考虑虚土桩扩散角时桩土动静特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析了虚土桩扩散角对桩土动静特性的影响。虚土桩法是为了解决桩和桩端土相互作用而提出的一种新方法,该方法将桩身正下方到基岩之间的土体假设为“土桩”—即虚土桩,虚土桩的求解按照桩的一维杆件理论进行,参数选取实际土体的参数。与传统理论相比,虚土桩模型具有一定的优势。主要体现在:可以充分考虑桩端土的成层性、基岩的埋置深度,其参数的选取也与土层的实际参数联系紧密。
     本文基于虚土桩法,做了如下4项工作:
     1.在忽略土体的径向位移条件下,考虑虚土桩扩散角并假定扩散角沿深度变化为一常数,对简谐荷载作用时刚性圆盘下均质滞回材料土体的振动特性进行研究,得到了刚性圆盘底部土体的实际支承复刚度以及土层在简谐荷载作用下的动力特性。分析泊松比、阻尼等参数对桩土动力特性的影响,同时还与其它学者的研究成果进行对比,分析虚土桩法在求解桩土动力耦合问题中的适用性和精度等问题。
     2.桩端土单层条件下,采用平面应变模型,研究桩土耦合作用时虚土桩扩散角对桩土动力特性的影响。对桩的动力方程进行Laplace变换,通过复刚度传递法,递推求解得到桩顶受纵向激振力作用下的复刚度、速度导纳、位移幅频在频域表达式,再利用卷积定理和Fourier逆变换得到桩顶时域响应半解析解。研究不同土质、不同桩长条件下等条件下虚土桩扩散角对桩的动力特性的影响,同时分析端承桩桩底沉渣特性对桩顶动力响应的影响,并结合工地实测资料进行拟合对比。
     3.桩端土单层条件下,采用连续介质模型,研究桩土耦合作用时虚土桩扩散角对桩土动力特性的影响,同时对平面应变模型和连续介质模型在相同条件下得到的解进行分析对比。对桩土动力耦合方程进行Laplace变换,根据边界条件求解得到桩顶动力特性在频域内的解析解以及时域内的半解析解。分析粘性阻尼对桩的动力特性的影响并研究不同桩端土性质下虚土桩扩散角对桩的振动特性的影响。
     4.从三维轴对称模型出发,建立桩土体系静力平衡方程,通过积分变换,得到桩顶沉降在频域内的解析解和在时域内的半解析解,进而分析单桩随时间变化的规律,同时利用虚土桩模型计算得到的结果与实测数据进行拟合对比。
In this dissertation, the effect of cone angle on dynamic and static response of pile was studied. Virtual pile model is a new method proposed to solve the interaction between soil and pile. The soil among the pile and bedrock is assumed to "virtual pile". The vibration of virtual pile can be solved by one-dimensional bar theory, while the parameter of virtual pile was completely the same as soil. Compared with the traditional theory, the virtual pile model has certain advantages, mainly reflected in: You can give full consideration to the influence of multilayered soil; you can also consider the burying depth of bedrock; the parameter of virtual pile selection is also closely linked to the actual soil property.
     Based on virtual pile model, the following four tasks have been finished:
     1. Ignoring the radial displacement of soil and assuming that cone angle of virtual pile is a constant, the vibration of pile-and-soil system is investigated when harmonic force loaded on rigid circular plate. Then the bearing complex stiffness and dynamic characteristics are obtained. By analyzing Poisson's ratio, damping and some other factors, and comparing with other research results, the applicability and accuracy of virtual soil pile method in solving the problem of dynamic response of pile is studied.
     2. Assume that the soil under pile is single, by plane strain model a research on dynamic response of pile and soil is presented. By using complex stiffness method, the dynamic characteristics and complex stiffness in frequency domain is reached. Using the convolution theorem and Fourier inverse transform, the semi-analytical solution in time domain is reached too. Based on the above solution, the response of piles is studied under different conditions, and the solution is compared to fit with the engineering data.
     3. Assume that the soil under pile is single, by continuum model another research on dynamic response of pile and soil is presented. The effect of viscous damping is analyzed, while the solution under plane strain model and continuum model are compared with the same conditions.
     4. According to three-dimensional axial symmetry model, static equilibrium equation of pile and soil is built. By integral transformation, the settlement of pile top in frequency domain and time domain is obtained. The results are measured with project data.
引文
El Marsafawi H. and Han Y C, Dynamics experiments on two pile groups [J]. Journal of Geotechnical Engineering ASCE,1992,118(4):576-592.
    El Naggar M. H. and Novak M., Nonlinear analysis for dynamic lateral pile response [J]. Soil Dynamics and Earthquake Engineering 1996,15:233-244.
    El Naggar M. H. and Novak M., Nonlinear axial interaction in pile dynamics [J]. Journal of Geotechnical Engineering ASCE,1994,120(4):678-696.
    El Naggar M. H. and Novak M., Nonlinear lateral interaction in pile dynamics. [J] Soil Dynamics and Earthquake Engineering 1995,14:141-157.
    El Naggar M. H., Vertical and torsional soil reactions for radically inhomogeneous soil layer [J]. Structural Engineering arid Mechanics,2000,10(4):299-312.
    Gazetas G, Makris N. Dynamic pile-soil-pile interaction. Part Ⅰ:analysis of axial vibration [J]. Earthquake Eng Strct Dyn,1991,20(1):115-132.
    Guocai Wang Wei Ge, Xiaodong Pan, Zhe Wang Torsional vibrations of single piles embedded in saturated medium [J]. Computers and Geotechnics,2008,35:11-21.
    Han Y C., Dynamic vertical response of piles in nonlinear soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(8):710-716.
    Kagawa, T. Dynamic soil reaction to axially loaded piles. [J] Journal of Geotechnical Engineering ASCE,1991, 117(7):1001-1020.
    Kattis, S.E.; Polyzos, D.and Beskos, D.E. Vibration isolation by a row of piles using a 3-D Frequency domain BEM [J]. International Journal of Numerical Methods in Engineering 1999,46:713-28.
    Matlock H, Foo S.H.C, Axial analysis of piles using a hysteretic degrading soil model [J]. Proc. Int. Symp. Numer. Methods Offshore Piling, Institute of Civil Engineers, London, England,1979.
    Militano G, Rajapakse R K N D. Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading [J]. Geotechnique,1999,49(1):91-109.
    Miura, K., Kaynia AM. and Masuda K., Kitamura E, Seto Y Dynamic behavior of pile foundations in homogeneous and non-homogeneous media [J].Earthquake Engineering and Structural Dynamics,1994,23: 183-192.
    Muki R, Sternberg E. Electrostatic load transfer to a half space from a partially embedded axially loaded rod [J]. Solids and Struct,1970,6:69-90.
    Nogami T, Kongai K. Time domain axial response of dynamically loaded single piles [J]. Journal of Engineering Mechanics Division, ASCE,1986,112:1241-1252.
    Nogami, T. and Novak, M. Coefficients of soil reaction to pile vibration [J]. Journal of the Geotechnical Engineering Division, A SCE,1980,106(GT5):565-570.
    Nogami, T. and Novak, M., Resistance of soil to a horizontally vibrating pile [J]. International Journal of Earthquake Engineering and Structural Dynamics,1977,3(3):247-261.
    Nogami, T. and Novak, M., Soil-pile interaction in vertical vibration [J]. Earthquake Engineering and Structural Dynamics,1976,4:277-293.
    Nogami, T.; Ren F. Z.; Konagai, K. and Chen, J. W., Vertical vibration of pile in vibration-induced excess pore pressure field [J]. Journal of Geotechnical Engineering A SCE,1997,123(5):422-429.
    Novak M, Nogami T, Aboul-ella F. Dynamic soil reaction for plane strain case [J]. Journal of the Engineering Mechanical Division, ASCE,1978,104(EM4):953-959.
    Novak M. Dynamic stiffness and damp ing of piles [J]. Canadian Geotechnical Journal,1974,11(4):574-598.
    Novak, M. and Aboul-Ella, F. Impedance functions of piles in layered media [J]. Journal of the Engineering Mechanics Division, ASCE,1978,104(EM6):643-661.
    Novak, M. and Beredugo, YO. Vertical vibration of embedded footings [J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1972,98(SM12):1291-1310.
    Novak, M. and Nogami, T., Soil-pile interaction in horizontal vibration [J]. International Journal of Earthquake Engineering and Structural Dynamics,1977,5(3):153-168.
    Novak, M. Dynamic stiffness and damp ing of piles [J]. Canadian Geotechnical Journal,1974,11(4):574-598.
    Novak, M. Vertical vibration of floating piles [J]. Journal of the Engineering Mechanics Division, ASCE,1977, 103(EM1):153-168.
    Poulos, H. G. and Davis, E.H. Pile foundation analysis and design [J]. Wiley, New York.
    Rajapakse, R.K.N.D. A note on the elasto dynamic load transfer problem [J]. International Journal of Solids and Structures,1988,24(7):963-972.
    Rajap akse, R.K.N.D. A torsion load transfer problem for a class of non-homogeneous elastic solids[J]. International Journal of Solids and Structures,1988,24(2):139-151.
    Rajapakse, R.K.N.D. Dynamics of piles:A critical evaluation of continuum solution models [J]. Proc. CSCE Annual Conference, Calgary, Canada,1988, Ⅲ:216-236.
    Randolph, M.F. Piles subjected to torsion. Journal of the Geotechnical Engineering Division [J], ASCE,1981, 107(GT8):1095-1111.
    Randolph, M.F. The response of flexible piles to lateral loading [J]. Geotechnique,1981,31(2):247-259.
    Senjuntichai T, Mani S, Rajapakse R K N D, Vertical vibration of an embedded rigid foundation in a poroelastic soil [J]. Soil Dynamics and Earthquake Engineering 2006,26:626-636.
    Veletsos A.S. and Younan A. H., Dynamic modeling and response of rigid embedded cylinders. [J]. Journal of Engineering Mechanics, ASCE,1995,121(9):1026-1035.
    Wang C.D. and Liao J.J. Elastic solutions for a transversely isotropic half-space subjected to buried asymmetric-loads [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23: 115-139.
    Yuanqiang Cai, Gang Chen, Chan gjie Xu, Dazhi Wu. Torsional response of pile embedded in a poroelastic medium [J]. Soil Dynamics and Earthquake Engineering 2006,26:1143-1148.
    Zeng X. and Rajapakse, R.K.N.D. Dynamic axial load transfer from elastic bar to poroelastic medium [J]. Journal of Engineering Mechanics,ASCE,1999,125(9):1048-1055.
    Zienkiewicz, O.C., Chang C.T. and Bettess, P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils [J]. Geotechnique,1980,30(4):385-395.
    陈嘉熙.虚土桩法可行性初步研究与分析[D].杭州:浙江大学,2008.
    龚晓南.高等土力学.杭州:浙江大学出版社[M],1996.
    龚晓南.土塑性力学.杭州:浙江大学出版社[M],1997.
    胡昌斌,黄晓明.成层粘弹性土中桩土耦合纵向振动时域响应研究[J].地震工程与工程振动,2006,26(4):205-211
    胡昌斌,王奎华,谢康和.基于平面应变假定基桩振动理论适用性研究[J].岩土工程学报,2003,25(5):595-601
    胡昌斌,王奎华,谢康和.桩与粘性阻尼土耦合纵向振动时桩顶时域响应研究[J]振动工程学报,2004,17(1):72-77.
    胡昌斌,王奎华,谢康和考虑桩土耦合作用时弹性支承桩纵向振动特性分析及应用[J].工程力学,2003,20(2):146-154
    胡昌斌.考虑土竖向波动效应的桩土纵向耦合振动理论[D]杭州:浙江大学,2003
    胡亚元.横观各向同性饱和土中波的传播[D].杭州:浙江大学,1998.
    金波.层状地基及其动力基础的计算[D].杭州:浙江大学,1994.
    贺武斌.静荷载下单桩沉降的时间效应研究[D].杭州:浙江大学,1994.
    孔德森,栾茂田,杨庆.桩土相互作用分析中的动态Winkler模型研究评述[J].世界地震工程,2005,21(1):12-17.
    孔德森,栾茂田.桩土相互作用分析中的动态Winkler模型研究评述[J].世界地震工程,2005,21(1):12-17
    李强,王奎华,谢康和.饱和土中大直径嵌岩桩纵向振动特性研究[J]振动工程学报,2005,18(4):500-505.
    李强,王奎华,谢康和.饱和土中端承桩纵向振动特性研究[J].力学学报,2004a,36(4):435-442
    李强,王奎华,谢康和.饱和土桩纵向振动引起土层复阻抗分析研究[J].岩土工程学报,2004b,26(5):679-683.
    李强,王奎华,谢康和成层饱和土中桩纵向振动特性研究及应用[J].工程力学,2007,24(10):144-149.
    李强.考虑三维波动的饱和土中桩纵向耦合振动理论[D].杭州:浙江大学,2004.
    栾茂田,孔德森,杨庆,韩丽娟.层状土中单桩竖向简谐动力响应简化解析方法[J].岩土力学,2005,26(3):375-380
    彭吉五.考虑基岩埋置深度影响时单桩沉降特性研究[D].杭州:浙江大学,2007
    王海东,尚守平.瑞利波作用下径向非匀质地基中的单桩竖向响应研究[J].振动工程学报,2006,19(2):258-264.
    王奎华.成层广义Voigt地基中粘弹性桩纵向振动分析与应用[J].浙江大学学报,2002,36(5):565-595.
    王奎华.多元件粘弹性土模型条件下桩的纵向振动特性与时域响应[J]. 声学学报,2002,27(5):455-464.
    王腾,王奎华,谢康和成层土中桩的纵向振动理论研究及应用[J].土木工程学报,2002,35(1):83-87.
    王腾,王奎华,谢康和.变截面桩速度导纳解析解[J].岩石力学与工程学报,2002,21(4):573-576
    王腾.成层土中桩纵向振动理论研究及其在PIT中的应用[D]杭州:浙江大学,2001.
    谢康和,周健.岩土工程有限元分析理论与应用[M]北京:清华大学出版社,2002.
    燕彬,黄义.群桩刚性承台竖向动阻抗的简化计算[J].岩土工程学报,2004,26(5):465-468
    杨冬英.复杂非均质土中竖向振动理论研究[D]杭州:浙江大学,2009
    张智卿.饱和非均质土中桩土耦合扭转振动理论研究[D]杭州:浙江大学,2008