MSCs was 9.27% and 8.86% respectively.
    Conclusion
    The human MSCs from bone marrow and human CL-1 cells can survive in the liver of 2-AAF+CCL4+CP rat model; the human MSCs can diffenentiate to functional hepatocyte-like cells in the 2-AAF/CCLF4/CP rat
    
    
    model and replace 9.79%(14d) and 9.09% (28d) ; the CL-1 cells can replace 9.27%(14d) and8.86% (28d) ; the transplantation of the human MSCs and CL-1 cells can ameliorate the recovery of the 2-AAF+CCL4+CP rats; within 28 days, the CL-1 cells failed to formed planted tumor in the 2 -AAF+CCL4+CP rats.
    Part II The experimental study on the oncogenicity of human hepatocyte line CL-1 cells in nude mice
    Materials and Methods
    CL-1 cells(2X106) were cultured in vitro and transplanted into the subcutaneous tissue of nude mice The planted tumor, liver, lung and brain of the nude mice were removed for pathological examination
    Results
    The planted tumor grew slowly initially while grew fast in the last
    week. 7/12 of the planted place formed planted tumor, the proportion of
    oncogenicity is 58%. The planted tumors were round which diameter is
    ( 8.26+ 1.49 ) mm. There are no planted tumors formed in the liver, lung and
    brain.
    Conclusion
    The CL-1 cells have a little oncogenicity in immunodeficiency mice.
引文
1. Starzl TE, Groth CG, et al. Orthotopie liver transplant—ation of human liver. AnnSurg, 1968;168 (1):39.
    2. Harper AM, Rosendale JD, The UNOS OPTN waiting ist and donor registry 1988—1996. Clin Transplant,1996,5(1):69—73
    3. Kelly JH, Sussman NL. The hepatix extracorporeal liver assist device: in the treatment of fulminant hepatic failure. ASAIO Trans, 1994; 40(1): 83-85.
    4.徐小平,高毅,杨继震.人工肝生物材料人肝细胞系CL—1的微载体培养.世界华人消化杂志,1999;7(3):197—199.
    5.薛国柱,刘冰艳,陈芦斌等.用流式细胞仪测定人肝细胞系DNA指数值作为其生物功能筛选指标的研究.消化外科,2003,2(1):26—29.
    6. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1998; 78 (11) : 7634-7638
    7. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysis. Science. 1998; 282 (1) :114-117
    8. Shamblott M, Axelman J, WANG S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A.1998;95 (14) :13726-13731
    9. Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000; 18 (1) :399-404
    10. Wood RP, Katz SM, Ozaki CF, et al. Extracorporeal liver assist device(ELAD):a preliminary report. Transplant Proc. 1993, 25(1): 53-54
    11. Weiss RA. The Leeuwenhoek Lecture 2001. Animal origins of human infectious disease. Philos Trans R Soc Lond B Biol Sci. 2001 Jun 29; 356(1410): 957-77
    12. Frankel MS. In search of stem cell policy. Science. 2000; 287 (5) : 1397.
    
    
    13. Huttmarm A, Li CL, Duhrsen U. Bone marrow-derived stem cells and "plasticity". Ann Hematol. 2003; 82(10): 599-604.
    14. Dabeva MD, Shafritz DA. Hepatic stem cells and liver repopulation. Semin Liver Dis. 2003; 23(4): 349-62.
    15. Stuart F, Pamela V, Richard P et al. Hepatic stem cells. J Pathol, 2002; 197 (2): 510—518.
    16. Theise ND, Saxena R, Portmarm BC et al. The canal of Hering and hepatic stem cells in humans. Hepatology. 1999; 30(6): 1425-1433
    17. Laconi S, Pillai S, Porcu PP et al. Massive liver replacement by transplanted hepatoeytes in the absence of exogenous growth stimuli in rats treated with retrorsine. AJP, 2001; 158(2): 771-777
    18. Laconi E, Oren R, Mukhopadhyay DK et al. Long-tern, near-total liver replacement by transplantation of isolated hepatoeytes in rats treated with retrorsine. AJP, 1998; 153(1): 319-329.
    19. Laconi E, Sarma DS. Transplantation of nomal hepatocytes modulates the development of chronic liver lesions induced by a pyrrolizedine alkoloid, lasocarpine. Carcinogenesis, 1995; 16(1): 139-142.
    20. Grompe M, Laconi E. Principles of therapertics liver repopulation. Seminars in liver diseases, 1999; 19(1): 7-14.
    21. Malhi H, Annamaneni P, Slehria S et al. Cyclophoaphamide disrupts hepatic sinusoidal endothelium and improves tralsplanted cell engraftment in rat liver. Hepatology 2002; 36(1): 112-121.
    22. Guo D, Fu T, Nelson JA. Liver repopulation after cell transplantation in mice treated with retrirsine and carbon tetrachloride. Transplantation, 2002; 73(16): 1818-1824
    23. Gordon GJ, Butz GM, Grisham JW et al. Isolation, short-term culture, and transplantation of small hepatocyte-like progenitor cells from retrorsine-exposed rats. Transplantation, 2002; 73 (11): 1236-1243.
    24. Allain JE, Dagher I, Dominique MC,et al. Immortalization of a primate bipotent epithelial liver stem cell. Cell Biology; 2002, 99(6): 3639-3644.
    
    
    25. Huang S, Yam H, Pang C, et al. The expression of human specific proteins in liver tissue of chimeric goats engrafted with human hematopoitic stem cells. Zhonghua Yi Xue Za Zhi. 2002; 82(13): 894-8.
    26. Spangrude GJ, Heimfeld S, Weissman IL: Purification and characterization of mouse hematopoietic stem ceils. Science 1988, 241(1): 58-62.
    27. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B: Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 1992, 89(24): 2804-2808.
    28. Pereira RF, Halford KW, O'Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Science 1997, 276(1): 71-74
    29. Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Matrix Biol 1998, 16(4): 519-528.
    30. Morayma R, Catherine M. V. Characterization of Multipotent Adult Progenitor Cells, a Subpopulation of Mesenchymal Stem Cells. Ann NY Acad Sci, 2001; 938(2): 231-235.
    31. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F: Muscle regeneration by bone marrow-derived myogenic progenitors. Hum Immunol 1998, 59(2): 137-148
    32. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC: Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999, 401(3): 390-394
    33. Brazelton TR, Rossi FM, Keshet GI, Blau HM: From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000, 290(14): 1775-1779
    34. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR: Turning blood into brain: cells beating neuronal antigens generated in vivo from bone marrow. Science 2000, 290(15): 1959-1962
    35. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P: Mobilized bone
    
    marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 2001, 98(2): 10344-10349
    36. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P: Bone marrow cells regenerate infarcted myocardium. Nature 2001, 410(6): 701-705
    37. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001, 105(3): 369-377
    38. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP: Bone marrow as a potential source of hepatic oval cells. Science 1999, 284(10): 1168-1170
    39. Wagers AJ, Sherwood RI, Christensen JL et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 2002; 297(14): 2256-2259.
    40. Schwartz RE, Reyes M, Koodie L et al. Multipetent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest, 2002; 109(10): 1291—1302.
    41. Peterson BE, Bowen WC, Szabolcs MJ et al. Bone marrow as a potential source of hepatic oval cells. Science, 1999; 284:1168-1170.
    42.蔡云峰,闵军,何劲松等。骨髓源性肝干细胞的确认及定向分化的实验研究.中国普通外科杂志2003;12(4):287—231.
    43.李文晰,段芳龄。骨髓干细胞向肝系细胞分化的研究.胃肠病学和肝病学杂志2003;12(1):5—7.
    44.马军,段芳龄,李文晰。大鼠移植骨髓细胞向肝细胞转化的实验研究.胃肠病学和肝病学杂志2003;12(2):138—143.
    45. Liu ZC, Chang TM. Coencapsulation of hepatocytes and bone marrow stem cells: in vitro conversion of ammonia and in vivo lowering of bilirubin in hyperbilirubemia Gunn rats. Int J Artif Organs. 2003; 26(6): 491-7.
    
    
    46. Dandri M, Burda MR, Eva T, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus (HBV). Hepatology. 2001; 33(8): 981-8.
    47. Mercer DF, Schiller DE, Elliott JF, et al. Hepatitis C virus replication in mice with chimeric human livers. Nature Med. 2001; 7(8): 927-33.
    48. Petersen J, Burda MR, Dandri M, et al. Transplantation of Human Hepatocytes in Immunodeficient UPA Mice: A Model for the Study of Hepatitis B Virus. Methods Mol Med. 2004; 96(2): 253-60.
    49. Ishikawa F, Drake CJ, Yang S, et al. Transplanted human cord blood cells give rise to hepatocytes in engrafted mice. Ann N Y Acad Sci. 2003; 996(1): 174-85.
    50. Schmidt C, Bladt F, Goedeck S et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature, 1995; 373(2): 699-702.
    51.何劲松,闵军,陈积圣。肝细胞移植的新型种子细胞。中国病理生理杂志,2003,19(3):415—417.
    52. Guha C, Sharma A, Gupta S et al. Amelioration of radiation-induced liver damage in partially hepateetomized rats by hepatocyte transplantation. Cancer Res 1999; 59: 5871-5874.
    53. Laconi S, Pillai S, Porcu PP, et al. Massive liver replacement by transplanted hepatoeytes in the absence of exogenous growth stimuli in rats treated with retrorsine. Am J Pathol. 2001; 158(2): 771-7
    54. Dabeva MD, PetkoV PM, Sandhu J, et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol. 2000; 156(6): 2017-31
    55. Pieard C, Lambotte L, Starkel P, et al. Retrorsine: a kinetic study of its influence on rat liver regeneration in the portal branch ligation model. J Hepatol. 2003; 39(1): 99-105
    56. Takahashi M, Deb NJ, Kawashita Y, et al. A novel strategy for in vivo expansion of transplanted hepatocytes using preparative hepatic irradiation and FasL-induced hepatocellular apoptosis. Gene Ther. 2003; 10(4): 304-13.
    
    
    57. Guha C, Parashar B, Deb NJ, et al. Normal hepatocytes correct serum bilirubin after repopulation of Gunn rat liver subjected to irradiation/partial resection. Hepatology 2002; 36(2): 354-62.
    58. Malhi H, Gorla GR, Irani AN, et al. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation. Proc Natl Acad Sci U S A. 2002 1; 99(20): 13114-9.
    59. Mallet VO, Mitchell C, Mezey E, et al. Bone marrow transplantation in mice lead to a minor population of hepatocyte that can be selectively amplified in vivo. Hepatology. 2002; 35(4): 799-804.
    60. Avital I, Feraresso C, Aoki T, et al. Bone marrow-derived liver stem cell and mature hepatocyte engraftment in livers undergoing rejection. Surgery. 2002; 132(2): 384-90.
    61. Sanchez A, Factor VM, Schroeder IS, et al. Activation of NF-kappaB and STAT3 in rat oval cells during 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. Hepatology. 2004; 39(2): 376-85.
    62. Kariv R, Enden A, Zvibel I, Rosner G, et al. Triiodothyronine and interleukin-6 (IL-6) induce expression of HGF in an immortalized rat hepatic stellate cell line. Liver Int. 2003; 23(3): 187-93.
    63. Peterson BE, Goff JP. Hepatic oval cells express he hemetopoietic stem cell maker Thy-1 in the rat. Hepatology, 1998; 27(2): 433-445.
    64. Gupta S, Rajvanshi P, Sokhi R et al. Entry and integration of transplanted hepatocytes in rat liver plates occur by distruption of hepatic sinusoidal endothelium. Hepatology, 1999; 29(3): 509-519.
    65.赵中辛,丁友成。异种肝细胞移植排斥机理的探讨.中华器官移植杂志,2001;22(5):280—281.
    66.孙志岭,王学浩,赵中辛等。异种肝细胞移植后受体血清白细胞介素2及肿瘤坏死因子α水平的研究.南京医科大学学报(自然科学版),2002:22(2):111—113.
    
    
    67.赵中辛,刘菲,钟岚。应用环孢素A治疗异种肝细胞移植的排斥反应.中华实验外科杂志,2001;18(1):50-51
    68. Baba S, Fujii H, Hirose T, et al. Commitment of bone marrow cells to hepatic stellate cells in mouse. J Hepatol. 2004; 40(2): 255-60.
    69. Kelly JH, Koussayer T, He D, et al. Assessment of an extracorporeal liver assist divice in anhepatic dogs. Artif Organs, 1992, 16(3): 418-422.
    70. Nyberg SL, Remmel RP, Mann HJ et al. Primary hepatocytes out perform HepG2 cells as the source of biotmnsformation functions in a bioartificial liver. Ann Surg, 1994, 220(1): 59-67.
    71.叶秀珍,朱德厚,沈鼎武。体外连续培养的成人肝细胞超微结构.实验生物学报,1980;13(4):361—634.
    72. Kono Y, Yang S, Letarte M et al. Establishment of a human hepatocyte line derived from primary culture in a colloagen gel sandwich culture system. Exp Cell Res, 1995; 221(3):478-485.
    73. McCloskey P, Edwards RJ, Tootle R et al. Resistance of three immortalized human hepatocyte cell lines to acetaminophen and N-acetyl-p-benzoquinoneimine toxicity. J Hepatol, 1999; 31(5): 841-851.
    74. Kohayashi N, Miyazaki M, Fukaya K et al. Transplantation of highly differentiated immortalized human hepatocytes to treat acute liver failure. Transplantation, 2000; 69(2): 202-207.
    75. Werner A, Duvar S, Muthing J et al. Cultivation and characterization of a new immortalized human hepatocyte cell line, Hep Z, for use in aritificial liver support system. Ann NY Acad Sci, 1999; 875(2): 364-368.
    76. Werner A, Duvar S, Muthing J et al. Cultivation of human hepatocyte cell line Hep Z on macroporous CultiSpher G microcarriers. Biotechnol Bioeng. 2000; 68(1): 59-70.
    77. Kobayashi N, Fujiwara T, Westerman KA et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science, 2000; 287(8): 1258-1262.
    
    
    78. Kuddus R, Patzer JF, Lopez R, et al. Clinical and laboratory evaluation of the safety of a bioartificial liver assist device for potential transmission of porcine endogenous retrovirus. Transplantation 2002; 3(2): 420-429.
    79.薛国柱,高毅,刘冰艳.人肝细胞系生物功能筛选测定.外科理论与实践,2002,7(2):163—165.
    80.高毅,徐小平,杨继震.人肝细胞系CL—1的微载体成功培养与功能检测.透析与人工器官,1998;9(1):28—30.